Pub Date : 2024-11-14DOI: 10.1038/s41596-024-01078-9
Nicola Volpi, Fabio Galeotti, Francesco Gatto
Glycosaminoglycans (GAGs) are linear, unbranched heteropolysaccharides whose structural complexity determines their function. Accurate quantification of GAGs in biofluids at high throughput is relevant for numerous biomedical applications. However, because of the structural variability of GAGs in biofluids, existing protocols require complex pre-analytical procedures, have limited throughput and lack accuracy. Here, we describe the extraction and quantification of GAGs by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-MS/MS). Designed for 96-well plates, this method enables the processing of up to 82 study samples per plate, with the remaining 14 wells used for calibrators and controls. Key steps include the enzymatic depolymerization of GAGs, their derivatization with 2-aminoacridone and their quantification via UHPLC-MS/MS. Each plate can be analyzed in a single UHPLC-MS/MS run, offering the quantitative and scalable analysis of 17 disaccharides from chondroitin sulfate, heparan sulfate and hyaluronic acid, with a level of precision and reproducibility sufficient for their use as biomarkers. The procedure from sample thawing to initiating the UHPLC-MS/MS run can be completed in ~1.5 d plus 15 min of MS runtime per sample, and it is structured to fit within ordinary working shifts, thus making it a valuable tool for clinical laboratories seeking high-throughput analysis of GAGs. The protocol requires expertise in UHPLC-MS/MS.
{"title":"High-throughput glycosaminoglycan extraction and UHPLC-MS/MS quantification in human biofluids.","authors":"Nicola Volpi, Fabio Galeotti, Francesco Gatto","doi":"10.1038/s41596-024-01078-9","DOIUrl":"https://doi.org/10.1038/s41596-024-01078-9","url":null,"abstract":"<p><p>Glycosaminoglycans (GAGs) are linear, unbranched heteropolysaccharides whose structural complexity determines their function. Accurate quantification of GAGs in biofluids at high throughput is relevant for numerous biomedical applications. However, because of the structural variability of GAGs in biofluids, existing protocols require complex pre-analytical procedures, have limited throughput and lack accuracy. Here, we describe the extraction and quantification of GAGs by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-MS/MS). Designed for 96-well plates, this method enables the processing of up to 82 study samples per plate, with the remaining 14 wells used for calibrators and controls. Key steps include the enzymatic depolymerization of GAGs, their derivatization with 2-aminoacridone and their quantification via UHPLC-MS/MS. Each plate can be analyzed in a single UHPLC-MS/MS run, offering the quantitative and scalable analysis of 17 disaccharides from chondroitin sulfate, heparan sulfate and hyaluronic acid, with a level of precision and reproducibility sufficient for their use as biomarkers. The procedure from sample thawing to initiating the UHPLC-MS/MS run can be completed in ~1.5 d plus 15 min of MS runtime per sample, and it is structured to fit within ordinary working shifts, thus making it a valuable tool for clinical laboratories seeking high-throughput analysis of GAGs. The protocol requires expertise in UHPLC-MS/MS.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Superstructures with architectural complexity and unique functionalities are promising for a variety of practical applications in many fields, including mechanics, sensing, photonics, catalysis, drug delivery and energy storage/conversion. In the past five years, a number of attempts have been made to build superparticles based on amphiphilic polymeric micelle units, but most have failed owing to their inherent poor stability. Determining how to stabilize micelles and control their superassembly is critical to obtaining the desired mesoporous superparticles. Here we provide a detailed procedure for the preparation of ultrastable polymeric monomicelle building units, the creation of a library of ultrasmall organic-inorganic nanohybrids, the modular superassembly of monomicelles into hierarchical superstructures and creation of novel multilevel mesoporous superstructures. The protocol enables precise control of the number of monomicelle units and the derived mesopores for superparticles. We show that ultrafine nanohybrids display enhanced mechanical antipressure performance compared with pristine polymeric micelles, and describe the functional characterization of mesoporous superstructures that exhibit excellent oxygen reduction reactivity. Except for the time (4.5 d) needed for the preparation of the triblock polystyrene-block-poly(4-vinylpyridine)-block-poly(ethylene oxide) PS-PVP-PEO or the polystyrene-block-poly(acrylic acid)-block-poly(ethylene oxide) (PS-PAA-PEO) copolymer, the synthesis of the ultrastable monomicelle, ultrafine organic-inorganic nanohybrids, hierarchical superstructures and mesoporous superparticles require ~6, 30, 8 and 24 h, respectively. The time needed for all characterizations and applications are 18 and 10 h, respectively.
