首页 > 最新文献

Molecular endocrinology最新文献

英文 中文
Research Resource: Hormones, Genes, and Athleticism: Effect of Androgens on the Avian Muscular Transcriptome. 研究资源:激素、基因和运动能力:雄激素对禽类肌肉转录组的影响。
Q Biochemistry, Genetics and Molecular Biology Pub Date : 2016-01-08 DOI: 10.1210/me.2015-1270
Matthew J. Fuxjager, Jae-Hyung Lee, Tak-Ming Chan, J. Bahn, Jenifer G. Chew, X. Xiao, B. Schlinger
Male vertebrate social displays vary from physically simple to complex, with the latter involving exquisite motor command of the body and appendages. Studies of these displays have, in turn, provided substantial insight into neuromotor mechanisms. The neotropical golden-collared manakin (Manacus vitellinus) has been used previously as a model to investigate intricate motor skills because adult males of this species perform an acrobatic and androgen-dependent courtship display. To support this behavior, these birds express elevated levels of androgen receptors (AR) in their skeletal muscles. Here we use RNA sequencing to explore how testosterone (T) modulates the muscular transcriptome to support male manakin courtship displays. In addition, we explore how androgens influence gene expression in the muscles of the zebra finch (Taenopygia guttata), a model passerine bird with a limited courtship display and minimal muscle AR. We identify androgen-dependent, muscle-specific gene regulation in both species. In addition, we identify manakin-specific effects that are linked to muscle use during the manakin display, including androgenic regulation of genes associated with muscle fiber contractility, cellular homeostasis, and energetic efficiency. Overall, our results point to numerous genes and gene networks impacted by androgens in male birds, including some that underlie optimal muscle function necessary for performing acrobatic display routines. Manakins are excellent models to explore gene regulation promoting athletic ability.
雄性脊椎动物的社会表现从简单到复杂,后者涉及对身体和附属物的精细运动指挥。对这些表现的研究反过来又为神经运动机制提供了实质性的见解。新热带金领侏儒鸟(Manacus vitellinus)以前被用作研究复杂运动技能的模型,因为该物种的成年雄性表现出杂技式的雄激素依赖性求爱表现。为了支持这种行为,这些鸟在骨骼肌中表达高水平的雄激素受体(AR)。在这里,我们使用RNA测序来探索睾酮(T)如何调节肌肉转录组来支持雄性侏儒的求偶表现。此外,我们探讨了雄激素如何影响斑胸草雀(Taenopygia guttata)肌肉中的基因表达,斑胸草雀是一种具有有限求偶表现和最小肌肉AR的雀形鸟模型。我们在这两个物种中都发现了雄激素依赖的、肌肉特异性的基因调控。此外,我们还确定了与侏儒动物展示过程中肌肉使用相关的侏儒动物特异性效应,包括与肌纤维收缩性、细胞稳态和能量效率相关的基因的雄激素调节。总的来说,我们的研究结果表明,雄激素影响了雄性鸟类的许多基因和基因网络,包括一些在表演杂技表演所需的最佳肌肉功能的基础。Manakins是探索促进运动能力的基因调控的优秀模型。
{"title":"Research Resource: Hormones, Genes, and Athleticism: Effect of Androgens on the Avian Muscular Transcriptome.","authors":"Matthew J. Fuxjager, Jae-Hyung Lee, Tak-Ming Chan, J. Bahn, Jenifer G. Chew, X. Xiao, B. Schlinger","doi":"10.1210/me.2015-1270","DOIUrl":"https://doi.org/10.1210/me.2015-1270","url":null,"abstract":"Male vertebrate social displays vary from physically simple to complex, with the latter involving exquisite motor command of the body and appendages. Studies of these displays have, in turn, provided substantial insight into neuromotor mechanisms. The neotropical golden-collared manakin (Manacus vitellinus) has been used previously as a model to investigate intricate motor skills because adult males of this species perform an acrobatic and androgen-dependent courtship display. To support this behavior, these birds express elevated levels of androgen receptors (AR) in their skeletal muscles. Here we use RNA sequencing to explore how testosterone (T) modulates the muscular transcriptome to support male manakin courtship displays. In addition, we explore how androgens influence gene expression in the muscles of the zebra finch (Taenopygia guttata), a model passerine bird with a limited courtship display and minimal muscle AR. We identify androgen-dependent, muscle-specific gene regulation in both species. In addition, we identify manakin-specific effects that are linked to muscle use during the manakin display, including androgenic regulation of genes associated with muscle fiber contractility, cellular homeostasis, and energetic efficiency. Overall, our results point to numerous genes and gene networks impacted by androgens in male birds, including some that underlie optimal muscle function necessary for performing acrobatic display routines. Manakins are excellent models to explore gene regulation promoting athletic ability.","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 2 1","pages":"254-71"},"PeriodicalIF":0.0,"publicationDate":"2016-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2015-1270","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66016145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 42
Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains. 病理性突变糖皮质激素受体配体结合域的结构分析。
Q Biochemistry, Genetics and Molecular Biology Pub Date : 2016-01-08 DOI: 10.1210/me.2015-1177
D. Hurt, S. Suzuki, T. Mayama, E. Charmandari, T. Kino
Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR.
