首页 > 最新文献

Monthly Weather Review最新文献

英文 中文
Classification of Warm-Season Precipitation in High-Resolution Rapid Refresh (HRRR) model forecasts over the Contiguous United States 美国毗连地区高分辨率快速更新(HRRR)模式预报中的暖季降水分类
IF 3.2 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-21 DOI: 10.1175/mwr-d-23-0108.1
I-Han Chen, Judith Berner, Christian Keil, Ying-Hwa Kuo, George C. Craig
This study uses the convective adjustment time scale to identify the climatological frequency of equilibrium and non-equilibrium convection in different parts of the Contiguous United States (CONUS) as modeled by the operational convection-allowing High-Resolution Rapid Refresh (HRRR) forecast system. We find a qualitatively different climatology in the northern and southern domains separated by the 40°N parallel. The convective adjustment time scale picks up the fact that convection over the northern domains is governed by synoptic flow (leading to equilibrium) while locally forced, non-equilibrium convection dominates over the southern domains. Using a machine learning algorithm, we demonstrate that the convective adjustment timescale diagnostic provides a sensible classification that agrees with the underlying dynamics of equilibrium and non-equilibrium convection. Furthermore, the convective adjustment time scale can indicate the model quantitative precipitation forecast (QPF) quality, as it correctly reflects the higher QPF skill for precipitation under strong synoptic forcing. This diagnostic based on the strength of forcing for convection will be employed in future studies across different parts of CONUS to objectively distinguish different weather situations and explore the potential connection to warm-season precipitation predictability.
本研究利用对流调整时间尺度来确定美国毗连区(CONUS)不同地区的平衡和非平衡对流的气候频率,并通过允许对流的高分辨率快速更新(HRRR)预报系统进行建模。我们发现,被北纬 40 度平行线分隔的北部和南部区域的气候有质的不同。对流调节时间尺度反映了这样一个事实,即北部区域的对流受同步流(导致平衡)的支配,而南部区域的对流则以局部强迫、非平衡对流为主。利用机器学习算法,我们证明对流调整时间尺度诊断提供了合理的分类,与平衡和非平衡对流的基本动态一致。此外,对流调整时间尺度还能显示模式定量降水预报(QPF)的质量,因为它能正确反映在强同步强迫下降水的较高定量降水预报技能。这种基于对流强迫强度的诊断方法将在未来对美国中部不同地区的研究中使用,以客观地区分不同的天气状况,并探索与暖季降水可预测性的潜在联系。
{"title":"Classification of Warm-Season Precipitation in High-Resolution Rapid Refresh (HRRR) model forecasts over the Contiguous United States","authors":"I-Han Chen, Judith Berner, Christian Keil, Ying-Hwa Kuo, George C. Craig","doi":"10.1175/mwr-d-23-0108.1","DOIUrl":"https://doi.org/10.1175/mwr-d-23-0108.1","url":null,"abstract":"This study uses the convective adjustment time scale to identify the climatological frequency of equilibrium and non-equilibrium convection in different parts of the Contiguous United States (CONUS) as modeled by the operational convection-allowing High-Resolution Rapid Refresh (HRRR) forecast system. We find a qualitatively different climatology in the northern and southern domains separated by the 40°N parallel. The convective adjustment time scale picks up the fact that convection over the northern domains is governed by synoptic flow (leading to equilibrium) while locally forced, non-equilibrium convection dominates over the southern domains. Using a machine learning algorithm, we demonstrate that the convective adjustment timescale diagnostic provides a sensible classification that agrees with the underlying dynamics of equilibrium and non-equilibrium convection. Furthermore, the convective adjustment time scale can indicate the model quantitative precipitation forecast (QPF) quality, as it correctly reflects the higher QPF skill for precipitation under strong synoptic forcing. This diagnostic based on the strength of forcing for convection will be employed in future studies across different parts of CONUS to objectively distinguish different weather situations and explore the potential connection to warm-season precipitation predictability.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"53 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139251528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling Variability in Tropical Cyclone Maximum Wind Location and Intensity using InCyc: A Global Database of High-Resolution Tropical Cyclone Simulations 利用 InCyc:全球高分辨率热带气旋模拟数据库
IF 3.2 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-16 DOI: 10.1175/mwr-d-22-0317.1
Nicolas Bruneau, T. Loridan, Nic Hannah, Eugene Dubossarsky, Mathis Joffrain, John Knaff
While Tropical Cyclone (TC) risk is a global concern, high regional differences exist in the quality of available data. This paper introduces InCyc, a globally consistent database of high-resolution full-physics simulations of historical cyclones. InCyc is designed to facilitate analysis of TC wind risk across basins and is made available to research institutions. We illustrate the value of this database with a case study focused on key wind risk parameters, namely the location and intensity of peak winds for the North Atlantic and western North Pacific basins. A novel approach based on random forest algorithms is introduced to predict the full distribution of these TC wind risk parameters. Based on a leave-one-storm-out evaluation, the analysis of the predictions shows how this innovative approach compares to other parametric models commonly used for wind risk assessment. We finally discuss why capturing the full distribution of variability is crucial as well as the broader use in the context of TC risk assessment systems (i.e. “catastrophe models”).