{"title":"Versatile synthesis of uniform mesoporous superparticles from stable monomicelle units.","authors":"Zaiwang Zhao, Pengfei Zhang, Yujuan Zhao, Lipeng Wang, Jie Zhang, Fanxing Bu, Wanhai Zhou, Ruizheng Zhao, Xingmiao Zhang, Zirui Lv, Yupu Liu, Yuan Xia, Wei Zhang, Tiancong Zhao, Dongliang Chao, Wei Li, Dongyuan Zhao","doi":"10.1038/s41596-024-01073-0","DOIUrl":"https://doi.org/10.1038/s41596-024-01073-0","url":null,"abstract":"<p><p>Superstructures with architectural complexity and unique functionalities are promising for a variety of practical applications in many fields, including mechanics, sensing, photonics, catalysis, drug delivery and energy storage/conversion. In the past five years, a number of attempts have been made to build superparticles based on amphiphilic polymeric micelle units, but most have failed owing to their inherent poor stability. Determining how to stabilize micelles and control their superassembly is critical to obtaining the desired mesoporous superparticles. Here we provide a detailed procedure for the preparation of ultrastable polymeric monomicelle building units, the creation of a library of ultrasmall organic-inorganic nanohybrids, the modular superassembly of monomicelles into hierarchical superstructures and creation of novel multilevel mesoporous superstructures. The protocol enables precise control of the number of monomicelle units and the derived mesopores for superparticles. We show that ultrafine nanohybrids display enhanced mechanical antipressure performance compared with pristine polymeric micelles, and describe the functional characterization of mesoporous superstructures that exhibit excellent oxygen reduction reactivity. Except for the time (4.5 d) needed for the preparation of the triblock polystyrene-block-poly(4-vinylpyridine)-block-poly(ethylene oxide) PS-PVP-PEO or the polystyrene-block-poly(acrylic acid)-block-poly(ethylene oxide) (PS-PAA-PEO) copolymer, the synthesis of the ultrastable monomicelle, ultrafine organic-inorganic nanohybrids, hierarchical superstructures and mesoporous superparticles require ~6, 30, 8 and 24 h, respectively. The time needed for all characterizations and applications are 18 and 10 h, respectively.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1038/s41596-024-01074-z
Pei-Chi Huang, Chia-Lin Lin, Pierre Tremouilhac, Nicole Jung, Stefan Bräse
{"title":"Using the Chemotion repository to deposit and access FAIR research data for chemistry experiments.","authors":"Pei-Chi Huang, Chia-Lin Lin, Pierre Tremouilhac, Nicole Jung, Stefan Bräse","doi":"10.1038/s41596-024-01074-z","DOIUrl":"https://doi.org/10.1038/s41596-024-01074-z","url":null,"abstract":"","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1038/s41596-024-01061-4
Alexander B. Afeyan, Catherine J. Wu, Giacomo Oliveira
The ability to screen the reactivity of T cell receptors (TCRs) is essential to understanding how antigen-specific T cells drive productive or dysfunctional immune responses during infections, cancer and autoimmune diseases. Methods to profile large numbers of TCRs are critical for characterizing immune responses sustained by diverse T cell clones. Here we provide a medium-throughput approach to reconstruct dozens to hundreds of TCRs in parallel, which can be simultaneously screened against primary human tissues and broad curated panels of antigenic targets. Using Gibson assembly and miniaturized lentiviral transduction, individual TCRs are rapidly cloned and expressed in T cells; before screening, TCR cell lines undergo combinatorial labeling with dilutions of three fluorescent dyes, which allows retrieval of the identity of individual T cell effectors when they are organized and tested in pools using flow cytometry. Upon incubation with target cells, we measure the upregulation of CD137 on T cells as a readout of TCR activation. This approach is scalable and simultaneously captures the reactivity of pooled TCR cell lines, whose activation can be deconvoluted in real time, thus providing a path for screening the reactivity of dozens of TCRs against broad panels of synthetic antigens or against cellular targets, such as human tumor cells. We applied this pipeline to systematically deconvolute the antitumoral and antiviral reactivity and antigenic specificity of TCRs from human tumor-infiltrating lymphocytes. This protocol takes ~2 months, from experimental design to data analysis, and requires standard expertise in cloning, cell culture and flow cytometry. This protocol outlines a medium-throughput strategy based on combinatorial dye staining of pools of effector T cells to screen in parallel the reactivity of up to hundreds of T cell receptors against patient primary tissues or panels of antigens.