糖皮质激素受体(GR)基因突变可引起家族性或散发的广泛性糖皮质激素抵抗综合征。大多数错义形式分布在配体结合域,损害其配体结合活性和与LXXLL基序共激活子结合的激活功能(AF)-2的形成。我们对病理性GR突变体的配体结合域进行了分子动力学模拟,以揭示其结构缺陷。包括地塞米松或LXXLL肽的相互作用能在内的几个计算参数表明,配体结合袋(LBP)的破坏是其主要特征。它们的LBP缺陷主要是由受体的R611和T739与地塞米松形成的静电相互作用的丢失/减少以及随后的构象错配驱动的,去酰基cortivazol用其大的苯吡唑片段解决了这一问题,并有效地刺激了LBP缺陷突变受体的转录活性。LXXLL肽对AF-2的亲和力降低主要是由于与该肽的非核心亮氨酸残基(决定该肽对GR的特异性)的静电键被破坏,以及与核心亮氨酸的非共价相互作用减少以及随后将AF-2表面暴露于溶剂中。这些结果揭示了病理突变受体的分子缺陷,为野生型GR的作用提供了重要的见解。
{"title":"Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains.","authors":"D. Hurt, S. Suzuki, T. Mayama, E. Charmandari, T. Kino","doi":"10.1210/me.2015-1177","DOIUrl":"https://doi.org/10.1210/me.2015-1177","url":null,"abstract":"Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR.","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 2 1","pages":"173-88"},"PeriodicalIF":0.0,"publicationDate":"2016-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2015-1177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66016114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Divergent Regulation of ER and Kiss Genes by 17β-Estradiol in Hypothalamic ARC Versus AVPV Models. 17β-雌二醇对下丘脑ARC和AVPV模型中ER和Kiss基因的不同调控
Q Biochemistry, Genetics and Molecular Biology Pub Date : 2016-01-04 DOI: 10.1210/me.2015-1189
Alice K Treen, V. Luo, J. Chalmers, P. Dalvi, D. Tran, Wenqing Ye, G. Kim, Z. Friedman, D. Belsham
Kisspeptin (Kiss) and G-protein-coupled receptor (Gpr)54 have emerged as key regulators of reproduction. 17β-estradiol (E2)-mediated regulation of these neurons is nuclei specific, where anteroventral periventricular (AVPV) Kiss neurons are positively regulated by E2, whereas arcuate nucleus (ARC) neurons are inhibited. We have generated immortalized Kiss cell lines from male and female adult-derived murine hypothalamic primary culture, as well as cell lines from microdissected AVPV and ARC from female Kiss-green fluorescent protein (GFP) mice. All exhibit endogenous Kiss-1 expression, estrogen receptors (ER)s (ERα, ERβ, and Gpr30), as well as known markers of AVPV Kiss neurons in the mHypoA-50 and mHypoA-Kiss/GFP-4, vs markers of ARC Kiss neurons in the mHypoA-55 and the mHypoA-Kiss/GFP-3 lines. There was an increase in Kiss-1 mRNA expression at 24 hours in the AVPV lines and a repression of Kiss-1 mRNA at 4 hours in the ARC lines. An E2-mediated decrease in ERα mRNA expression at 24 hours in the AVPV cell lines was detected, and a significant decrease in Gpr30, ERα, and ERβ mRNA levels at 4 hours in the ARC cell lines was evident. ER agonists and antagonists determined the specific ERs responsible for mediating changes in gene expression. In the AVPV, ERα is required but not ERβ or GPR30, vs the ARC Kiss-expressing cell lines that require GPR30, and either ERα and/or ERβ. We determined cAMP response element-binding protein 1 was necessary for the down-regulation of Kiss-1 mRNA expression using small interfering RNA knockdown in the ARC cell model. These studies elucidate some of the molecular events involved in the differential E2-mediated regulation of unique and specific Kiss neuronal models.