虽然热带气旋(TC)风险是全球关注的问题,但可用数据的质量却存在很大的地区差异。本文介绍了 InCyc,这是一个全球一致的历史气旋高分辨率全物理模拟数据库。InCyc 旨在促进跨流域的热带气旋风风险分析,并提供给研究机构使用。我们通过一个案例研究说明了该数据库的价值,该案例研究侧重于关键的风风险参数,即北大西洋和北太平洋西部盆地的峰值风位置和强度。我们介绍了一种基于随机森林算法的新方法,用于预测这些热带风暴风力风险参数的完整分布。通过对预测结果的分析,我们可以看出这种创新方法与其他常用于风风险评估的参数模型的比较。最后,我们还讨论了为什么捕捉变异性的全面分布至关重要,以及在热带气旋风险评估系统(即 "灾难模型")中的更广泛应用。
{"title":"Modelling Variability in Tropical Cyclone Maximum Wind Location and Intensity using InCyc: A Global Database of High-Resolution Tropical Cyclone Simulations","authors":"Nicolas Bruneau, T. Loridan, Nic Hannah, Eugene Dubossarsky, Mathis Joffrain, John Knaff","doi":"10.1175/mwr-d-22-0317.1","DOIUrl":"https://doi.org/10.1175/mwr-d-22-0317.1","url":null,"abstract":"While Tropical Cyclone (TC) risk is a global concern, high regional differences exist in the quality of available data. This paper introduces InCyc, a globally consistent database of high-resolution full-physics simulations of historical cyclones. InCyc is designed to facilitate analysis of TC wind risk across basins and is made available to research institutions. We illustrate the value of this database with a case study focused on key wind risk parameters, namely the location and intensity of peak winds for the North Atlantic and western North Pacific basins. A novel approach based on random forest algorithms is introduced to predict the full distribution of these TC wind risk parameters. Based on a leave-one-storm-out evaluation, the analysis of the predictions shows how this innovative approach compares to other parametric models commonly used for wind risk assessment. We finally discuss why capturing the full distribution of variability is crucial as well as the broader use in the context of TC risk assessment systems (i.e. “catastrophe models”).","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139270216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing stochastic and perturbed parameter methods in an experimental 1-km Warn-on-Forecast system using NSSL’s phased-array radar observations 利用 NSSL 的相控阵雷达观测数据,在实验性 1 千米预报预警系统中测试随机和扰动参数方法
IF 3.2 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-16 DOI: 10.1175/mwr-d-23-0095.1
Derek R. Stratman, N. Yussouf, Christopher A. Kerr, B. Matilla, John R. Lawson, Yaping Wang
The success of the National Severe Storms Laboratory’s (NSSL) experimental Warn-on-Forecast System (WoFS) to provide useful probabilistic guidance of severe and hazardous weather is mostly due to the frequent assimilation of observations, especially radar observations. Phased-array radar (PAR) technology, which is a potential candidate to replace the current U.S. operational radar network, would allow for even more rapid assimilation of radar observations by providing full-volumetric scans of the atmosphere every ~1 min. Based on previous studies, more frequent PAR data assimilation can lead to improved forecasts, but it can also lead to ensemble underdispersion and suboptimal observation assimilation. The use of stochastic and perturbed parameter methods to increase ensemble spread is a potential solution to this problem. In this study, four stochastic and perturbed parameter methods are assessed using a 1-km-scale version of the WoFS and include the stochastic kinetic energy backscatter (SKEB) scheme, the physically-based stochastic perturbation (PSP) scheme, a fixed perturbed parameters (FPP) method, and a novel surface-model scheme blending (SMSB) method. Using NSSL PAR observations from the 9 May 2016 tornado outbreak, experiments are conducted to assess the impact of the methods individually, in different combinations, and with different cycling intervals. The results from these experiments reveal the potential benefits of stochastic and perturbed parameter methods for future versions of the WoFS. Stochastic and perturbed parameter methods can lead to more skillful forecasts during periods of storm development. Moreover, a combination of multiple methods can result in more skillful forecasts than using a single method.
美国国家强风暴实验室(NSSL)的试验性预报预警系统(WoFS)之所以能够成功地为恶劣和危险天气提供有用的概率指导,主要归功于对观测数据,特别是雷达观测数据的频繁同化。相控阵雷达(PAR)技术是取代当前美国业务雷达网络的潜在候选技术,通过每隔约 1 分钟对大气层进行全容积扫描,可以更快速地同化雷达观测数据。根据以往的研究,更频繁的 PAR 数据同化可以改善预报,但也可能导致集合分散不足和观测同化不理想。使用随机和扰动参数方法来增加集合扩散是解决这一问题的潜在办法。在这项研究中,使用 1 公里尺度的 WoFS 版本评估了四种随机和扰动参数方法,包括随机动能反向散射(SKEB)方案、基于物理的随机扰动(PSP)方案、固定扰动参数(FPP)方法和新型地表-模式方案混合(SMSB)方法。利用 2016 年 5 月 9 日龙卷风爆发时的 NSSL PAR 观测数据进行了实验,以评估这些方法单独、不同组合和不同循环间隔的影响。这些实验结果揭示了随机和扰动参数方法对未来版本 WoFS 的潜在好处。随机参数法和扰动参数法可以在风暴发展期做出更准确的预报。此外,与使用单一方法相比,将多种方法结合使用可获得更高水平的预报。
{"title":"Testing stochastic and perturbed parameter methods in an experimental 1-km Warn-on-Forecast system using NSSL’s phased-array radar observations","authors":"Derek R. Stratman, N. Yussouf, Christopher A. Kerr, B. Matilla, John R. Lawson, Yaping Wang","doi":"10.1175/mwr-d-23-0095.1","DOIUrl":"https://doi.org/10.1175/mwr-d-23-0095.1","url":null,"abstract":"The success of the National Severe Storms Laboratory’s (NSSL) experimental Warn-on-Forecast System (WoFS) to provide useful probabilistic guidance of severe and hazardous weather is mostly due to the frequent assimilation of observations, especially radar observations. Phased-array radar (PAR) technology, which is a potential candidate to replace the current U.S. operational radar network, would allow for even more rapid assimilation of radar observations by providing full-volumetric scans of the atmosphere every ~1 min. Based on previous studies, more frequent PAR data assimilation can lead to improved forecasts, but it can also lead to ensemble underdispersion and suboptimal observation assimilation. The use of stochastic and perturbed parameter methods to increase ensemble spread is a potential solution to this problem. In this study, four stochastic and perturbed parameter methods are assessed using a 1-km-scale version of the WoFS and include the stochastic kinetic energy backscatter (SKEB) scheme, the physically-based stochastic perturbation (PSP) scheme, a fixed perturbed parameters (FPP) method, and a novel surface-model scheme blending (SMSB) method. Using NSSL PAR observations from the 9 May 2016 tornado outbreak, experiments are conducted to assess the impact of the methods individually, in different combinations, and with different cycling intervals. The results from these experiments reveal the potential benefits of stochastic and perturbed parameter methods for future versions of the WoFS. Stochastic and perturbed parameter methods can lead to more skillful forecasts during periods of storm development. Moreover, a combination of multiple methods can result in more skillful forecasts than using a single method.