Pub Date : 2016-07-01Epub Date: 2016-05-04DOI: 10.1210/me.2016-1001
Andreas Breit, Kristina Wicht, Ingrid Boekhoff, Evi Glas, Lisa Lauffer, Harald Mückter, Thomas Gudermann
Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction.
{"title":"Glucose Enhances Basal or Melanocortin-Induced cAMP-Response Element Activity in Hypothalamic Cells.","authors":"Andreas Breit, Kristina Wicht, Ingrid Boekhoff, Evi Glas, Lisa Lauffer, Harald Mückter, Thomas Gudermann","doi":"10.1210/me.2016-1001","DOIUrl":"https://doi.org/10.1210/me.2016-1001","url":null,"abstract":"<p><p>Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction. </p>","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 7","pages":"748-62"},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2016-1001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34452854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transcriptional regulation by the estrogen receptor-α (ER) has been investigated mainly in breast cancer cell lines, but estrogens such as 17β-estradiol (E2) exert numerous extrareproductive effects, particularly in the liver, where E2 exhibits both protective metabolic and deleterious thrombotic actions. To analyze the direct and early transcriptional effects of estrogens in the liver, we determined the E2-sensitive transcriptome and ER cistrome in mice after acute administration of E2 or placebo. These analyses revealed the early induction of genes involved in lipid metabolism, which fits with the crucial role of ER in the prevention of liver steatosis. Characterization of the chromatin state of ER binding sites (BSs) in mice expressing or not ER demonstrated that ER is not required per se for the establishment and/or maintenance of chromatin modifications at the majority of its BSs. This is presumably a consequence of a strong overlap between ER and hepatocyte nuclear factor 4α BSs. In contrast, 40% of the BSs of the pioneer factor forkhead box protein a (Foxa2) were dependent upon ER expression, and ER expression also affected the distribution of nucleosomes harboring dimethylated lysine 4 of Histone H3 around Foxa2 BSs. We finally show that, in addition to a network of liver-specific transcription factors including CCAAT/enhancer-binding protein and hepatocyte nuclear factor 4α, ER might be required for proper Foxa2 function in this tissue.
{"title":"Changes in Gene Expression and Estrogen Receptor Cistrome in Mouse Liver Upon Acute E2 Treatment.","authors":"Gaëlle Palierne, Aurélie Fabre, Romain Solinhac, Christine Le Péron, Stéphane Avner, Françoise Lenfant, Coralie Fontaine, Gilles Salbert, Gilles Flouriot, Jean-François Arnal, Raphaël Métivier","doi":"10.1210/me.2015-1311","DOIUrl":"https://doi.org/10.1210/me.2015-1311","url":null,"abstract":"<p><p>Transcriptional regulation by the estrogen receptor-α (ER) has been investigated mainly in breast cancer cell lines, but estrogens such as 17β-estradiol (E2) exert numerous extrareproductive effects, particularly in the liver, where E2 exhibits both protective metabolic and deleterious thrombotic actions. To analyze the direct and early transcriptional effects of estrogens in the liver, we determined the E2-sensitive transcriptome and ER cistrome in mice after acute administration of E2 or placebo. These analyses revealed the early induction of genes involved in lipid metabolism, which fits with the crucial role of ER in the prevention of liver steatosis. Characterization of the chromatin state of ER binding sites (BSs) in mice expressing or not ER demonstrated that ER is not required per se for the establishment and/or maintenance of chromatin modifications at the majority of its BSs. This is presumably a consequence of a strong overlap between ER and hepatocyte nuclear factor 4α BSs. In contrast, 40% of the BSs of the pioneer factor forkhead box protein a (Foxa2) were dependent upon ER expression, and ER expression also affected the distribution of nucleosomes harboring dimethylated lysine 4 of Histone H3 around Foxa2 BSs. We finally show that, in addition to a network of liver-specific transcription factors including CCAAT/enhancer-binding protein and hepatocyte nuclear factor 4α, ER might be required for proper Foxa2 function in this tissue. </p>","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 7","pages":"709-32"},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2015-1311","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34535608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fatty acid metabolism and steroid biosynthesis are 2 major pathways shared by peroxisomes and