要了解抗原特异性 T 细胞如何在感染、癌症和自身免疫性疾病过程中驱动产生或失调的免疫反应,筛选 T 细胞受体(TCR)反应性的能力至关重要。分析大量 TCR 的方法对于描述不同 T 细胞克隆所维持的免疫反应至关重要。在这里,我们提供了一种中等通量的方法,可并行重建数十至数百个 TCRs,这些 TCRs 可同时针对原始人体组织和广泛的抗原靶点筛选。利用吉布森组装和小型化慢病毒转导技术,单个 TCRs 被快速克隆并在 T 细胞中表达;在筛选之前,TCR 细胞系会被三种荧光染料稀释液组合标记,这样当它们被组织起来并用流式细胞仪进行检测时,就能检索到单个 T 细胞效应物的身份。与靶细胞孵育后,我们测量 T 细胞上 CD137 的上调,作为 TCR 激活的读数。这种方法具有可扩展性,能同时捕获集合 TCR 细胞系的反应性,并能实时分解其活化,从而为筛选数十种 TCR 针对大量合成抗原或细胞靶标(如人类肿瘤细胞)的反应性提供了途径。我们应用这一管道系统地解除了人类肿瘤浸润淋巴细胞中 TCR 的抗肿瘤和抗病毒反应性及抗原特异性。该方案从实验设计到数据分析大约需要 2 个月的时间,需要克隆、细胞培养和流式细胞术方面的标准专业知识。
{"title":"Rapid parallel reconstruction and specificity screening of hundreds of T cell receptors","authors":"Alexander B. Afeyan, Catherine J. Wu, Giacomo Oliveira","doi":"10.1038/s41596-024-01061-4","DOIUrl":"10.1038/s41596-024-01061-4","url":null,"abstract":"The ability to screen the reactivity of T cell receptors (TCRs) is essential to understanding how antigen-specific T cells drive productive or dysfunctional immune responses during infections, cancer and autoimmune diseases. Methods to profile large numbers of TCRs are critical for characterizing immune responses sustained by diverse T cell clones. Here we provide a medium-throughput approach to reconstruct dozens to hundreds of TCRs in parallel, which can be simultaneously screened against primary human tissues and broad curated panels of antigenic targets. Using Gibson assembly and miniaturized lentiviral transduction, individual TCRs are rapidly cloned and expressed in T cells; before screening, TCR cell lines undergo combinatorial labeling with dilutions of three fluorescent dyes, which allows retrieval of the identity of individual T cell effectors when they are organized and tested in pools using flow cytometry. Upon incubation with target cells, we measure the upregulation of CD137 on T cells as a readout of TCR activation. This approach is scalable and simultaneously captures the reactivity of pooled TCR cell lines, whose activation can be deconvoluted in real time, thus providing a path for screening the reactivity of dozens of TCRs against broad panels of synthetic antigens or against cellular targets, such as human tumor cells. We applied this pipeline to systematically deconvolute the antitumoral and antiviral reactivity and antigenic specificity of TCRs from human tumor-infiltrating lymphocytes. This protocol takes ~2 months, from experimental design to data analysis, and requires standard expertise in cloning, cell culture and flow cytometry. This protocol outlines a medium-throughput strategy based on combinatorial dye staining of pools of effector T cells to screen in parallel the reactivity of up to hundreds of T cell receptors against patient primary tissues or panels of antigens.","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":"20 3","pages":"539-586"},"PeriodicalIF":13.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1038/s41596-024-01066-z
Hanyuan Gao, Mugdha Pol, Colette A. Makara, Jiyeon Song, He Zhang, Xiaoyu Zou, Jamie M. Benson, David L. Burris, Joseph M. Fox, Xinqiao Jia
Described herein is a protocol for producing a synthetic extracellular matrix that can be modified in situ during three-dimensional cell culture. The hydrogel platform is established using modular building blocks employing bio-orthogonal tetrazine (Tz) ligation with slow (norbornene, Nb) and fast (trans-cyclooctene, TCO) dienophiles. A cell-laden gel construct is created via the slow, off-stoichiometric Tz/Nb reaction. After a few days of culture, matrix properties can be altered by supplementing the cell culture media with TCO-tagged molecules through the rapid reaction with the remaining Tz groups in the network at the gel–liquid interface. As the Tz/TCO reaction is faster than molecular diffusion, matrix properties can be modified in a spatiotemporal fashion simply by altering the identity of the diffusive species and the diffusion time/path. Our strategy does not interfere with native biochemical processes nor does it require external triggers or a second, independent chemistry. The biomimetic three-dimensional cultures can be analyzed by standard molecular and cellular techniques and visualized by confocal microscopy. We have previously used this method to demonstrate how in situ modulation of matrix properties induces epithelial-to-mesenchymal transition, elicits fibroblast transition from mesenchymal stem cells and regulates myofibroblast differentiation. Following the detailed procedures, individuals with a bachelor’s in science and engineering fields can successfully complete the protocol in 4–5 weeks. This protocol can be applied to model tissue morphogenesis and disease progression and it can also be used to establish engineered constructs with tissue-like anisotropy and tissue-specific functions. This protocol describes a bio-orthogonal method for dynamically altering the adhesiveness or stiffness of the synthetic extracellular matrix during three-dimensional culture in a spatiotemporal manner to induce phenotypic changes and to produce functional tissues.