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"152 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139268167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevated Mixed Layers during Great Lake Lake-effect Events: An Investigation and Case Study from OWLeS 大湖湖效事件期间的高位混合层:来自 OWLeS 的调查和案例研究
IF 3.2 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-16 DOI: 10.1175/mwr-d-22-0344.1
S. Greybush, T. Sikora, George S. Young, Quinlan Mulhern, Richard D. Clark, Michael L. Jurewicz
Data from rawinsondes launched during intensive observation periods (IOPs) of the Ontario Winter Lake-effect Systems (OWLeS) field project reveal that elevated mixed layers (EMLs) in the lower troposphere were relatively common near Lake Ontario during OWLeS lake-effect events. Conservatively, EMLs exist in 193 of the 290 OWLeS IOP soundings. The distribution of EML base pressure derived from the OWLeS IOP soundings reveals two classes of EML, one that has a relatively low-elevation base (900 – 750 hPa) and one that has a relatively high-elevation base (750 – 500 hPa). It is hypothesized that the former class of EML, which is the focus of this research, is, at times, the result of mesoscale processes related to individual Great Lakes. WRF reanalysis fields from a case study during the OWLeS field project provide evidence of two means by which low-elevation base EMLs can originate from the lake-effect boundary layer convection and associated mesoscale circulations. First, such EMLs can form within the upper-level outflow branches of mesoscale solenoidal circulations. Evacuated Great Lake-modified convective boundary layer air aloft then lies above ambient air of a greater static stability, forming EMLs. Second, such EMLs can form in the absence of a mesoscale solenoidal circulation when Great Lake-modified convective boundary layers overrun ambient air of a greater density. The reanalysis fields show that EMLs and layers of reduced static stability tied to Great Lake-modified convective boundary layers can extend downwind for hundreds of kilometers from their areas of formation. Operational implications and avenues for future research are discussed.
安大略冬季湖泊效应系统(OWLeS)野外项目密集观测期(IOPs)发射的原始探空火箭数据显示,在 OWLeS 湖泊效应事件期间,对流层低层的高混合层(EMLs)在安大略湖附近比较常见。保守估计,在 290 次 OWLeS IOP 探测中,有 193 次存在 EML。从 OWLeS IOP 探测到的 EML 基压分布显示出两类 EML,一类的基压相对较低(900 - 750 hPa),另一类的基压相对较高(750 - 500 hPa)。假设前一类 EML(本研究的重点)有时是与个别五大湖有关的中尺度过程的结果。在 OWLeS 实地项目期间进行的一项案例研究中,WRF 再分析场提供了两种证据,证明低海拔基底 EML 可能来自湖泊效应边界层对流和相关的中尺度环流。首先,这种 EML 可在中尺度螺线环流的高层流出分支内形成。高空被抽走的大湖改良对流边界层空气就会位于静态稳定性更强的环境空气之上,形成 EML。其次,在没有中尺度螺线环流的情况下,当大湖改良对流边界层越过密度较大的环境空气时,也会形成这种 EML。再分析场显示,EML 和与大湖改良对流边界层相关的静态稳定性降低的层可以从其形成区域向下风向延伸数百公里。讨论了对运行的影响和未来研究的途径。
{"title":"Elevated Mixed Layers during Great Lake Lake-effect Events: An Investigation and Case Study from OWLeS","authors":"S. Greybush, T. Sikora, George S. Young, Quinlan Mulhern, Richard D. Clark, Michael L. Jurewicz","doi":"10.1175/mwr-d-22-0344.1","DOIUrl":"https://doi.org/10.1175/mwr-d-22-0344.1","url":null,"abstract":"Data from rawinsondes launched during intensive observation periods (IOPs) of the Ontario Winter Lake-effect Systems (OWLeS) field project reveal that elevated mixed layers (EMLs) in the lower troposphere were relatively common near Lake Ontario during OWLeS lake-effect events. Conservatively, EMLs exist in 193 of the 290 OWLeS IOP soundings. The distribution of EML base pressure derived from the OWLeS IOP soundings reveals two classes of EML, one that has a relatively low-elevation base (900 – 750 hPa) and one that has a relatively high-elevation base (750 – 500 hPa). It is hypothesized that the former class of EML, which is the focus of this research, is, at times, the result of mesoscale processes related to individual Great Lakes. WRF reanalysis fields from a case study during the OWLeS field project provide evidence of two means by which low-elevation base EMLs can originate from the lake-effect boundary layer convection and associated mesoscale circulations. First, such EMLs can form within the upper-level outflow branches of mesoscale solenoidal circulations. Evacuated Great Lake-modified convective boundary layer air aloft then lies above ambient air of a greater static stability, forming EMLs. Second, such EMLs can form in the absence of a mesoscale solenoidal circulation when Great Lake-modified convective boundary layers overrun ambient air of a greater density. The reanalysis fields show that EMLs and layers of reduced static stability tied to Great Lake-modified convective boundary layers can extend downwind for hundreds of kilometers from their areas of formation. Operational implications and avenues for future research are discussed.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"34 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139266618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Including the horizontal observation error correlation in the ensemble Kalman filter: idealized experiments with NICAM-LETKF 集成卡尔曼滤波中包含水平观测误差相关性:NICAM-LETKF的理想实验