mitochondria. Both organelles are in close apposition to the endoplasmic reticulum, with which they communicate via interorganelle membrane contact sites to promote cellular signaling and the exchange of ions and lipids. To date, no convincing evidence of the direct contact between peroxisomes and mitochondria was reported in mammalian cells. Hormone-induced, tightly controlled steroid hormone biosynthesis requires interorganelle interactions. Using immunofluorescent staining and live-cell imaging, we found that dibutyryl-cAMP treatment of MA-10 mouse tumor Leydig cells rapidly induces peroxisomes to approach mitochondria and form peroxisome-mitochondrial contact sites/fusion, revealed by the subcellular distribution of the endogenous acyl-coenzyme A-binding domain (ACBD)2/ECI2 isoform A generated by alternative splicing, and further validated using a proximity ligation assay. This event occurs likely via a peroxisome-like structure, which is mediated by peroxisomal and mitochondrial matrix protein import complexes: peroxisomal import receptor peroxisomal biogenesis factor 5 (PEX5), and the mitochondrial import receptor subunit translocase of outer mitochondrial membrane 20 homolog (yeast) protein. Similar results were obtained using the mLTC-1 mouse tumor Leydig cells. Ectopic expression of the ACBD2/ECI2 isoform A in MA-10 cells led to increased basal and hormone-stimulated steroid formation, indicating that ACBD2/ECI2-mediated peroxisomes-mitochondria interactions favor in the exchange of metabolites and/or macromolecules between these 2 organelles in support of steroid biosynthesis. Considering the widespread occurrence of the ACBD2/ECI2 protein, we propose that this protein might serve as a tool to assist in understanding the contact between peroxisomes and mitochondria.
{"title":"ACBD2/ECI2-Mediated Peroxisome-Mitochondria Interactions in Leydig Cell Steroid Biosynthesis.","authors":"Jinjiang Fan, Xinlu Li, Leeyah Issop, Martine Culty, Vassilios Papadopoulos","doi":"10.1210/me.2016-1008","DOIUrl":"https://doi.org/10.1210/me.2016-1008","url":null,"abstract":"<p><p>Fatty acid metabolism and steroid biosynthesis are 2 major pathways shared by peroxisomes and mitochondria. Both organelles are in close apposition to the endoplasmic reticulum, with which they communicate via interorganelle membrane contact sites to promote cellular signaling and the exchange of ions and lipids. To date, no convincing evidence of the direct contact between peroxisomes and mitochondria was reported in mammalian cells. Hormone-induced, tightly controlled steroid hormone biosynthesis requires interorganelle interactions. Using immunofluorescent staining and live-cell imaging, we found that dibutyryl-cAMP treatment of MA-10 mouse tumor Leydig cells rapidly induces peroxisomes to approach mitochondria and form peroxisome-mitochondrial contact sites/fusion, revealed by the subcellular distribution of the endogenous acyl-coenzyme A-binding domain (ACBD)2/ECI2 isoform A generated by alternative splicing, and further validated using a proximity ligation assay. This event occurs likely via a peroxisome-like structure, which is mediated by peroxisomal and mitochondrial matrix protein import complexes: peroxisomal import receptor peroxisomal biogenesis factor 5 (PEX5), and the mitochondrial import receptor subunit translocase of outer mitochondrial membrane 20 homolog (yeast) protein. Similar results were obtained using the mLTC-1 mouse tumor Leydig cells. Ectopic expression of the ACBD2/ECI2 isoform A in MA-10 cells led to increased basal and hormone-stimulated steroid formation, indicating that ACBD2/ECI2-mediated peroxisomes-mitochondria interactions favor in the exchange of metabolites and/or macromolecules between these 2 organelles in support of steroid biosynthesis. Considering the widespread occurrence of the ACBD2/ECI2 protein, we propose that this protein might serve as a tool to assist in understanding the contact between peroxisomes and mitochondria. </p>","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 7","pages":"763-82"},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2016-1008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34538055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-07-01Epub Date: 2016-05-31DOI: 10.1210/me.2016-1037
Jörg Johannes, Doreen Braun, Anita Kinne, Daniel Rathmann, Josef Köhrle, Ulrich Schweizer