Kisspeptin (Kiss)和g蛋白偶联受体(Gpr)54已成为生殖的关键调节因子。17β-雌二醇(E2)介导的对这些神经元的调节是核特异性的,其中腹前侧脑室周围(AVPV) Kiss神经元受到E2的积极调节,而弓形核(ARC)神经元受到抑制。我们从雄性和雌性成年小鼠下丘脑原代培养物中获得了永生化的Kiss细胞系,并从雌性Kiss绿色荧光蛋白(GFP)小鼠的微解剖AVPV和ARC中获得了细胞系。它们均表现出内源性的Kiss-1表达、雌激素受体(ER)s (ERα、ERβ和Gpr30),以及已知的mHypoA-50和mHypoA-Kiss/GFP-4中AVPV Kiss神经元的标记,而mHypoA-55和mHypoA-Kiss/GFP-3中ARC Kiss神经元的标记。在AVPV细胞系中,Kiss-1 mRNA在24小时表达增加,而在ARC细胞系中,Kiss-1 mRNA在4小时表达抑制。在AVPV细胞系中,e2介导的ERα mRNA表达在24小时内下降,而在ARC细胞系中,Gpr30、ERα和ERβ mRNA水平在4小时内明显下降。内质网激动剂和拮抗剂确定了介导基因表达变化的特异性内质网。在AVPV中,需要ERα,但不需要ERβ或GPR30,而表达ARC kiss的细胞系需要GPR30,以及ERα和/或ERβ。在ARC细胞模型中,我们通过小干扰RNA敲低确定cAMP反应元件结合蛋白1是下调Kiss-1 mRNA表达所必需的。这些研究阐明了独特和特定的Kiss神经元模型中e2介导的差异调节所涉及的一些分子事件。
{"title":"Divergent Regulation of ER and Kiss Genes by 17β-Estradiol in Hypothalamic ARC Versus AVPV Models.","authors":"Alice K Treen, V. Luo, J. Chalmers, P. Dalvi, D. Tran, Wenqing Ye, G. Kim, Z. Friedman, D. Belsham","doi":"10.1210/me.2015-1189","DOIUrl":"https://doi.org/10.1210/me.2015-1189","url":null,"abstract":"Kisspeptin (Kiss) and G-protein-coupled receptor (Gpr)54 have emerged as key regulators of reproduction. 17β-estradiol (E2)-mediated regulation of these neurons is nuclei specific, where anteroventral periventricular (AVPV) Kiss neurons are positively regulated by E2, whereas arcuate nucleus (ARC) neurons are inhibited. We have generated immortalized Kiss cell lines from male and female adult-derived murine hypothalamic primary culture, as well as cell lines from microdissected AVPV and ARC from female Kiss-green fluorescent protein (GFP) mice. All exhibit endogenous Kiss-1 expression, estrogen receptors (ER)s (ERα, ERβ, and Gpr30), as well as known markers of AVPV Kiss neurons in the mHypoA-50 and mHypoA-Kiss/GFP-4, vs markers of ARC Kiss neurons in the mHypoA-55 and the mHypoA-Kiss/GFP-3 lines. There was an increase in Kiss-1 mRNA expression at 24 hours in the AVPV lines and a repression of Kiss-1 mRNA at 4 hours in the ARC lines. An E2-mediated decrease in ERα mRNA expression at 24 hours in the AVPV cell lines was detected, and a significant decrease in Gpr30, ERα, and ERβ mRNA levels at 4 hours in the ARC cell lines was evident. ER agonists and antagonists determined the specific ERs responsible for mediating changes in gene expression. In the AVPV, ERα is required but not ERβ or GPR30, vs the ARC Kiss-expressing cell lines that require GPR30, and either ERα and/or ERβ. We determined cAMP response element-binding protein 1 was necessary for the down-regulation of Kiss-1 mRNA expression using small interfering RNA knockdown in the ARC cell model. These studies elucidate some of the molecular events involved in the differential E2-mediated regulation of unique and specific Kiss neuronal models.","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 2 1","pages":"217-33"},"PeriodicalIF":0.0,"publicationDate":"2016-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2015-1189","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66016172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 46
A20 Inhibits β-Cell Apoptosis by Multiple Mechanisms and Predicts Residual β-Cell Function in Type 1 Diabetes. A20通过多种机制抑制β-细胞凋亡并预测1型糖尿病中β-细胞的剩余功能。
Q Biochemistry, Genetics and Molecular Biology Pub Date : 2016-01-01 DOI: 10.1210/me.2015-1176
Makiko Fukaya, C. Brorsson, Kira Meyerovich, L. Catrysse, Diane Delaroche, E. Vanzela, F. Ortis, R. Beyaert, L. Nielsen, M. L. Andersen, H. Mortensen, F. Pociot, G. van Loo, J. Størling, A. K. Cardozo