3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-14 DOI: 10.1175/mwr-d-23-0053.1
Koji Terasaki, Takemasa Miyoshi
Abstract Densely-observed remote sensing data such as radars and satellites generally contain significant spatial error correlations. In data assimilation, the observation error covariance matrix is usually assumed to be diagonal, and the dense data are thinned or spatially averaged to compensate for neglecting the spatial observation error correlation. However, in theory, including the spatial observation error correlation in data assimilation can make better use of the dense data. This study performs perfect model observing system simulation experiments (OSSE) using the non-hydrostatic icosahedral atmospheric model (NICAM) and the local ensemble transform Kalman filter (LETKF) to assess the impact of assimilating horizontally dense and error-correlated observations. The condition number of the observation error covariance matrix, defined as the ratio of the largest to smallest eigenvalues, is important for the numerical stability of the LETKF computation. A large condition number makes it difficult to compute the ensemble transform matrix correctly. Reducing the condition number by reconditioning is found effective for stable computation. The results show that including the horizontal observation error correlation with reconditioning makes the analysis more accurate but requires six times more computations than the case with the diagonal observation error covariance matrix.
雷达和卫星等密集观测遥感数据通常包含显著的空间误差相关性。在数据同化中,通常假设观测误差协方差矩阵为对角线,对密集数据进行稀疏化或空间平均,以弥补忽略观测误差空间相关性的不足。但从理论上讲,在数据同化中加入空间观测误差相关可以更好地利用密集数据。利用非流体静力二十面体大气模式(NICAM)和局部集合变换卡尔曼滤波(LETKF)进行了完美模式观测系统模拟实验(OSSE),以评估同化水平密集和误差相关观测的影响。观测误差协方差矩阵的条件数(定义为最大与最小特征值之比)对LETKF计算的数值稳定性至关重要。大的条件数给正确计算集合变换矩阵带来了困难。通过修正来减少条件数对稳定计算是有效的。结果表明,纳入水平观测误差协方差矩阵可提高分析精度,但计算量是采用对角线观测误差协方差矩阵的6倍。
{"title":"Including the horizontal observation error correlation in the ensemble Kalman filter: idealized experiments with NICAM-LETKF","authors":"Koji Terasaki, Takemasa Miyoshi","doi":"10.1175/mwr-d-23-0053.1","DOIUrl":"https://doi.org/10.1175/mwr-d-23-0053.1","url":null,"abstract":"Abstract Densely-observed remote sensing data such as radars and satellites generally contain significant spatial error correlations. In data assimilation, the observation error covariance matrix is usually assumed to be diagonal, and the dense data are thinned or spatially averaged to compensate for neglecting the spatial observation error correlation. However, in theory, including the spatial observation error correlation in data assimilation can make better use of the dense data. This study performs perfect model observing system simulation experiments (OSSE) using the non-hydrostatic icosahedral atmospheric model (NICAM) and the local ensemble transform Kalman filter (LETKF) to assess the impact of assimilating horizontally dense and error-correlated observations. The condition number of the observation error covariance matrix, defined as the ratio of the largest to smallest eigenvalues, is important for the numerical stability of the LETKF computation. A large condition number makes it difficult to compute the ensemble transform matrix correctly. Reducing the condition number by reconditioning is found effective for stable computation. The results show that including the horizontal observation error correlation with reconditioning makes the analysis more accurate but requires six times more computations than the case with the diagonal observation error covariance matrix.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"55 40","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134901687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic Convective Initiation Nowcasting Using Himawari-8 AHI with Explainable Deep Learning Models 基于Himawari-8 AHI的可解释深度学习模型的概率对流起始临近预报
3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-10 DOI: 10.1175/mwr-d-22-0216.1
Yang Li, Yubao Liu, Yueqin Shi, Baojun Chen, Fanhui Zeng, Zhaoyang Huo, Hang Fan
Abstract Convective initiation (CI) nowcasting is crucial for reducing losses of human life and property caused by severe convective weather. A novel deep learning method based on the U-net model (named as CIUnet) was developed for forecasting CI during the warm season with eight interest fields of Himawari-8 Advanced Himawari Imager (AHI) and terrain height. The results showed that the CIUnet model produced probability forecasts of CI occurrence location and time with POD (probability of detection) at 93.3±0.3% and FAR (false alarm ratio) at 18.3±0.4% at a lead time of 30-min. Sensitivity and permutation importance experiments on the input fields of the CIUnet model revealed that the differences in brightness temperature for spectral channels were more critical for CI nowcasts than the original infrared channel brightness temperatures. The brightness temperature difference between Band10 (7.3 μm ) and Band13 (10.4 μm ), which represents the cloud-top height relative to the lower-troposphere, is identified as the most important input fields for CI nowcasting. The tri-spectral brightness temperature difference (TTD), which represents cloud-top glaciation, is ranked the second and it significantly reduced the FAR of the CI forecast. Using terrain heights as an extra input feature improved the POD, but slightly overestimated CI over complex terrain. In addition, a layer-wise relevance propagation (LRP) analyses was performed, and confirmed that the CIUnet model can effectively identify the crucial regions and features of the input fields for accurate CI prediction. Therefore, both permutation importance experiments and LPR analyses are useful for improving the CIUnet model and advancing the understanding of CI mechanisms.