Monocarboxylate transporters (MCTs) belong to the SLC16 family within the major facilitator superfamily of transmembrane transporters. MCT8 is a thyroid hormone transporter mutated in the Allan-Herndon-Dudley syndrome, a severe psychomotor retardation syndrome. MCT10 is closely related to MCT8 and is known as T-type amino acid transporter. Both transporters mediate T3 transport, but although MCT8 also transports rT3 and T4, these compounds are not efficiently transported by MCT10, which, in contrast, transports aromatic amino acids. Based on the 58% amino acid identity within the transmembrane regions among MCT8 and MCT10, we reasoned that substrate specificity may be primarily determined by a small number of amino acid differences between MCT8 and MCT10 along the substrate translocation channel. Inspecting the homology model of MCT8 and a structure-guided alignment between both proteins, we selected 8 amino acid positions and prepared chimeric MCT10 proteins with selected amino acids changed to the corresponding amino acids in MCT8. The MCT10 mutant harboring 8 amino acid substitutions was stably expressed in Madin-Darby canine kidney 1 cells and found to exhibit T4 transport activity. We then successively reduced the number of amino acid substitutions and eventually identified a minimal set of 2-3 amino acid exchanges which were sufficient to allow T4 transport. The resulting MCT10 chimeras exhibited KM values for T4 similar to MCT8 but transported T4 at a slower rate. The acquisition of T4 transport by MCT10 was associated with complete loss of the capacity to transport Phe, when Tyr184 was mutated to Phe.
{"title":"Few Amino Acid Exchanges Expand the Substrate Spectrum of Monocarboxylate Transporter 10.","authors":"Jörg Johannes, Doreen Braun, Anita Kinne, Daniel Rathmann, Josef Köhrle, Ulrich Schweizer","doi":"10.1210/me.2016-1037","DOIUrl":"10.1210/me.2016-1037","url":null,"abstract":"<p><p>Monocarboxylate transporters (MCTs) belong to the SLC16 family within the major facilitator superfamily of transmembrane transporters. MCT8 is a thyroid hormone transporter mutated in the Allan-Herndon-Dudley syndrome, a severe psychomotor retardation syndrome. MCT10 is closely related to MCT8 and is known as T-type amino acid transporter. Both transporters mediate T3 transport, but although MCT8 also transports rT3 and T4, these compounds are not efficiently transported by MCT10, which, in contrast, transports aromatic amino acids. Based on the 58% amino acid identity within the transmembrane regions among MCT8 and MCT10, we reasoned that substrate specificity may be primarily determined by a small number of amino acid differences between MCT8 and MCT10 along the substrate translocation channel. Inspecting the homology model of MCT8 and a structure-guided alignment between both proteins, we selected 8 amino acid positions and prepared chimeric MCT10 proteins with selected amino acids changed to the corresponding amino acids in MCT8. The MCT10 mutant harboring 8 amino acid substitutions was stably expressed in Madin-Darby canine kidney 1 cells and found to exhibit T4 transport activity. We then successively reduced the number of amino acid substitutions and eventually identified a minimal set of 2-3 amino acid exchanges which were sufficient to allow T4 transport. The resulting MCT10 chimeras exhibited KM values for T4 similar to MCT8 but transported T4 at a slower rate. The acquisition of T4 transport by MCT10 was associated with complete loss of the capacity to transport Phe, when Tyr184 was mutated to Phe. </p>","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 7","pages":"796-808"},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426580/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34532892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Centennial Celebration - An Interview with Dr Perrin White on Pediatric Endocrinology.","authors":"","doi":"10.1210/me.2016-1087","DOIUrl":"https://doi.org/10.1210/me.2016-1087","url":null,"abstract":"","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 7","pages":"689-92"},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2016-1087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34624643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-07-01Epub Date: 2016-05-16DOI: 10.1210/me.2016-1036
Silvia Salatino, Barbara Kupr, Mario Baresic, Saeed Omidi, Erik van Nimwegen, Christoph Handschin
The peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) coordinates the transcriptional network response to promote an improved endurance capacity in skeletal muscle, eg, by coactivating the estrogen-related receptor-α (ERRα) in the regulation of oxidative substrate metabolism. Despite a close functional relationship, the interaction between these 2 proteins has not been studied on a genomic level. We now mapped the genome-wide binding of ERRα to DNA in a skeletal muscle cell line with elevated PGC-1α and linked the DNA recruitment to global PGC-1α target gene regulation. We found that, surprisingly, ERRα coactivation by PGC-1α is only observed in the minority of all PGC-1α recruitment sites. Nevertheless, a majority of PGC-1α target gene expression is dependent on ERRα. Intriguingly, the interaction between these 2 proteins is controlled by the genomic context of response elements, in particular the relative GC and CpG content, monomeric and dimeric repeat-binding site configuration for ERRα, and adjacent recruitment of the transcription factor specificity protein 1. These findings thus not only reveal a novel insight into the regulatory network underlying muscle cell plasticity but also strongly link the genomic context of DNA-response elements to control transcription factor-coregulator interactions.
{"title":"The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells.","authors":"Silvia Salatino, Barbara Kupr, Mario Baresic, Saeed Omidi, Erik van Nimwegen, Christoph Handschin","doi":"10.1210/me.2016-1036","DOIUrl":"10.1210/me.2016-1036","url":null,"abstract":"<p><p>The peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) coordinates the transcriptional network response to promote an improved endurance capacity in skeletal muscle, eg, by coactivating the estrogen-related receptor-α (ERRα) in the regulation of oxidative substrate metabolism. Despite a close functional relationship, the interaction between these 2 proteins has not been studied on a genomic level. We now mapped the genome-wide binding of ERRα to DNA in a skeletal muscle cell line with elevated PGC-1α and linked the DNA recruitment to global PGC-1α target gene regulation. We found that, surprisingly, ERRα coactivation by PGC-1α is only observed in the minority of all PGC-1α recruitment sites. Nevertheless, a majority of PGC-1α target gene expression is dependent on ERRα. Intriguingly, the interaction between these 2 proteins is controlled by the genomic context of response elements, in particular the relative GC and CpG content, monomeric and dimeric repeat-binding site configuration for ERRα, and adjacent recruitment of the transcription factor specificity protein 1. These findings thus not only reveal a novel insight into the regulatory network underlying muscle cell plasticity but also strongly link the genomic context of DNA-response elements to control transcription factor-coregulator interactions.</p>","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 7","pages":"809-25"},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2016-1036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34485320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-07-01Epub Date: 2016-05-13DOI: 10.1210/me.2015-1312
Kalin Wilson, Jiyeon Park, Thomas E Curry, Birendra Mishra, Jan Gossen, Ichiro Taniuchi, Misung Jo
Core binding factor (CBF) is a heterodimeric transcription factor complex composed of a DNA-binding subunit, one of three runt-related transcription factor (RUNX) factors, and a non-DNA binding subunit, CBFβ. CBFβ is critical for DNA binding and stability of the CBF transcription factor complex. In the ovary, the LH surge increases the expression of Runx1 and Runx2 in periovulatory follicles, implicating a role for CBFs in the periovulatory process. The present study investigated the functional significance of CBFs (RUNX1/CBFβ and RUNX2/CBFβ) in the ovary by examining the ovarian phenotype of granulosa cell-specific CBFβ knockdown mice; CBFβ f/f * Cyp19 cre. The mutant female mice exhibited significant reductions in fertility, with smaller litter sizes, decreased progesterone during gestation, and fewer cumulus oocyte complexes collected after an induced superovulation. RNA sequencing and transcriptome assembly revealed altered expression of more than 200 mRNA transcripts in the granulosa cells of Cbfb knockdown mice after human chorionic gonadotropin stimulation in vitro. Among the affected transcripts are known regulators of ovulation and luteinization including Sfrp4, Sgk1, Lhcgr, Prlr, Wnt4, and Edn2 as well as many genes not yet characterized in the ovary. Cbfβ knockdown mice also exhibited decreased expression of key genes within the corpora lutea and morphological changes in the ovarian structure, including the presence of large antral follicles well into the luteal phase. Overall, these data suggest a role for CBFs as significant regulators of gene expression, ovulatory processes, and luteal development in the ovary.
