Atopic diseases such as Eosinophilic Esophagitis (EoE) often progress into fibrosis (FS-EoE), compromising organ function with limited targeted treatment options. Mechanistic understanding of FS-EoE progression is confounded by the lack of preclinical models and the heavy focus of research on eosinophils themselves. We found that macrophage accumulation precedes esophageal fibrosis in FS-EoE patients. We developed a FS-EoE model via chronic administration of oxazalone allergen, in a transgenic mouse over-expressing esophageal epithelial hIL-5 (L2-IL5OXA). These mice display striking histopathologic features congruent with that found in FS-EoE patients. Unbiased proteomic analysis, using a unique extracellular-matrix (ECM) focused technique, identified an inflammation-reactive provisional basal lamina membrane signature and this was validated in two independent EoE patient RNA-sequencing/proteomic cohorts, supporting model significance. A wound healing signature was also observed involving hemostasis-associated molecules previously unnoted in EoE. We further identified the ECM glycoprotein, Tenascin-C (TNC), and the stress-responsive keratin-16 (KRT16) as IL-4 and IL-13 responsive mediators, acting as biomarkers of FS-EoE. To mechanistically address how the immune infiltrate shapes FS-EoE progression, we phenotyped the major immune cell subsets that coalesce with fibrosis in both the L2-IL5OXA mice and in FS-EoE patients. We found that macrophage are required for matrisome and cytoskeletal remodeling. Importantly, we show that macrophage accumulation precedes esophageal fibrosis and provide a novel therapeutic target in FS-EoE as their depletion with anti-CSF1 attenuated reactive matrisome and cytoskeletal changes. Thus, macrophage-based treatments and the exploration of TNC and KRT16 as biomarkers may provide novel therapeutic options for patients with fibrostenosis.
Inflammatory bowel disease (IBD) is characterized by very severe intestinal inflammation associated with extra-intestinal manifestations. One of the most critical ones is bone destruction, which remains a major cause of morbidity and a risk factor for osteopenia and osteoporosis in IBD patients. In various mouse models of IBD, we and other have demonstrated concomitant bone loss due to a significant increase in osteoclast activity. Besides bone resorption, osteoclasts are known to control hematopoietic niches in vivo and modulate inflammatory responses in vitro, suggesting they may participate in chronic inflammation in vivo. Here, using different models of colitis, we showed that osteoclast inhibition significantly reduced disease severity and that induction of osteoclast differentiation by RANKL contributed to disease worsening. Our results demonstrate a direct link between osteoclast activity and myeloid cell accumulation in the intestine during colitis. RNAseq analysis of osteoclasts from colitic mice revealed overexpression of genes involved in the remodeling of hematopoietic stem cell niches. We also demonstrated that osteoclasts induced hematopoietic progenitor proliferation accompanied by a myeloid skewing in the early phases of colitis, which was confirmed in a model of RANKL-induced osteoclastogenesis. Mechanistically, inhibition of TNF-α reduced the induction of myeloid skewing by OCL both in vitro and in vivo. Lastly, we observed that osteoclastic activity and the proportion of myeloid cells in the blood are positively correlated in patients with Crohn's disease. Collectively, our results shed light on a new role of osteoclasts in colitis in vivo, demonstrating they exert their colitogenic activity through an early action on hematopoiesis, leading to an increase in myelopoiesis sustaining gut inflammation.
Inflammatory bowel disease (IBD) chronicity results from memory T helper cell (Tmem) reactivation. Identifying patient-specific immunotypes is crucial for tailored treatment. We conducted a comprehensive study integrating circulating immune proteins and circulating Tmem, with intestinal tissue histology and mRNA analysis, in therapy-naïve pediatric IBD (Crohn's disease, CD: n = 62; ulcerative colitis, UC: n = 20; age-matched controls n = 43), and after 10-12 weeks' induction therapy. At diagnosis, plasma protein profiles unveiled two UC and three CD clusters with distinct disease courses. UC patients displayed unchanged circulating Tmem, while CD exhibited increased frequencies of gut-homing ex-Th17, known for high IFN-γ production. UC#2 had elevated Th17/neutrophil-pathway-related proteins and severe disease, with higher endoscopic and histological damage and Th17/neutrophil infiltration. Although both UC#1 and UC#2 responded to therapy, UC#2 required earlier immunomodulation. CD#3 had lower plasma protein concentrations, especially IFN-γ pathway proteins, fewer gut-homing ex-Th17 and clinically milder disease, confirmed by intestinal gene expression. CD#1 and CD#2 had comparably high Th1-related immune profiles, but CD#1 exhibited higher concentrations of proteins previously associated with poorer prognosis. Both CD clusters responded to induction therapy, with similar one-year outcomes. This study highlights feasibility of discriminating patient-specific immunotypes in IBD, advancing our understanding of immune pathogenesis, needed for tailored treatment strategies.