摘要对流起爆(CI)临近预报对于减少强对流天气给人类生命财产造成的损失至关重要。利用Himawari-8高级Himawari成像仪(AHI)的8个兴趣场和地形高度,提出了一种基于U-net模型(CIUnet)的深度学习方法,用于预测暖季CI。结果表明,CIUnet模型在预判时间为30 min时,对CI发生位置和时间的概率预测,POD (detection probability)为93.3±0.3%,FAR(虚警率)为18.3±0.4%。对CIUnet模型输入场的灵敏度和排列重要性实验表明,光谱通道的亮度温度差异比原始红外通道的亮度温度对CI临近预报更为关键。Band10 (7.3 μm)和Band13 (10.4 μm)之间的亮度温度差代表了相对于对流层下层的云顶高度,是CI临近预报最重要的输入场。代表云顶冰川作用的三光谱亮度温差(TTD)排名第二,显著降低了CI预报的FAR。使用地形高度作为额外的输入特征可以改善POD,但在复杂地形上略微高估了CI。此外,进行了分层相关传播(LRP)分析,证实了CIUnet模型可以有效识别输入字段的关键区域和特征,从而实现准确的CI预测。因此,排列重要性实验和LPR分析对于改进CIUnet模型和促进对CI机制的理解都是有用的。
{"title":"Probabilistic Convective Initiation Nowcasting Using Himawari-8 AHI with Explainable Deep Learning Models","authors":"Yang Li, Yubao Liu, Yueqin Shi, Baojun Chen, Fanhui Zeng, Zhaoyang Huo, Hang Fan","doi":"10.1175/mwr-d-22-0216.1","DOIUrl":"https://doi.org/10.1175/mwr-d-22-0216.1","url":null,"abstract":"Abstract Convective initiation (CI) nowcasting is crucial for reducing losses of human life and property caused by severe convective weather. A novel deep learning method based on the U-net model (named as CIUnet) was developed for forecasting CI during the warm season with eight interest fields of Himawari-8 Advanced Himawari Imager (AHI) and terrain height. The results showed that the CIUnet model produced probability forecasts of CI occurrence location and time with POD (probability of detection) at 93.3±0.3% and FAR (false alarm ratio) at 18.3±0.4% at a lead time of 30-min. Sensitivity and permutation importance experiments on the input fields of the CIUnet model revealed that the differences in brightness temperature for spectral channels were more critical for CI nowcasts than the original infrared channel brightness temperatures. The brightness temperature difference between Band10 (7.3 μm ) and Band13 (10.4 μm ), which represents the cloud-top height relative to the lower-troposphere, is identified as the most important input fields for CI nowcasting. The tri-spectral brightness temperature difference (TTD), which represents cloud-top glaciation, is ranked the second and it significantly reduced the FAR of the CI forecast. Using terrain heights as an extra input feature improved the POD, but slightly overestimated CI over complex terrain. In addition, a layer-wise relevance propagation (LRP) analyses was performed, and confirmed that the CIUnet model can effectively identify the crucial regions and features of the input fields for accurate CI prediction. Therefore, both permutation importance experiments and LPR analyses are useful for improving the CIUnet model and advancing the understanding of CI mechanisms.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"112 17","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135136938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tornadoes in Southeast South America: Mesoscale to Planetary-scale Environments 南美洲东南部的龙卷风:中尺度到行星尺度的环境
3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-10 DOI: 10.1175/mwr-d-22-0248.1
Daniel Veloso-Aguila, Kristen L. Rasmussen, Eric D. Maloney
Abstract A multiscale analysis of the environment supporting tornadoes in Southeast South America (SESA) was conducted based on a self-constructed database of 74 reports. Composites of environmental and convective parameters from ERA5 were generated relative to tornado events. The distribution of the reported tornadoes maximizes over the Argentine plains, while events are rare close to the Andes and south of Sierras de Córdoba. Events are relatively common in all seasons except in winter. Proximity environment evolution shows enhanced instability, deep-layer vertical wind shear, storm-relative helicity, reduced convective inhibition, and a lowered lifting condensation level before or during the development of tornadic storms in SESA. No consistent signal in low-level wind shear is seen during tornado occurrence. However, a curved hodograph with counterclockwise rotation is present. The Significant Tornado Parameter (STP) is also maximized prior to tornadogenesis, most strongly associated with enhanced CAPE. Differences in the convective environment between tornadoes in SESA and the U.S. Great Plains are discussed. On the synoptic scale, tornado events are associated with a strong anomalous trough crossing the southern Andes that triggers lee cyclogenesis, subsequently enhancing the South American Low-Level Jet (SALLJ) that increases moisture advection to support deep convection. This synoptic trough also enhances vertical shear that, along with enhanced instability, sustains organized convection capable of producing tornadic storms. At planetary scales, the tornadic environment is modulated by Rossby wave trains that appear to be forced by convection near northern Australia. Madden-Julian oscillation phase 3 preferentially occurs one to two weeks ahead of tornado occurrence.