{"title":"Core Binding Factor-β Knockdown Alters Ovarian Gene Expression and Function in the Mouse.","authors":"Kalin Wilson, Jiyeon Park, Thomas E Curry, Birendra Mishra, Jan Gossen, Ichiro Taniuchi, Misung Jo","doi":"10.1210/me.2015-1312","DOIUrl":"https://doi.org/10.1210/me.2015-1312","url":null,"abstract":"<p><p>Core binding factor (CBF) is a heterodimeric transcription factor complex composed of a DNA-binding subunit, one of three runt-related transcription factor (RUNX) factors, and a non-DNA binding subunit, CBFβ. CBFβ is critical for DNA binding and stability of the CBF transcription factor complex. In the ovary, the LH surge increases the expression of Runx1 and Runx2 in periovulatory follicles, implicating a role for CBFs in the periovulatory process. The present study investigated the functional significance of CBFs (RUNX1/CBFβ and RUNX2/CBFβ) in the ovary by examining the ovarian phenotype of granulosa cell-specific CBFβ knockdown mice; CBFβ f/f * Cyp19 cre. The mutant female mice exhibited significant reductions in fertility, with smaller litter sizes, decreased progesterone during gestation, and fewer cumulus oocyte complexes collected after an induced superovulation. RNA sequencing and transcriptome assembly revealed altered expression of more than 200 mRNA transcripts in the granulosa cells of Cbfb knockdown mice after human chorionic gonadotropin stimulation in vitro. Among the affected transcripts are known regulators of ovulation and luteinization including Sfrp4, Sgk1, Lhcgr, Prlr, Wnt4, and Edn2 as well as many genes not yet characterized in the ovary. Cbfβ knockdown mice also exhibited decreased expression of key genes within the corpora lutea and morphological changes in the ovarian structure, including the presence of large antral follicles well into the luteal phase. Overall, these data suggest a role for CBFs as significant regulators of gene expression, ovulatory processes, and luteal development in the ovary. </p>","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 7","pages":"733-47"},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2015-1312","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34482321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-07-01Epub Date: 2016-05-10DOI: 10.1210/me.2016-1027
Jumpei Terakawa, Altea Rocchi, Vanida A Serna, Erwin P Bottinger, Jonathan M Graff, Takeshi Kurita
Cell fate of lower Müllerian duct epithelium (MDE), to become uterine or vaginal epithelium, is determined by the absence or presence of ΔNp63 expression, respectively. Previously, we showed that SMAD4 and runt-related transcription factor 1 (RUNX1) were independently required for MDE to express ΔNp63. Here, we report that vaginal mesenchyme directs vaginal epithelial cell fate in MDE through paracrine activation of fibroblast growth factor (FGF) receptor-MAPK pathway. In the developing reproductive tract, FGF7 and FGF10 were enriched in vaginal mesenchyme, whereas FGF receptor 2IIIb was expressed in epithelia of both the uterus and vagina. When Fgfr2 was inactivated, vaginal MDE underwent uterine cell fate, and this differentiation defect was corrected by activation of MEK-ERK pathway. In vitro, FGF10 in combination with bone morphogenetic protein 4 and activin A (ActA) was sufficient to induce ΔNp63 in MDE, and ActA was essential for induction of RUNX1 through SMAD-independent pathways. Accordingly, inhibition of type 1 receptors for activin in neonatal mice induced uterine differentiation in vaginal epithelium by down-regulating RUNX1, whereas conditional deletion of Smad2 and Smad3 had no effect on vaginal epithelial differentiation. In conclusion, vaginal epithelial cell fate in MDE is induced by FGF7/10-MAPK, bone morphogenetic protein 4-SMAD, and ActA-RUNX1 pathway activities, and the disruption in any one of these pathways results in conversion from vaginal to uterine epithelial cell fate.
