Interleukin (IL)-33 is a key responder to intestinal injury and inflammation. In the colon, it is expressed by several cell populations, with the specific cellular source likely determining its role. The colonic epithelium expresses IL-33; however, the factors controlling its production and the specific epithelial lineage(s) expressing IL-33 are poorly understood. We recently reported that colonic epithelial IL-33 is induced by inhibition of glycogen synthase kinase-3β (GSK3β), but the signaling pathway mediating this induction is unknown. Here we tested the role of Wnt/β-catenin signaling in regulating colonic epithelial IL-33 at homeostasis and in injury-induced colitis. Transcriptomic analysis shows that epithelial IL-33 localizes to stem and progenitor cells. Ligand activation of Wnt/β-catenin signaling induced IL-33 in colonic organoid and cell cultures. Furthermore, small-molecule disruption of β-catenin interaction with cyclic AMP response element binding protein (CBP) prevented epithelial IL-33 induction. Antagonism of CBP/β-catenin signaling also prevented rapid epithelial IL-33 induction in dextran sodium sulfate (DSS)-mediated colitis, and was associated with maintenance of crypt-expressed host defense peptides. Together, these findings show β-catenin-driven production of epithelial IL-33 is an early response to colonic injury that shapes the crypt base defense response and suggest an immunoregulatory role for the stem cell niche in tissue injury.
Host-directed therapy, using nasal administration of the Toll-like receptor 5 agonist flagellin in combination with antibiotics, has proven effective against pneumococcal pneumonia. In this study, we investigated the immune mechanisms underlying the therapy-induced protective effects. Transcriptomic analysis of lung tissue during infection revealed that flagellin not only enhanced pathways associated with myeloid cell infiltration into the airways and antimicrobial functions, but also promoted the early and transient mobilization of neutrophils and inflammatory monocytes. Neutrophils were identified as crucial for the protective effects of flagellin. The adjunct activity of flagellin correlated with the increased recruitment of neutrophils into airways, their localization at the periphery of bronchi, alveoli, and lung vessels, along with alterations in phagocytic activity. Clustering analysis identified seven neutrophil subsets; notably, flagellin adjunct treatment expanded clusters involved in recruitment and antibacterial activity, and primed augmented functionality. In conclusion, this study highlights specific neutrophil subsets as a promising target for host-directed therapy in infection.
CD4+ memory T cell (TM) reactivation drives chronicity in inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis. Defects driving loss of TM regulation likely differ between patients but remain undefined. In health, approximately 40 % of circulating gut-homing CD38+TM express co-inhibitory receptor T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT). TIGIT+CD38+TM have regulatory function while TIGITnegCD38+TM are enriched in IFN-γ-producing cells. We hypothesized TIGITnegCD38+TM are inflammatory and drive disease in a subgroup of IBD patients. We characterized TIGIT+CD38+TM in a uniquely large cohort of pediatric IBD patients from time of diagnosis into adulthood. Circulating TIGITnegCD38+TM frequencies were higher in a subgroup of therapy-naïve CD patients with high plasma IFN-γ and a more severe disease course. TIGITnegCD38+TM were highly enriched in HLA-DR+ and ex-Th17/Th1-like cells, high producers of IFN-γ. Cultures of healthy-adult-stimulated TM identified IL-12 as the only IBD-related inflammatory cytokine to drive the pathogenic ex-Th17-TIGITnegCD38+ phenotype. Moreover, IL12RB2 mRNA expression was higher in TIGITnegCD38+TM than TIGIT+CD38+TM, elevated in CD biopsies compared to controls, and correlated with severity of intestinal inflammation. Overall, we argue that in a subgroup of pediatric CD, increased IL-12 signaling drives reprogramming of Th17 to inflammatory Th1-like TIGITnegCD38+TM and causes more severe disease.
IgA antibodies have an important role in clearing mucosal pathogens. In this study, we have examined the contribution of IgA to the immune control of the gastrointestinal bacterial pathogens Helicobacter pylori and Citrobacter rodentium. Both bacteria trigger a strong local IgA response that results in bacterial IgA coating in mice and in gastritis patients. Class switching to IgA depends on Peyer's patches, T-cells, eosinophils, and eosinophil-derived TGF-β in both models. In the case of H. pylori, IgA secretion and bacterial coating also depend on a functional bacterial type IV secretion system, which drives the generation of Th17 cells and the IL-17-dependent expression of the polymeric immunoglobulin receptor PIGR. IgA-/- mice are hypercolonized with C. rodentium in all examined tissues, suffer from more severe weight loss and develop more colitis. In contrast, H. pylori is controlled more efficiently in IgA-/- mice than their WT counterparts. The effects of IgA deficiency of the offspring can be compensated by maternal IgA delivered by WT foster mothers. We attribute the improved immune control observed in IgA-/- mice to IgA-mediated protection from complement killing, as H. pylori colonization is restored to wild type levels in a composite strain lacking both IgA and the central complement component C3. IgA antibodies can thus have protective or detrimental activities depending on the infectious agent.