摘要基于自建的74份报告数据库,对南美东南部龙卷风形成环境进行了多尺度分析。生成了与龙卷风事件相关的ERA5环境参数和对流参数的复合。报告的龙卷风分布在阿根廷平原上最大,而靠近安第斯山脉和Córdoba山脉南部的事件很少发生。除了冬天,其他季节的活动都比较普遍。邻近环境演化表现出不稳定性增强、深层垂直风切变增强、风暴相对螺旋度增强、对流抑制减弱、上升凝结水平降低等特征。在龙卷风发生期间,低层风切变没有一致的信号。然而,一个弯曲的hodograph逆时针旋转存在。重要龙卷风参数(STP)也在龙卷风形成前达到最大值,与CAPE增强密切相关。讨论了SESA和美国大平原地区龙卷风对流环境的差异。在天气尺度上,龙卷风事件与一个穿越安第斯山脉南部的强异常槽有关,该槽触发了背风气旋形成,随后增强了南美低空急流(SALLJ),增加了水汽平流以支持深层对流。这个天气槽也增强了垂直切变,与增强的不稳定性一起,维持有组织的对流,能够产生龙卷风风暴。在行星尺度上,龙卷风环境是由罗斯比波列调制的,这种波列似乎是由澳大利亚北部附近的对流造成的。马登-朱利安振荡阶段3优先发生在龙卷风发生前一至两周。
{"title":"Tornadoes in Southeast South America: Mesoscale to Planetary-scale Environments","authors":"Daniel Veloso-Aguila, Kristen L. Rasmussen, Eric D. Maloney","doi":"10.1175/mwr-d-22-0248.1","DOIUrl":"https://doi.org/10.1175/mwr-d-22-0248.1","url":null,"abstract":"Abstract A multiscale analysis of the environment supporting tornadoes in Southeast South America (SESA) was conducted based on a self-constructed database of 74 reports. Composites of environmental and convective parameters from ERA5 were generated relative to tornado events. The distribution of the reported tornadoes maximizes over the Argentine plains, while events are rare close to the Andes and south of Sierras de Córdoba. Events are relatively common in all seasons except in winter. Proximity environment evolution shows enhanced instability, deep-layer vertical wind shear, storm-relative helicity, reduced convective inhibition, and a lowered lifting condensation level before or during the development of tornadic storms in SESA. No consistent signal in low-level wind shear is seen during tornado occurrence. However, a curved hodograph with counterclockwise rotation is present. The Significant Tornado Parameter (STP) is also maximized prior to tornadogenesis, most strongly associated with enhanced CAPE. Differences in the convective environment between tornadoes in SESA and the U.S. Great Plains are discussed. On the synoptic scale, tornado events are associated with a strong anomalous trough crossing the southern Andes that triggers lee cyclogenesis, subsequently enhancing the South American Low-Level Jet (SALLJ) that increases moisture advection to support deep convection. This synoptic trough also enhances vertical shear that, along with enhanced instability, sustains organized convection capable of producing tornadic storms. At planetary scales, the tornadic environment is modulated by Rossby wave trains that appear to be forced by convection near northern Australia. Madden-Julian oscillation phase 3 preferentially occurs one to two weeks ahead of tornado occurrence.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"90 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135091745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential roles of preexisting airmass boundaries on a tornadic supercell observed by TORUS on 28 May 2019 2019年5月28日TORUS观测到的龙卷风超级单体中预先存在的气团边界的潜在作用
3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-08 DOI: 10.1175/mwr-d-23-0007.1
Kristen L. Axon, Adam L. Houston, Conrad L. Ziegler, Christopher C. Weiss, Erik N. Rasmussen, Michael C. Coniglio, Brian Argrow, Eric Frew, Sara Swenson, Anthony E. Reinhart, Matthew B. Wilson
Abstract On 28 May 2019, a tornadic supercell, observed as part of TORUS (Targeted Observation by UAS and Radars of Supercells) produced an EF-2 tornado near Tipton, KS. The supercell was observed to interact with multiple preexisting airmass boundaries. These boundaries and attendant air masses were examined using unoccupied aircraft system (UAS), mobile mesonets, radiosondes, and dual-Doppler analyses derived from TORUS mobile radars. The cool side air mass of one of these boundaries was found to have higher equivalent potential temperature and backed winds relative to the warm side air mass; features associated with MAHTEs (mesoscale air masses with high theta-E). It is hypothesized that these characteristics may have facilitated tornadogenesis. The two additional boundaries were produced by a nearby supercell and appeared to weaken the tornadic supercell. This work represents the first time that UAS have been used to examine the impact of preexisting airmass boundaries on a supercell, and it provides insights into the influence environmental heterogeneities can have on the evolution of a supercell.