{"title":"FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct.","authors":"Jumpei Terakawa, Altea Rocchi, Vanida A Serna, Erwin P Bottinger, Jonathan M Graff, Takeshi Kurita","doi":"10.1210/me.2016-1027","DOIUrl":"https://doi.org/10.1210/me.2016-1027","url":null,"abstract":"<p><p>Cell fate of lower Müllerian duct epithelium (MDE), to become uterine or vaginal epithelium, is determined by the absence or presence of ΔNp63 expression, respectively. Previously, we showed that SMAD4 and runt-related transcription factor 1 (RUNX1) were independently required for MDE to express ΔNp63. Here, we report that vaginal mesenchyme directs vaginal epithelial cell fate in MDE through paracrine activation of fibroblast growth factor (FGF) receptor-MAPK pathway. In the developing reproductive tract, FGF7 and FGF10 were enriched in vaginal mesenchyme, whereas FGF receptor 2IIIb was expressed in epithelia of both the uterus and vagina. When Fgfr2 was inactivated, vaginal MDE underwent uterine cell fate, and this differentiation defect was corrected by activation of MEK-ERK pathway. In vitro, FGF10 in combination with bone morphogenetic protein 4 and activin A (ActA) was sufficient to induce ΔNp63 in MDE, and ActA was essential for induction of RUNX1 through SMAD-independent pathways. Accordingly, inhibition of type 1 receptors for activin in neonatal mice induced uterine differentiation in vaginal epithelium by down-regulating RUNX1, whereas conditional deletion of Smad2 and Smad3 had no effect on vaginal epithelial differentiation. In conclusion, vaginal epithelial cell fate in MDE is induced by FGF7/10-MAPK, bone morphogenetic protein 4-SMAD, and ActA-RUNX1 pathway activities, and the disruption in any one of these pathways results in conversion from vaginal to uterine epithelial cell fate. </p>","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 7","pages":"783-95"},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2016-1027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34535609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-01Epub Date: 2016-04-19DOI: 10.1210/me.2016-1026
Casey C Nestor, Jian Qiu, Stephanie L Padilla, Chunguang Zhang, Martha A Bosch, Wei Fan, Sue A Aicher, Richard D Palmiter, Oline K Rønnekleiv, Martin J Kelly
Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. Proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, located in the arcuate nucleus (ARC) of the hypothalamus, integrate numerous excitatory and inhibitory inputs to ultimately regulate energy homeostasis. Given that POMC and AgRP neurons are contacted by Kiss1 neurons in the ARC (Kiss1(ARC)) and they express androgen receptors, Kiss1(ARC) neurons may mediate the orexigenic action of testosterone via POMC and/or AgRP neurons. Quantitative PCR analysis of pooled Kiss1(ARC) neurons revealed that mRNA levels for Kiss1 and vesicular glutamate transporter 2 were higher in castrated male mice compared with gonad-intact males. Single-cell RT-PCR analysis of yellow fluorescent protein (YFP) ARC neurons harvested from males injected with AAV1-EF1α-DIO-ChR2:YFP revealed that 100% and 88% expressed mRNAs for Kiss1 and vesicular glutamate transporter 2, respectively. Whole-cell, voltage-clamp recordings from nonfluorescent postsynaptic ARC neurons showed that low frequency photo-stimulation (0.5 Hz) of Kiss1-ChR2:YFP