{"title":"Bio-orthogonal tuning of matrix properties during 3D cell culture to induce morphological and phenotypic changes","authors":"Hanyuan Gao, Mugdha Pol, Colette A. Makara, Jiyeon Song, He Zhang, Xiaoyu Zou, Jamie M. Benson, David L. Burris, Joseph M. Fox, Xinqiao Jia","doi":"10.1038/s41596-024-01066-z","DOIUrl":"10.1038/s41596-024-01066-z","url":null,"abstract":"Described herein is a protocol for producing a synthetic extracellular matrix that can be modified in situ during three-dimensional cell culture. The hydrogel platform is established using modular building blocks employing bio-orthogonal tetrazine (Tz) ligation with slow (norbornene, Nb) and fast (trans-cyclooctene, TCO) dienophiles. A cell-laden gel construct is created via the slow, off-stoichiometric Tz/Nb reaction. After a few days of culture, matrix properties can be altered by supplementing the cell culture media with TCO-tagged molecules through the rapid reaction with the remaining Tz groups in the network at the gel–liquid interface. As the Tz/TCO reaction is faster than molecular diffusion, matrix properties can be modified in a spatiotemporal fashion simply by altering the identity of the diffusive species and the diffusion time/path. Our strategy does not interfere with native biochemical processes nor does it require external triggers or a second, independent chemistry. The biomimetic three-dimensional cultures can be analyzed by standard molecular and cellular techniques and visualized by confocal microscopy. We have previously used this method to demonstrate how in situ modulation of matrix properties induces epithelial-to-mesenchymal transition, elicits fibroblast transition from mesenchymal stem cells and regulates myofibroblast differentiation. Following the detailed procedures, individuals with a bachelor’s in science and engineering fields can successfully complete the protocol in 4–5 weeks. This protocol can be applied to model tissue morphogenesis and disease progression and it can also be used to establish engineered constructs with tissue-like anisotropy and tissue-specific functions. This protocol describes a bio-orthogonal method for dynamically altering the adhesiveness or stiffness of the synthetic extracellular matrix during three-dimensional culture in a spatiotemporal manner to induce phenotypic changes and to produce functional tissues.","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":"20 3","pages":"727-778"},"PeriodicalIF":13.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1038/s41596-024-01067-y
Liang Ma, Bibek R. Thapa, Jake A. Le Suer, Andrew Tilston-Lünel, Michael J. Herriges, Feiya Wang, Pushpinder S. Bawa, Xaralabos Varelas, Finn J. Hawkins, Darrell N. Kotton
Durable and functional regeneration of the airway epithelium in vivo with transplanted stem cells has the potential to reconstitute healthy tissue in diseased airways, such as in cystic fibrosis or primary ciliary dyskinesia. Here, we present detailed protocols for the preparation and culture expansion of murine primary and induced pluripotent stem cell-derived airway basal stem cells (iBCs) and methods for their intra-airway transplantation into polidocanol-conditioned murine recipients to achieve durable in vivo airway regeneration. Reconstitution of the airway tissue resident epithelial stem cell compartment of immunocompetent mice with syngeneic donor cells leverages the extensive self-renewal and multipotent differentiation properties of basal stem cells (BCs) to durably generate a broad diversity of mature airway epithelial lineages in vivo. Engrafted donor-derived cells re-establish planar cell polarity as well as functional ciliary transport. By using this same approach, human primary BCs or iBCs transplanted into NOD-SCID gamma recipient mice similarly display engraftment and multilineage airway epithelial differentiation in vivo. The time to generate mouse or human iBCs takes ~60 d, which can be reduced to ~20 d if previously differentiated cells are thawed from cryopreserved iBC archives. The tracheal conditioning regimen and cell transplantation procedure is completed in 1 d. A competent graduate student or postdoctoral trainee should be able to perform the procedures listed in this protocol. This protocol presents a method for the preparation and culture of mouse and human primary or pluripotent stem cell-derived basal cells, followed by their intra-airway transplantation into polidocanol-conditioned mice to achieve in vivo airway regeneration.