Activation of the transcription factor nuclear factor kappa B (NFkB) contributes to β-cell death in type 1 diabetes (T1D). Genome-wide association studies have identified the gene TNF-induced protein 3 (TNFAIP3), encoding for the zinc finger protein A20, as a susceptibility locus for T1D. A20 restricts NF-κB signaling and has strong antiapoptotic activities in β-cells. Although the role of A20 on NF-κB inhibition is well characterized, its other antiapoptotic functions are largely unknown. By studying INS-1E cells and rat dispersed islet cells knocked down or overexpressing A20 and islets isolated from the β-cell-specific A20 knockout mice, we presently demonstrate that A20 has broader effects in β-cells that are not restricted to inhibition of NF-κB. These involves, suppression of the proapoptotic mitogen-activated protein kinase c-Jun N-terminal kinase (JNK), activation of survival signaling via v-akt murine thymoma viral oncogene homolog (Akt) and consequently inhibition of the intrinsic apoptotic pathway. Finally, in a cohort of T1D children, we observed that the risk allele of the rs2327832 single nucleotide polymorphism of TNFAIP3 predicted lower C-peptide and higher hemoglobin A1c (HbA1c) levels 12 months after disease onset, indicating reduced residual β-cell function and impaired glycemic control. In conclusion, our results indicate a critical role for A20 in the regulation of β-cell survival and unveil novel mechanisms by which A20 controls β-cell fate. Moreover, we identify the single nucleotide polymorphism rs2327832 of TNFAIP3 as a possible prognostic marker for diabetes outcome in children with T1D.
转录因子核因子κ B (NFkB)的激活有助于1型糖尿病(T1D)的β细胞死亡。全基因组关联研究发现,编码锌指蛋白A20的tnf诱导蛋白3 (TNFAIP3)基因是T1D的易感位点。A20抑制NF-κB信号传导,在β-细胞中具有较强的抗凋亡活性。虽然A20在NF-κB抑制中的作用已被明确,但其其他抗凋亡功能在很大程度上尚不清楚。通过研究敲除或过表达A20的INS-1E细胞和大鼠分散胰岛细胞,以及从β细胞特异性敲除A20的小鼠中分离的胰岛细胞,我们目前证明A20在β细胞中具有更广泛的作用,不仅限于抑制NF-κB。这些包括抑制促凋亡丝裂原激活的蛋白激酶c-Jun n-末端激酶(JNK),通过v-akt小鼠胸腺瘤病毒癌基因同源物(Akt)激活存活信号,从而抑制内在凋亡途径。最后,在一组T1D儿童中,我们观察到TNFAIP3 rs2327832单核苷酸多态性的风险等位基因预测疾病发病12个月后c肽降低和血红蛋白A1c (HbA1c)水平升高,表明残余β细胞功能降低和血糖控制受损。总之,我们的研究结果表明A20在调节β细胞存活中起着关键作用,并揭示了A20控制β细胞命运的新机制。此外,我们发现TNFAIP3的单核苷酸多态性rs2327832可能是T1D儿童糖尿病结局的预后标志物。
{"title":"A20 Inhibits β-Cell Apoptosis by Multiple Mechanisms and Predicts Residual β-Cell Function in Type 1 Diabetes.","authors":"Makiko Fukaya, C. Brorsson, Kira Meyerovich, L. Catrysse, Diane Delaroche, E. Vanzela, F. Ortis, R. Beyaert, L. Nielsen, M. L. Andersen, H. Mortensen, F. Pociot, G. van Loo, J. Størling, A. K. Cardozo","doi":"10.1210/me.2015-1176","DOIUrl":"https://doi.org/10.1210/me.2015-1176","url":null,"abstract":"Activation of the transcription factor nuclear factor kappa B (NFkB) contributes to β-cell death in type 1 diabetes (T1D). Genome-wide association studies have identified the gene TNF-induced protein 3 (TNFAIP3), encoding for the zinc finger protein A20, as a susceptibility locus for T1D. A20 restricts NF-κB signaling and has strong antiapoptotic activities in β-cells. Although the role of A20 on NF-κB inhibition is well characterized, its other antiapoptotic functions are largely unknown. By studying INS-1E cells and rat dispersed islet cells knocked down or overexpressing A20 and islets isolated from the β-cell-specific A20 knockout mice, we presently demonstrate that A20 has broader effects in β-cells that are not restricted to inhibition of NF-κB. These involves, suppression of the proapoptotic mitogen-activated protein kinase c-Jun N-terminal kinase (JNK), activation of survival signaling via v-akt murine thymoma viral oncogene homolog (Akt) and consequently inhibition of the intrinsic apoptotic pathway. Finally, in a cohort of T1D children, we observed that the risk allele of the rs2327832 single nucleotide polymorphism of TNFAIP3 predicted lower C-peptide and higher hemoglobin A1c (HbA1c) levels 12 months after disease onset, indicating