2019年5月28日,一个龙卷风超级单体在堪萨斯州蒂普顿附近产生了EF-2龙卷风,这是TORUS(无人机和超级单体雷达的目标观测)的一部分。观察到超级单体与多个预先存在的气团边界相互作用。使用无人飞机系统(UAS)、移动中网、无线电探空仪和来自TORUS移动雷达的双多普勒分析来检查这些边界和伴随的气团。其中一个边界的冷侧气团相对于暖侧气团具有更高的等效位温和逆风;与MAHTEs(具有高theta-E的中尺度气团)相关的特征。据推测,这些特征可能促进了龙卷风的形成。这两个额外的边界是由附近的超级单体产生的,似乎削弱了龙卷风超级单体。这项工作代表了首次使用无人机来检查预先存在的气团边界对超级单体的影响,并且它提供了对环境异质性可能对超级单体进化的影响的见解。
{"title":"The potential roles of preexisting airmass boundaries on a tornadic supercell observed by TORUS on 28 May 2019","authors":"Kristen L. Axon, Adam L. Houston, Conrad L. Ziegler, Christopher C. Weiss, Erik N. Rasmussen, Michael C. Coniglio, Brian Argrow, Eric Frew, Sara Swenson, Anthony E. Reinhart, Matthew B. Wilson","doi":"10.1175/mwr-d-23-0007.1","DOIUrl":"https://doi.org/10.1175/mwr-d-23-0007.1","url":null,"abstract":"Abstract On 28 May 2019, a tornadic supercell, observed as part of TORUS (Targeted Observation by UAS and Radars of Supercells) produced an EF-2 tornado near Tipton, KS. The supercell was observed to interact with multiple preexisting airmass boundaries. These boundaries and attendant air masses were examined using unoccupied aircraft system (UAS), mobile mesonets, radiosondes, and dual-Doppler analyses derived from TORUS mobile radars. The cool side air mass of one of these boundaries was found to have higher equivalent potential temperature and backed winds relative to the warm side air mass; features associated with MAHTEs (mesoscale air masses with high theta-E). It is hypothesized that these characteristics may have facilitated tornadogenesis. The two additional boundaries were produced by a nearby supercell and appeared to weaken the tornadic supercell. This work represents the first time that UAS have been used to examine the impact of preexisting airmass boundaries on a supercell, and it provides insights into the influence environmental heterogeneities can have on the evolution of a supercell.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"8 17","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135390972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Different Initial Condition Perturbation Methods for Convection-Permitting Ensemble Forecasting over South China during the Rainy Season 华南雨季对流综合预报的不同初始扰动方法
3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-06 DOI: 10.1175/mwr-d-23-0093.1
Xubin Zhang, Jingshan Li
Abstract In this study, downscaling, ensemble of data assimilation, time-lagging, and their combination were used to generate initial condition (IC) perturbations for 12-h convection-permitting ensemble forecasting for heavy-rainfall events over South China during the rainy season in 2013–2020. These events were classified as weak- and strong-forcing cases based on synoptic-scale forcing during the presummer rainy season and as landfalling tropical cyclone (TC) cases. This study investigated the impacts of various IC perturbation methods on multiscale characteristics of perturbations and the forecast performance for both nonprecipitation and precipitation variables. These perturbation methods represented different-source IC uncertainties and thus differed in multiscale characteristics of perturbations in vertical structures, horizontal distributions, and time evolution. Combination of various IC perturbation methods evidently increased perturbations or spreads of precipitation in both magnitude and location and thus improved the forecast-error estimation. Such an improvement was most and least evident for TC cases during the early and late forecasts, respectively, and was more evident for strong- than weak-forcing cases beyond 6 h. Combination of various IC perturbation methods generally improved both the ensemble-mean and probabilistic forecasts with case-dependent improvements. For heavy rainfall forecasting, 1–6-h improvements were most prominent for TC cases in terms of discrimination and accuracy, while 7–12-h improvements were least prominent for weak-forcing cases in terms of reliability and accuracy. In particular, the improvements in predicting weak-forcing cases increased with spatial errors. In contrast, for strong-forcing cases, the improvements were least and most prominent before and beyond 6 h, respectively.
本文采用降尺度、数据同化集合、时间滞后及其组合方法,对2013-2020年华南雨季暴雨事件的12 h对流集合预报进行初始条件摄动(IC)模拟。根据夏前雨季天气尺度强迫将这些事件分为弱强迫和强强迫以及登陆热带气旋(TC)事件。本文研究了不同的IC摄动方法对扰动多尺度特征的影响,以及对非降水和降水变量的预报性能。这些摄动方法代表了不同来源的集成电路不确定性,因此在垂直结构、水平分布和时间演化方面的摄动多尺度特征不同。各种集成电路摄动方法的组合在量级和位置上明显增加了降水的摄动或扩展,从而提高了预报误差估计。这种改进分别在早期和后期预报中最明显和最不明显,并且在超过6 h的强强迫情况下比弱强迫情况更明显。各种IC摄动方法的组合通常改善了总体平均和概率预报,并具有个案相关的改进。在强降水预报中,1 ~ 6 h对TC情景的判别和精度的提高最为显著,而7 ~ 12 h对弱强迫情景的可靠性和精度的提高最不显著。特别是,预测弱强迫情况的改进随着空间误差的增加而增加。相比之下,强强迫情况下,改善在6 h前和6 h后分别最不明显和最显著。
{"title":"Different Initial Condition Perturbation Methods for Convection-Permitting Ensemble Forecasting over South China during the Rainy Season","authors":"Xubin Zhang, Jingshan Li","doi":"10.1175/mwr-d-23-0093.1","DOIUrl":"https://doi.org/10.1175/mwr-d-23-0093.1","url":null,"abstract":"Abstract In this study, downscaling, ensemble of data assimilation, time-lagging, and their combination were used to generate initial condition (IC) perturbations for 12-h convection-permitting ensemble forecasting for heavy-rainfall events over South China during the rainy season in 2013–2020. These events were classified as weak- and strong-forcing cases based on synoptic-scale forcing during the presummer rainy season and as landfalling tropical cyclone (TC) cases. This study investigated the impacts of various IC perturbation methods on multiscale characteristics of