{"title":"Life-long functional regeneration of in vivo airway epithelium by the engraftment of airway basal stem cells","authors":"Liang Ma, Bibek R. Thapa, Jake A. Le Suer, Andrew Tilston-Lünel, Michael J. Herriges, Feiya Wang, Pushpinder S. Bawa, Xaralabos Varelas, Finn J. Hawkins, Darrell N. Kotton","doi":"10.1038/s41596-024-01067-y","DOIUrl":"10.1038/s41596-024-01067-y","url":null,"abstract":"Durable and functional regeneration of the airway epithelium in vivo with transplanted stem cells has the potential to reconstitute healthy tissue in diseased airways, such as in cystic fibrosis or primary ciliary dyskinesia. Here, we present detailed protocols for the preparation and culture expansion of murine primary and induced pluripotent stem cell-derived airway basal stem cells (iBCs) and methods for their intra-airway transplantation into polidocanol-conditioned murine recipients to achieve durable in vivo airway regeneration. Reconstitution of the airway tissue resident epithelial stem cell compartment of immunocompetent mice with syngeneic donor cells leverages the extensive self-renewal and multipotent differentiation properties of basal stem cells (BCs) to durably generate a broad diversity of mature airway epithelial lineages in vivo. Engrafted donor-derived cells re-establish planar cell polarity as well as functional ciliary transport. By using this same approach, human primary BCs or iBCs transplanted into NOD-SCID gamma recipient mice similarly display engraftment and multilineage airway epithelial differentiation in vivo. The time to generate mouse or human iBCs takes ~60 d, which can be reduced to ~20 d if previously differentiated cells are thawed from cryopreserved iBC archives. The tracheal conditioning regimen and cell transplantation procedure is completed in 1 d. A competent graduate student or postdoctoral trainee should be able to perform the procedures listed in this protocol. This protocol presents a method for the preparation and culture of mouse and human primary or pluripotent stem cell-derived basal cells, followed by their intra-airway transplantation into polidocanol-conditioned mice to achieve in vivo airway regeneration.","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":"20 3","pages":"810-842"},"PeriodicalIF":13.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1038/s41596-024-01075-y
Songhai Tian, Yuhang Qin, Yuxuan Wu, Min Dong
Unbiased forward genetic screens have been extensively employed in biological research to elucidate functional genomics. In pooled clustered regularly interspaced short palindromic repeats (CRISPR) perturbation screens, various genetically encoded gain-of-function or loss-of-function mutations are introduced into a heterogeneous population of cells. Subsequently, these cells are screened for phenotypes, perturbation-associated genotypes are analyzed and a connection between genotype and phenotype is determined. CRISPR screening techniques enable the investigation of important biological questions, such as how bacterial toxins kill cells and cause disease. However, the broad spectrum of effects caused by diverse toxins presents a challenge when selecting appropriate screening strategies. Here, we provide a step-by-step protocol for a genome-wide pooled CRISPR perturbation screen to study bacterial toxins. We describe technical considerations, pilot experiments, library construction, screen execution, result analysis and validation of the top enriched hits. These screens are applicable for many different types of toxins and are anticipated to reveal a repertoire of host factors crucial in the intoxication pathway, such as receptors, trafficking/translocation factors and substrates. The entire protocol takes 21-27 weeks and does not require specialized knowledge beyond basic biology.