reduced residual β-cell function and impaired glycemic control. In conclusion, our results indicate a critical role for A20 in the regulation of β-cell survival and unveil novel mechanisms by which A20 controls β-cell fate. Moreover, we identify the single nucleotide polymorphism rs2327832 of TNFAIP3 as a possible prognostic marker for diabetes outcome in children with T1D.","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"46 1","pages":"48-61"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2015-1176","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66016105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Table of Contents. 目录表。
Q Biochemistry, Genetics and Molecular Biology Pub Date : 2016-01-01 DOI: 10.1210/mend.2016.30.issue-8.toc
intellipap de DeVilbiss
{"title":"Table of Contents.","authors":"intellipap de DeVilbiss","doi":"10.1210/mend.2016.30.issue-8.toc","DOIUrl":"https://doi.org/10.1210/mend.2016.30.issue-8.toc","url":null,"abstract":"","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 8 1","pages":"5A-6A"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66020922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Centennial Celebration - An Interview With Professor Evan Simpson on Hormones and Cancer. 社论:百年庆典-采访埃文·辛普森教授荷尔蒙和癌症。
Q Biochemistry, Genetics and Molecular Biology Pub Date : 2016-01-01 DOI: 10.1210/me.2016-1126
{"title":"Editorial: Centennial Celebration - An Interview With Professor Evan Simpson on Hormones and Cancer.","authors":"","doi":"10.1210/me.2016-1126","DOIUrl":"https://doi.org/10.1210/me.2016-1126","url":null,"abstract":"","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 10 1","pages":"1013-1014"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2016-1126","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66016811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells. AMPK的激活刺激神经内分泌细胞的神经紧张素分泌。
Q Biochemistry, Genetics and Molecular Biology Pub Date : 2016-01-01 DOI: 10.1210/me.2015-1094
Jing Li, Jun Song, H. Weiss, Todd Weiss, C. Townsend, B. Evers
AMP-activated protein kinase (AMPK), a critical fuel-sensing enzyme, regulates the metabolic effects of various hormones. Neurotensin (NT) is a 13-amino acid peptide predominantly localized in enteroendocrine cells of the small bowel and released by fat ingestion. Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with an increased risk of diabetes, cardiovascular disease, and mortality; however, the mechanisms regulating NT release are not fully defined. We previously reported that inhibition of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) increases NT secretion and gene expression through activation of the MEK/ERK pathway. Here, we show that activation of AMPK increases NT secretion from endocrine cell lines (BON and QGP-1) and isolated mouse crypt cells enriched for NT-positive cells. In addition, plasma levels of NT increase in mice treated with 5-aminoimidazole-4-carboxamide riboside, a pharmacologic AMPK activator. Small interfering RNA-mediated knockdown of AMPKα decrease, whereas overexpression of the subunit significantly enhances, NT secretion from BON cells treated with AMPK activators or oleic acid. Similarly, small interfering RNA knockdown of the upstream AMPK kinases, liver kinase B1 and Ca(2+) calmodulin-dependent protein kinase kinase 2, also attenuate NT release and AMPK phosphorylation. Moreover, AMPK activation increases NT secretion through inhibition of mTORC1 signaling. Together, our findings show that AMPK activation enhances NT release through inhibition of mTORC1 signaling, thus demonstrating an important cross talk regulation for NT secretion.