The fungal community of the skin microbiome is dominated by a single genus, Malassezia. Besides its symbiotic lifestyle at the host interface, this commensal yeast has also been associated with diverse inflammatory skin diseases in humans and pet animals. Stable colonization is maintained by antifungal type 17 immunity. The mechanisms driving Th17 responses to Malassezia remain, however, unclear. Here, we show that the C-type lectin receptors Mincle, Dectin-1, and Dectin-2 recognize conserved patterns in the cell wall of Malassezia and induce dendritic cell activation in vitro, while only Dectin-2 is required for Th17 activation during experimental skin colonization in vivo. In contrast, Toll-like receptor recognition was redundant in this context. Instead, inflammatory IL-1 family cytokines signaling via MyD88 were also implicated in Th17 activation in a T cell-intrinsic manner. Taken together, we characterized the pathways contributing to protective immunity against the most abundant member of the skin mycobiome. This knowledge contributes to the understanding of barrier immunity and its regulation by commensals and is relevant considering how aberrant immune responses are associated with severe skin pathologies.
Strongyloides ratti is a helminth parasite that displays tissue-migrating and intestinal life stages. Myeloid C-type lectin receptors (CLRs) are pattern recognition receptors that recognize pathogen-derived ligands and initiate immune responses. To date, the role of CLRs in S. ratti infection has not been investigated. Here, we show that S. ratti-derived ligands are recognized by the CLR Macrophage inducible Ca2+-dependent lectin receptor (MINCLE). While MINCLE-deficiency did not affect initiation of a protective anti-S. ratti type 2 immunity, MINCLE-deficient mice had a transient advantage in intestinal immunity. Unravelling the underlying mechanism, we show that next to macrophages, dendritic cells and neutrophils, a fraction of eosinophils express MINCLE and expand during S. ratti infection. MINCLE-deficient eosinophils exhibited a more active phenotype and prolonged expansion in vivo and displayed increased capacity to reduce S. ratti motility and produce reactive oxygen species in vitro, compared to wild-type (WT) eosinophils. Depletion of eosinophils in S. ratti-infected mice after the tissue-migration phase elevated intestinal worm burden in MINCLE-deficient mice to the WT level. Thus, our findings establish a central contribution of eosinophils to parasite ejection from the intestine and suggest that S. ratti-triggered signalling via MINCLE interferes with eosinophil mediated ejection of S. ratti from the intestine.
The recurrent herpes simplex virus-1 (HSV-1) infection of the cornea can cause the development of herpes stromal keratitis (HSK). This chronic immunoinflammatory condition is a major cause of infection-induced vision loss. The previous episodes of HSK increase the risk of future recurrences in the same cornea. However, not all HSV-1 infected corneas that shed infectious virus at the ocular surface develop HSK, suggesting that corneal HSV-1 infection may cause an establishment of protective immunity in HSV-1 infected corneas. However, upon recurrent corneal HSV-1 infection, the established protective immunity can get compromised, resulting in the development of HSK. In this study, we compared the quantity and quality of tissue-resident memory T (TRM) cells in HSV-1 infected corneas that did or did not develop HSK. Our results showed the predominance of TRM cell in the epithelium than in stroma of HSV-1 infected corneas. Furthermore, HSV-1 infected non-HSK corneas exhibited more CD4 and CD8 TRM cells than HSK corneas. The TRM cells in non-HSK than in HSK corneas were more effective in clearing the infectious virus upon secondary corneal HSV-1 infection. Our results demonstrate the differential quantity and quality of TRM cells in HSV-1 infected corneas that did or did not develop HSK.
There is an unmet need for effectively treating dry eye disease (DED), a T cell-mediated chronic, inflammatory ocular surface disorder. Given the potential of nonneuronal adrenergic system in modulating T cell response, we herein investigated the therapeutic efficacy and the underlying mechanisms of a specific alpha 2 adrenergic receptor agonist (AGN-762, selective for α2B/2C receptor subtypes) in a mouse model of DED. Experimental DED was treated with the AGN-762 by oral gavage, either at disease induction or after disease establishment, and showed sustained amelioration, along with reduced expression of DED-pathogenic cytokines in ocular surface tissues, decreased corneal MHC-II+CD11b+ cells and lymphoid Th17 cells, and higher function of regulatory T cells (Treg). In vitro culture of DED-derived effector T helper cells (Teff) with AGN-762 failed to suppress Th17 response, while culture of DED-Treg with AGN-762 led to enhanced suppressive function of Treg and their IL-10 production. Adoptive transfer of AGN-762-pretreated DED-Treg in syngeneic B6.Rag1-/- mice effectively suppressed DED Teff-mediated disease and Th17 response, and the effect was abolished by the neutralization of IL-10. In conclusion, our findings demonstrate that α2B/2C adrenergic receptor agonism effectively ameliorates persistent corneal epitheliopathy in DED by enhancing IL-10 production from Treg and thus restoring their immunoregulatory function.