{"title":"Design, performance, processing, and validation of a pooled CRISPR perturbation screen for bacterial toxins.","authors":"Songhai Tian, Yuhang Qin, Yuxuan Wu, Min Dong","doi":"10.1038/s41596-024-01075-y","DOIUrl":"https://doi.org/10.1038/s41596-024-01075-y","url":null,"abstract":"<p><p>Unbiased forward genetic screens have been extensively employed in biological research to elucidate functional genomics. In pooled clustered regularly interspaced short palindromic repeats (CRISPR) perturbation screens, various genetically encoded gain-of-function or loss-of-function mutations are introduced into a heterogeneous population of cells. Subsequently, these cells are screened for phenotypes, perturbation-associated genotypes are analyzed and a connection between genotype and phenotype is determined. CRISPR screening techniques enable the investigation of important biological questions, such as how bacterial toxins kill cells and cause disease. However, the broad spectrum of effects caused by diverse toxins presents a challenge when selecting appropriate screening strategies. Here, we provide a step-by-step protocol for a genome-wide pooled CRISPR perturbation screen to study bacterial toxins. We describe technical considerations, pilot experiments, library construction, screen execution, result analysis and validation of the top enriched hits. These screens are applicable for many different types of toxins and are anticipated to reveal a repertoire of host factors crucial in the intoxication pathway, such as receptors, trafficking/translocation factors and substrates. The entire protocol takes 21-27 weeks and does not require specialized knowledge beyond basic biology.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1038/s41596-024-01065-0
Yongsung Kim, Weiqiu Cheng, Chun-Seok Cho, Yongha Hwang, Yichen Si, Anna Park, Mitchell Schrank, Jer-En Hsu, Angelo Anacleto, Jingyue Xi, Myungjin Kim, Ellen Pedersen, Olivia I. Koues, Thomas Wilson, ChangHee Lee, Goo Jun, Hyun Min Kang, Jun Hee Lee
Spatial transcriptomics technologies aim to advance gene expression studies by profiling the entire transcriptome with intact spatial information from a single histological slide. However, the application of spatial transcriptomics is limited by low resolution, limited transcript coverage, complex procedures, poor scalability and high costs of initial setup and/or individual experiments. Seq-Scope repurposes the Illumina sequencing platform for high-resolution, high-content spatial transcriptome analysis, overcoming these limitations. It offers submicrometer resolution, high capture efficiency, rapid turnaround time and precise annotation of histopathology at a much lower cost than commercial alternatives. This protocol details the implementation of Seq-Scope with an Illumina NovaSeq 6000 sequencing flow cell, allowing the profiling of multiple tissue sections in an area of 7 mm × 7 mm or larger. We describe the preparation of a fresh-frozen tissue section for both histological imaging and sequencing library preparation and provide a streamlined computational pipeline with comprehensive instructions to integrate histological and transcriptomic data for high-resolution spatial analysis. This includes the use of conventional software tools for single-cell and spatial analysis, as well as our recently developed segmentation-free method for analyzing spatial data at submicrometer resolution. Aside from array production and sequencing, which can be done in batches, tissue processing, library preparation and running the computational pipeline can be completed within 3 days by researchers with experience in molecular biology, histology and basic Unix skills. Given its adaptability across various biological tissues, Seq-Scope establishes itself as an invaluable tool for researchers in molecular biology and histology. This protocol repurposes an Illumina NovaSeq 6000 S4 flow cell for low-cost, submicrometer-resolution spatial transcriptome profiling of a tissue section and provides a comprehensive computational analysis pipeline.
{"title":"Seq-Scope: repurposing Illumina sequencing flow cells for high-resolution spatial transcriptomics","authors":"Yongsung Kim, Weiqiu Cheng, Chun-Seok Cho, Yongha Hwang, Yichen Si, Anna Park, Mitchell Schrank, Jer-En Hsu, Angelo Anacleto, Jingyue Xi, Myungjin Kim, Ellen Pedersen, Olivia I. Koues, Thomas Wilson, ChangHee Lee, Goo Jun, Hyun Min Kang, Jun Hee Lee","doi":"10.1038/s41596-024-01065-0","DOIUrl":"10.1038/s41596-024-01065-0","url":null,"abstract":"Spatial transcriptomics technologies aim to advance gene expression studies by profiling the entire transcriptome with intact spatial information from a single histological slide. However, the application of spatial transcriptomics is limited by low resolution, limited transcript coverage, complex procedures, poor scalability and high costs of initial setup and/or individual experiments. Seq-Scope repurposes the Illumina sequencing platform for high-resolution, high-content spatial transcriptome analysis, overcoming these limitations. It offers submicrometer resolution, high capture efficiency, rapid turnaround time and precise annotation of histopathology at a much lower cost than commercial alternatives. This protocol details the implementation of Seq-Scope with an Illumina NovaSeq 6000 sequencing flow cell, allowing the profiling of multiple tissue sections in an area of 7 mm × 7 mm or larger. We describe the preparation of a fresh-frozen tissue section for both histological imaging and sequencing library preparation and provide a streamlined computational pipeline with comprehensive instructions to integrate histological and transcriptomic data for high-resolution spatial analysis. This includes the use of conventional software tools for single-cell and spatial analysis, as well as our recently developed segmentation-free method for analyzing spatial data at submicrometer resolution. Aside from array production and sequencing, which can be done in batches, tissue processing, library preparation and running the computational pipeline can be completed within 3 days by researchers with experience in molecular biology, histology and basic Unix skills. Given its adaptability across various biological tissues, Seq-Scope establishes itself as an invaluable tool for researchers in molecular biology and histology. This protocol repurposes an Illumina NovaSeq 6000 S4 flow cell for low-cost, submicrometer-resolution spatial transcriptome profiling of a tissue section and provides a comprehensive computational analysis pipeline.","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":"20 3","pages":"643-689"},"PeriodicalIF":13.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1038/s41596-024-01054-3