amp活化蛋白激酶(AMPK)是一种重要的燃料感应酶,调节各种激素的代谢作用。神经紧张素(NT)是一种13个氨基酸的肽,主要存在于小肠的肠内分泌细胞中,并通过脂肪摄入释放。空腹血浆前NT(相对于NT产生等摩尔量的稳定NT前体片段)水平升高与糖尿病、心血管疾病和死亡率风险增加相关;然而,调节NT释放的机制尚未完全确定。我们之前报道过,抑制哺乳动物雷帕霉素靶蛋白(mTOR)复合物1 (mTORC1)通过激活MEK/ERK通路增加NT分泌和基因表达。在这里,我们发现AMPK的激活增加了内分泌细胞系(BON和QGP-1)和分离的NT阳性小鼠隐窝细胞的NT分泌。此外,5-氨基咪唑-4-羧酰胺核苷(一种药理学AMPK激活剂)治疗小鼠血浆NT水平升高。小干扰rna介导的AMPKα敲除减少,而亚基的过表达显著增强,经AMPK激活剂或油酸处理的BON细胞分泌NT。同样,上游AMPK激酶,肝激酶B1和Ca(2+)钙调素依赖性蛋白激酶激酶2的小干扰RNA敲低也会减弱NT的释放和AMPK的磷酸化。此外,AMPK激活通过抑制mTORC1信号传导增加NT分泌。综上所述,我们的研究结果表明AMPK激活通过抑制mTORC1信号传导增强NT释放,从而证明了对NT分泌的重要串扰调节。
{"title":"Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells.","authors":"Jing Li, Jun Song, H. Weiss, Todd Weiss, C. Townsend, B. Evers","doi":"10.1210/me.2015-1094","DOIUrl":"https://doi.org/10.1210/me.2015-1094","url":null,"abstract":"AMP-activated protein kinase (AMPK), a critical fuel-sensing enzyme, regulates the metabolic effects of various hormones. Neurotensin (NT) is a 13-amino acid peptide predominantly localized in enteroendocrine cells of the small bowel and released by fat ingestion. Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with an increased risk of diabetes, cardiovascular disease, and mortality; however, the mechanisms regulating NT release are not fully defined. We previously reported that inhibition of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) increases NT secretion and gene expression through activation of the MEK/ERK pathway. Here, we show that activation of AMPK increases NT secretion from endocrine cell lines (BON and QGP-1) and isolated mouse crypt cells enriched for NT-positive cells. In addition, plasma levels of NT increase in mice treated with 5-aminoimidazole-4-carboxamide riboside, a pharmacologic AMPK activator. Small interfering RNA-mediated knockdown of AMPKα decrease, whereas overexpression of the subunit significantly enhances, NT secretion from BON cells treated with AMPK activators or oleic acid. Similarly, small interfering RNA knockdown of the upstream AMPK kinases, liver kinase B1 and Ca(2+) calmodulin-dependent protein kinase kinase 2, also attenuate NT release and AMPK phosphorylation. Moreover, AMPK activation increases NT secretion through inhibition of mTORC1 signaling. Together, our findings show that AMPK activation enhances NT release through inhibition of mTORC1 signaling, thus demonstrating an important cross talk regulation for NT secretion.","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 1 1","pages":"26-36"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2015-1094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66015867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Table of Contents. 目录表。
Q Biochemistry, Genetics and Molecular Biology Pub Date : 2016-01-01 DOI: 10.1210/mend.2016.30.issue-2.toc
J. Huseynov, Committee Chair
The dissertation of Javid J. Huseynov is approved and is acceptable in quality and form for publication on microfilm and in digital formats: ii DEDICATION To my mother and to all others that are dear to me...