neurons elicited a fast glutamatergic inward current in POMC and AgRP neurons. Paired-pulse, photo-stimulation revealed paired-pulse depression, which is indicative of greater glutamate release, in the castrated male mice compared with gonad-intact male mice. Group I and group II metabotropic glutamate receptor agonists depolarized and hyperpolarized POMC and AgRP neurons, respectively, which was mimicked by high frequency photo-stimulation (20 Hz) of Kiss1(ARC) neurons. Therefore, POMC and AgRP neurons receive direct steroid- and frequency-dependent glutamatergic synaptic input from Kiss1(ARC) neurons in male mice, which may be a critical pathway for Kiss1 neurons to help coordinate energy homeostasis and reproduction.
{"title":"Optogenetic Stimulation of Arcuate Nucleus Kiss1 Neurons Reveals a Steroid-Dependent Glutamatergic Input to POMC and AgRP Neurons in Male Mice.","authors":"Casey C Nestor, Jian Qiu, Stephanie L Padilla, Chunguang Zhang, Martha A Bosch, Wei Fan, Sue A Aicher, Richard D Palmiter, Oline K Rønnekleiv, Martin J Kelly","doi":"10.1210/me.2016-1026","DOIUrl":"https://doi.org/10.1210/me.2016-1026","url":null,"abstract":"<p><p>Kisspeptin (Kiss1) neurons are essential for reproduction, but their role in the control of energy balance and other homeostatic functions remains unclear. Proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, located in the arcuate nucleus (ARC) of the hypothalamus, integrate numerous excitatory and inhibitory inputs to ultimately regulate energy homeostasis. Given that POMC and AgRP neurons are contacted by Kiss1 neurons in the ARC (Kiss1(ARC)) and they express androgen receptors, Kiss1(ARC) neurons may mediate the orexigenic action of testosterone via POMC and/or AgRP neurons. Quantitative PCR analysis of pooled Kiss1(ARC) neurons revealed that mRNA levels for Kiss1 and vesicular glutamate transporter 2 were higher in castrated male mice compared with gonad-intact males. Single-cell RT-PCR analysis of yellow fluorescent protein (YFP) ARC neurons harvested from males injected with AAV1-EF1α-DIO-ChR2:YFP revealed that 100% and 88% expressed mRNAs for Kiss1 and vesicular glutamate transporter 2, respectively. Whole-cell, voltage-clamp recordings from nonfluorescent postsynaptic ARC neurons showed that low frequency photo-stimulation (0.5 Hz) of Kiss1-ChR2:YFP neurons elicited a fast glutamatergic inward current in POMC and AgRP neurons. Paired-pulse, photo-stimulation revealed paired-pulse depression, which is indicative of greater glutamate release, in the castrated male mice compared with gonad-intact male mice. Group I and group II metabotropic glutamate receptor agonists depolarized and hyperpolarized POMC and AgRP neurons, respectively, which was mimicked by high frequency photo-stimulation (20 Hz) of Kiss1(ARC) neurons. Therefore, POMC and AgRP neurons receive direct steroid- and frequency-dependent glutamatergic synaptic input from Kiss1(ARC) neurons in male mice, which may be a critical pathway for Kiss1 neurons to help coordinate energy homeostasis and reproduction. </p>","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 6","pages":"630-44"},"PeriodicalIF":0.0,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2016-1026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34415017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}