Zachary Pierce-Messick, Megan L. Shipman, Gabrielle L. Desilets, Laura H. Corbit
Goal-directed behaviors allow animals to act to satisfy needs and desires. The outcome devaluation task is an effective method for identifying goal-directed behaviors and distinguishing these from other types of behavior. Rats can be trained to lever-press for one or multiple distinct food rewards. During testing, the previously earned food—or a control food for comparison—is devalued by allowing the animal to freely feed on it until they are sated before testing lever-press performance under extinction conditions (no rewards are delivered). Behavior that adapts to reflect the new value of the outcome is considered goal-directed, whereas behavior that continues as in previous training despite the change in outcome value, is not. As more research groups have used this task, variability in the procedures used has increased. Here, we provide a reliable procedure for conducting the outcome devaluation task with appropriate controls. We describe the most common variants of the task and control conditions and discuss troubleshooting measures such as outcome pre-exposure, habituation to pre-feeding chambers and attention to animals’ hunger levels. The method outlined can be executed in ~2 weeks including training (~8 d) and testing (1–4 d) by researchers who are familiar with performing behavioral tasks in laboratory rodents, although longer training may be considered for those who are interested in observing habitual control of behavior. This protocol should facilitate the comparison of results from different studies and laboratories, while allowing flexibility in the application of the outcome devaluation task to different research questions. A protocol for common variants of outcome devaluation tasks facilitates standardization of testing goal-directed behavior in rats by detailing control conditions, outcome pre-exposure, habituation to pre-feeding chambers and hunger levels in rats.
{"title":"Outcome devaluation as a method for identifying goal-directed behaviors in rats","authors":"Zachary Pierce-Messick, Megan L. Shipman, Gabrielle L. Desilets, Laura H. Corbit","doi":"10.1038/s41596-024-01054-3","DOIUrl":"10.1038/s41596-024-01054-3","url":null,"abstract":"Goal-directed behaviors allow animals to act to satisfy needs and desires. The outcome devaluation task is an effective method for identifying goal-directed behaviors and distinguishing these from other types of behavior. Rats can be trained to lever-press for one or multiple distinct food rewards. During testing, the previously earned food—or a control food for comparison—is devalued by allowing the animal to freely feed on it until they are sated before testing lever-press performance under extinction conditions (no rewards are delivered). Behavior that adapts to reflect the new value of the outcome is considered goal-directed, whereas behavior that continues as in previous training despite the change in outcome value, is not. As more research groups have used this task, variability in the procedures used has increased. Here, we provide a reliable procedure for conducting the outcome devaluation task with appropriate controls. We describe the most common variants of the task and control conditions and discuss troubleshooting measures such as outcome pre-exposure, habituation to pre-feeding chambers and attention to animals’ hunger levels. The method outlined can be executed in ~2 weeks including training (~8 d) and testing (1–4 d) by researchers who are familiar with performing behavioral tasks in laboratory rodents, although longer training may be considered for those who are interested in observing habitual control of behavior. This protocol should facilitate the comparison of results from different studies and laboratories, while allowing flexibility in the application of the outcome devaluation task to different research questions. A protocol for common variants of outcome devaluation tasks facilitates standardization of testing goal-directed behavior in rats by detailing control conditions, outcome pre-exposure, habituation to pre-feeding chambers and hunger levels in rats.","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":"20 2","pages":"518-538"},"PeriodicalIF":13.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1038/s41596-024-01082-z
Xin Feng, Ao Shen, Wei Zhang, Shengnan Jia, Anton Iliuk, Yuling Wang, Wenke Zhang, Ying Zhang, W Andy Tao, Lianghai Hu
Extracellular vesicles (EVs) are small particles with phospholipid bilayers that carry a diverse range of cargoes including nucleic acids, proteins and metabolites. EVs have important roles in various cellular processes and are increasingly recognized for their ubiquitous role in cell-cell communications and potential applications in therapeutics and diagnostics. Although many methods have been developed for the characterization and measurement of EVs, analyzing them from biofluids remains a challenge with regard to throughput and sensitivity. Recently, we introduced an approach to facilitate high-throughput analysis of EVs from trace amounts of sample. In this method, an amphiphile-dendrimer supramolecular probe (ADSP) is coated onto a nitrocellulose membrane for array-based capture and to enable an in situ immunoblotting assay. Here, we describe the protocol for our array-based method of EV profiling. We describe an enhanced version of the method that incorporates an automated printing workstation, ensuring high throughput and reproducibility. We further demonstrate the use of our array to profile specific glycosylations on the EV surface using click chemistry of an azide group introduced by metabolic labeling. In this protocol, the synthesis of ADSP and the fabrication of ADSP nitrocellulose membrane array can be completed on the same day. EVs are efficiently captured from biological or clinical samples through a 30-min incubation, followed by an immunoblotting assay within a 3-h window, thus providing a high-throughput platform for EV isolation and in situ targeted analysis of EV proteins and their modifications.