Javid J. Huseynov的论文在质量和形式上被批准,可以在缩微胶卷和数字格式上发表:ii献给我的母亲和所有对我来说亲爱的其他人……
{"title":"Table of Contents.","authors":"J. Huseynov, Committee Chair","doi":"10.1210/mend.2016.30.issue-2.toc","DOIUrl":"https://doi.org/10.1210/mend.2016.30.issue-2.toc","url":null,"abstract":"The dissertation of Javid J. Huseynov is approved and is acceptable in quality and form for publication on microfilm and in digital formats: ii DEDICATION To my mother and to all others that are dear to me...","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 2 1","pages":"4A-5A"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66020558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board. 编辑委员会。
Q Biochemistry, Genetics and Molecular Biology Pub Date : 2016-01-01 DOI: 10.1210/mend.2016.30.issue-9.edboard
{"title":"Editorial Board.","authors":"","doi":"10.1210/mend.2016.30.issue-9.edboard","DOIUrl":"https://doi.org/10.1210/mend.2016.30.issue-9.edboard","url":null,"abstract":"","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 9 1","pages":"3A"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/mend.2016.30.issue-9.edboard","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66020955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board. 编辑委员会。
Q Biochemistry, Genetics and Molecular Biology Pub Date : 2016-01-01 DOI: 10.1210/mend.2016.30.issue-7.edboard
Derick Albers, Joseph Belisle, Akshay Chakravarthy, Edward Y. Chen, Abigayle Farris Dang, Benjamin Daniels, John Evans, Aaron K. Block, Annabel R. Chang, Laura Crane, David A. Curfman, Lisa Nunn DeBord, Nicholas J. Demeropolis, Alexander S. Elson, Justin K. Gelfand, Kevin R. Grondahl, M. Grossmann, A. R. Hansberry, Eric J. Andalman, M. Mailloux, J. R. Mourning, John J. Schoemehl, S. Papacostas, Elizabeth A. Peters, Melissa A. Reinckens, Daniel S. Riemer, Michael Rueckheim, Adrienne E. Van Winkle, Elizabeth White, Benjamin D. Sandahl, K. Schopp, J. Seeder, Anne J. Siarnacki, Benjamin J. Siders, Megan A. Sindel, Jessica J. Smith, S. Solimani, D. Spira, Scott Talkov, Wakaba Tessier, Daniel Tierney, Elizabeth K. Tomasovic, J. V. Duren, Miriam Volchenboum, Alana C. Hake, Jefferson Hayden, Elisheva Hirshman-Green, Amanda Katzenstein, Corinne Mattli, Amanda Norris, Nathan R. Jones, Rebecca J. Keyworth, Michael E. Klenov, Aditi D. Kothekar, S. Kuehnel, Kate M Lesciotto, Steven K. Luther, Colman Mccarthy, Jessica
{"title":"Editorial Board.","authors":"Derick Albers, Joseph Belisle, Akshay Chakravarthy, Edward Y. Chen, Abigayle Farris Dang, Benjamin Daniels, John Evans, Aaron K. Block, Annabel R. Chang, Laura Crane, David A. Curfman, Lisa Nunn DeBord, Nicholas J. Demeropolis, Alexander S. Elson, Justin K. Gelfand, Kevin R. Grondahl, M. Grossmann, A. R. Hansberry, Eric J. Andalman, M. Mailloux, J. R. Mourning, John J. Schoemehl, S. Papacostas, Elizabeth A. Peters, Melissa A. Reinckens, Daniel S. Riemer, Michael Rueckheim, Adrienne E. Van Winkle, Elizabeth White, Benjamin D. Sandahl, K. Schopp, J. Seeder, Anne J. Siarnacki, Benjamin J. Siders, Megan A. Sindel, Jessica J. Smith, S. Solimani, D. Spira, Scott Talkov, Wakaba Tessier, Daniel Tierney, Elizabeth K. Tomasovic, J. V. Duren, Miriam Volchenboum, Alana C. Hake, Jefferson Hayden, Elisheva Hirshman-Green, Amanda Katzenstein, Corinne Mattli, Amanda Norris, Nathan R. Jones, Rebecca J. Keyworth, Michael E. Klenov, Aditi D. Kothekar, S. Kuehnel, Kate M Lesciotto, Steven K. Luther, Colman Mccarthy, Jessica ","doi":"10.1210/mend.2016.30.issue-7.edboard","DOIUrl":"https://doi.org/10.1210/mend.2016.30.issue-7.edboard","url":null,"abstract":"","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 7 1","pages":"3A"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66021350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular endocrinology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1