Inflammation of the ileum, or ileitis, is commonly caused by Crohn's disease (CD) but can also accompany ulcerative colitis (backwash ileitis), infections or drug-related damage. Oxidative tissue injury triggered by reactive oxygen species (ROS) is considered part of the ileitis etiology. However, not only elevated ROS but also permanently decreased ROS are associated with inflammatory bowel disease (IBD). While very early onset IBD (VEO-IBD) is associated with a spectrum of NOX1 variants, how NOX1 inactivation contributes to disease development remains ill-defined. Besides propagating signaling responses, NOX1 provides superoxide for peroxynitrite formation in the epithelial barrier. Here we report that NOX4, an H2O2-generating NADPH oxidase with documented tissue protective effects in the intestine and other tissues, limits the generation of ileal peroxynitrite by NOX1/NOS2. Deletion of NOX4 leads to persistent peroxynitrite excess, hyperpermeability, villus blunting, muscular hypertrophy, chemokine/cytokine upregulation and dysbiosis. Conversely, SAMP1/YitFc mice, a CD-like ileitis model, showed age-dependent NOX1/NOS2 downregulation preventing ileal peroxynitrite formation in homeostasis and LPS-induced acute inflammation. Deficiency in NOX1 correlated with the upregulation of antimicrobial peptides, suggesting that ileal peroxynitrite acts as chemical barrier and microbiota modifier in the ileum.
The transcriptomic signatures that shape responses of innate lymphoid cells (ILCs) have been well characterised, however post-transcriptional mechanisms which regulate their development and activity remain poorly understood. We demonstrate that ILC groups of the intestinal lamina propria express mature forms of microRNA-142 (miR-142), an evolutionarily conserved microRNA family with several non-redundant regulatory roles within the immune system. Germline Mir142 deletion alters intestinal ILC compositions, resulting in the absence of T-bet+ populations and significant defects in the cellularity and phenotypes of ILC3 subsets including CCR6+ LTi-like ILC3s. These effects were associated with decreased pathology in an innate-immune cell driven model of colitis. Furthermore, Mir142-/- mice demonstrate defective development of gut-associated lymphoid tissues, including a complete absence of mature Peyer's patches. Conditional deletion of Mir142 in ILC3s (RorcΔMir142) supported cell-intrinsic roles for these microRNAs in establishing or maintaining cellularity and functions of LTi-like ILC3s in intestinal associated tissues. RNAseq analysis revealed several target genes and biological pathways potentially regulated by miR-142 microRNAs in these cells. Finally, lack of Mir142 in ILC3 led to elevated IL-17A production. These data broaden our understanding of immune system roles of miR-142 microRNAs, identifying these molecules as critical post-transcriptional regulators of ILC3s and intestinal mucosal immunity.
The impact of dietary fiber on intestinal T cell development is poorly understood. Here we show that a low fiber diet reduces MHC-II antigen presentation by small intestinal epithelial cells (IECs) and consequently impairs development of CD4+CD8αα+ intraepithelial lymphocytes (DP IELs) through changes to the microbiota. Dietary fiber supports colonization by Segmented Filamentous Bacteria (SFB), which induces the secretion of IFNγ by type 1 innate lymphoid cells (ILC1s) that lead to MHC-II upregulation on IECs. IEC MHC-II expression caused either by SFB colonization or exogenous IFNγ administration induced differentiation of DP IELs. Finally, we show that a low fiber diet promotes overgrowth of Bifidobacterium pseudolongum, and that oral administration of B. pseudolongum reduces SFB abundance in the small intestine. Collectively we highlight the importance of dietary fiber in maintaining the balance among microbiota members that allow IEC MHC-II antigen presentation and define a mechanism of microbiota-ILC-IEC interactions participating in the development of intestinal intraepithelial T cells.