细胞外囊泡(EVs)是一种具有磷脂双分子层的小颗粒,可携带多种货物,包括核酸、蛋白质和代谢物。EVs 在各种细胞过程中发挥着重要作用,其在细胞-细胞通信中无处不在的作用以及在治疗和诊断中的潜在应用也日益得到认可。尽管已经开发出许多表征和测量 EVs 的方法,但从生物流体中分析 EVs 在通量和灵敏度方面仍是一项挑战。最近,我们推出了一种方法,可促进从痕量样本中对 EVs 进行高通量分析。在这种方法中,将两性-二聚体超分子探针(ADSP)涂布在硝酸纤维素膜上,以阵列为基础进行捕获,并实现原位免疫印迹检测。在此,我们介绍了基于阵列的 EV 图谱分析方法。我们介绍了该方法的增强版,它结合了自动打印工作站,确保了高通量和可重复性。我们进一步展示了如何利用我们的阵列,通过代谢标记引入的叠氮基团的点击化学反应,对 EV 表面的特定糖基化进行剖析。在该方案中,ADSP 的合成和 ADSP 硝酸纤维素膜阵列的制作可在同一天完成。通过 30 分钟的孵育就能从生物或临床样本中高效捕获 EV,然后在 3 小时内进行免疫印迹检测,从而为 EV 分离和原位靶向分析 EV 蛋白质及其修饰提供了一个高通量平台。
{"title":"High-throughput capture and in situ protein analysis of extracellular vesicles by chemical probe-based array.","authors":"Xin Feng, Ao Shen, Wei Zhang, Shengnan Jia, Anton Iliuk, Yuling Wang, Wenke Zhang, Ying Zhang, W Andy Tao, Lianghai Hu","doi":"10.1038/s41596-024-01082-z","DOIUrl":"https://doi.org/10.1038/s41596-024-01082-z","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are small particles with phospholipid bilayers that carry a diverse range of cargoes including nucleic acids, proteins and metabolites. EVs have important roles in various cellular processes and are increasingly recognized for their ubiquitous role in cell-cell communications and potential applications in therapeutics and diagnostics. Although many methods have been developed for the characterization and measurement of EVs, analyzing them from biofluids remains a challenge with regard to throughput and sensitivity. Recently, we introduced an approach to facilitate high-throughput analysis of EVs from trace amounts of sample. In this method, an amphiphile-dendrimer supramolecular probe (ADSP) is coated onto a nitrocellulose membrane for array-based capture and to enable an in situ immunoblotting assay. Here, we describe the protocol for our array-based method of EV profiling. We describe an enhanced version of the method that incorporates an automated printing workstation, ensuring high throughput and reproducibility. We further demonstrate the use of our array to profile specific glycosylations on the EV surface using click chemistry of an azide group introduced by metabolic labeling. In this protocol, the synthesis of ADSP and the fabrication of ADSP nitrocellulose membrane array can be completed on the same day. EVs are efficiently captured from biological or clinical samples through a 30-min incubation, followed by an immunoblotting assay within a 3-h window, thus providing a high-throughput platform for EV isolation and in situ targeted analysis of EV proteins and their modifications.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}