perturbations and the forecast performance for both nonprecipitation and precipitation variables. These perturbation methods represented different-source IC uncertainties and thus differed in multiscale characteristics of perturbations in vertical structures, horizontal distributions, and time evolution. Combination of various IC perturbation methods evidently increased perturbations or spreads of precipitation in both magnitude and location and thus improved the forecast-error estimation. Such an improvement was most and least evident for TC cases during the early and late forecasts, respectively, and was more evident for strong- than weak-forcing cases beyond 6 h. Combination of various IC perturbation methods generally improved both the ensemble-mean and probabilistic forecasts with case-dependent improvements. For heavy rainfall forecasting, 1–6-h improvements were most prominent for TC cases in terms of discrimination and accuracy, while 7–12-h improvements were least prominent for weak-forcing cases in terms of reliability and accuracy. In particular, the improvements in predicting weak-forcing cases increased with spatial errors. In contrast, for strong-forcing cases, the improvements were least and most prominent before and beyond 6 h, respectively.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"18 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ENSO and MJO Modulation of U.S. Cloud-to-ground Lightning Activity 美国云对地闪电活动的ENSO和MJO调制
3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-03 DOI: 10.1175/mwr-d-23-0157.1
Kelsey Malloy, Michael K. Tippett, William J. Koshak
Cloud-to-ground (CG) lightning substantially impacts human health and property. However, the relations between U.S. lightning activity and the Madden-Julian Oscillation (MJO) and El Niño-Southern Oscillation (ENSO), two predictable drivers of global climate variability, remain uncertain, in part because most lightning datasets have short records that cannot robustly reveal MJO- and ENSO-related patterns. To overcome this limitation, we developed an empirical model of 6-hourly lightning flash count over the contiguous U.S. (CONUS) using environmental variables (convective available potential energy and precipitation) andNational Lightning Detection Network data for 2003–2016. This model is shown to reproduce the observed daily and seasonal variability of lightning over most of CONUS. Then, the empirical model was applied to construct a proxy lightning dataset for the period 1979–2021, which was used to investigate the summer MJO-lightning relationship at daily resolution and the winter-spring ENSO-lightning relationship at seasonal resolution. Overall, no robust relationship between MJO phase and lightning patterns was found when seasonality was taken into consideration. El Niño is associated with increased lightning activity over the Coastal Southeast U.S. during early winter, the Southwest during winter through spring, and the Northwest during late spring, whereas La Niña is associated with increased lightning activity over the Tennessee River Valley during winter.
摘要云对地(CG)闪电严重影响人类的健康和财产。然而,美国闪电活动与麦登-朱利安涛动(MJO)和厄尔尼诺Niño-Southern涛动(ENSO)之间的关系仍然不确定,这是全球气候变率的两个可预测的驱动因素,部分原因是大多数闪电数据集的记录很短,不能有力地揭示MJO和ENSO相关的模式。为了克服这一限制,我们利用2003-2016年的环境变量(对流有效势能和降水)和国家闪电探测网络数据,开发了一个美国连续(CONUS) 6小时闪电计数的经验模型。该模式可重现CONUS大部分地区观测到的闪电日和季节变化。在此基础上,利用经验模型构建了1979-2021年的代理闪电数据集,研究了日分辨率下夏季mjo -闪电关系和季节分辨率下冬春enso -闪电关系。总的来说,当考虑到季节性因素时,MJO阶段和闪电模式之间没有发现强有力的关系。El Niño与美国东南部沿海地区初冬、西南地区冬春和西北地区晚春的闪电活动增加有关,而La Niña则与冬季田纳西州河谷地区闪电活动增加有关。
{"title":"ENSO and MJO Modulation of U.S. Cloud-to-ground Lightning Activity","authors":"Kelsey Malloy, Michael K. Tippett, William J. Koshak","doi":"10.1175/mwr-d-23-0157.1","DOIUrl":"https://doi.org/10.1175/mwr-d-23-0157.1","url":null,"abstract":"Cloud-to-ground (CG) lightning substantially impacts human health and property. However, the relations between U.S. lightning activity and the Madden-Julian Oscillation (MJO) and El Niño-Southern Oscillation (ENSO), two predictable drivers of global climate variability, remain uncertain, in part because most lightning datasets have short records that cannot robustly reveal MJO- and ENSO-related patterns. To overcome this limitation, we developed an empirical model of 6-hourly lightning flash count over the contiguous U.S. (CONUS) using environmental variables (convective available potential energy and precipitation) andNational Lightning Detection Network data for 2003–2016. This model is shown to reproduce the observed daily and seasonal variability of lightning over most of CONUS. Then, the empirical model was applied to construct a proxy lightning dataset for the period 1979–2021, which was used to investigate the summer MJO-lightning relationship at daily resolution and the winter-spring ENSO-lightning relationship at seasonal resolution. Overall, no robust relationship between MJO phase and lightning patterns was found when seasonality was taken into consideration. El Niño is associated with increased lightning activity over the Coastal Southeast U.S. during early winter, the Southwest during winter through spring, and the Northwest during late spring, whereas La Niña is associated with increased lightning activity over the Tennessee River Valley during winter.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"43 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135820181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Monthly Weather Review
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1