首页 > 最新文献

Molecular Systems Biology最新文献

英文 中文
Spatial proteomics of ovarian cancer precursors delineates early disease changes and drug targets. 卵巢癌前体的空间蛋白质组学描述了早期疾病变化和药物靶点。
IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-01 Epub Date: 2025-11-13 DOI: 10.1038/s44320-025-00168-4
Anuar Makhmut, Mihnea P Dragomir, Sonja Fritzsche, Markus Moebs, Wolfgang D Schmitt, Eliane T Taube, Fabian Coscia

High-grade serous ovarian cancer (HGSOC) is often detected at an advanced stage, where curative treatment options are limited. Recent advances in ultrasensitive mass spectrometry-based spatial proteomics have provided a unique opportunity to uncover molecular drivers of early tumorigenesis and novel therapeutic targets. Here, we present a comprehensive proteomic analysis of serous tubal intraepithelial carcinoma (STIC), the HGSOC precursor lesion, and concurrent invasive carcinoma, covering more than 10,000 proteins from ultra-low input archival tissue. STIC and HGSOC showed highly similar proteomes, clustering into two subtypes with distinct tumor-immune microenvironments and common remodeling of the extracellular matrix. We discovered cell-of-origin signatures from secretory fallopian tube epithelial cells in STICs and identified early dysregulated pathways of therapeutic relevance. Targeting cholesterol biosynthesis by inhibiting the terminal steps via DHCR7 showed therapeutic effects in ovarian cancer cell lines and synergized with standard-of-care carboplatin treatment. This study demonstrates the power of spatially resolved quantitative proteomics in understanding early carcinogenesis and provides a rich resource for biomarker and drug target research.

高级别浆液性卵巢癌(HGSOC)通常在晚期被发现,在晚期治疗选择有限。基于超灵敏质谱的空间蛋白质组学的最新进展为揭示早期肿瘤发生的分子驱动因素和新的治疗靶点提供了独特的机会。在此,我们对浆液管上皮内癌(STIC)、HGSOC前体病变和并发浸润性癌进行了全面的蛋白质组学分析,涵盖了来自超低输入档案组织的10,000多种蛋白质。STIC和HGSOC表现出高度相似的蛋白质组,聚集成两个亚型,具有不同的肿瘤免疫微环境和共同的细胞外基质重塑。我们发现了来自分泌性输卵管上皮细胞的细胞起源特征,并确定了与治疗相关的早期失调通路。通过DHCR7抑制末端步骤靶向胆固醇生物合成在卵巢癌细胞系中显示出治疗效果,并与标准护理卡铂治疗协同。该研究证明了空间分辨定量蛋白质组学在了解早期癌变中的作用,并为生物标志物和药物靶点研究提供了丰富的资源。
{"title":"Spatial proteomics of ovarian cancer precursors delineates early disease changes and drug targets.","authors":"Anuar Makhmut, Mihnea P Dragomir, Sonja Fritzsche, Markus Moebs, Wolfgang D Schmitt, Eliane T Taube, Fabian Coscia","doi":"10.1038/s44320-025-00168-4","DOIUrl":"10.1038/s44320-025-00168-4","url":null,"abstract":"<p><p>High-grade serous ovarian cancer (HGSOC) is often detected at an advanced stage, where curative treatment options are limited. Recent advances in ultrasensitive mass spectrometry-based spatial proteomics have provided a unique opportunity to uncover molecular drivers of early tumorigenesis and novel therapeutic targets. Here, we present a comprehensive proteomic analysis of serous tubal intraepithelial carcinoma (STIC), the HGSOC precursor lesion, and concurrent invasive carcinoma, covering more than 10,000 proteins from ultra-low input archival tissue. STIC and HGSOC showed highly similar proteomes, clustering into two subtypes with distinct tumor-immune microenvironments and common remodeling of the extracellular matrix. We discovered cell-of-origin signatures from secretory fallopian tube epithelial cells in STICs and identified early dysregulated pathways of therapeutic relevance. Targeting cholesterol biosynthesis by inhibiting the terminal steps via DHCR7 showed therapeutic effects in ovarian cancer cell lines and synergized with standard-of-care carboplatin treatment. This study demonstrates the power of spatially resolved quantitative proteomics in understanding early carcinogenesis and provides a rich resource for biomarker and drug target research.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"7-41"},"PeriodicalIF":7.7,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12759074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145513533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal AI agents for capturing and sharing proteomics laboratory practice. 用于捕获和共享蛋白质组学实验室实践的多模式人工智能代理。
IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-15 DOI: 10.1038/s44320-025-00179-1
Patricia Skowronek, Anant Nawalgaria, Matthias Mann
{"title":"Multimodal AI agents for capturing and sharing proteomics laboratory practice.","authors":"Patricia Skowronek, Anant Nawalgaria, Matthias Mann","doi":"10.1038/s44320-025-00179-1","DOIUrl":"https://doi.org/10.1038/s44320-025-00179-1","url":null,"abstract":"","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145763248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial population dynamics during colonization of solid tumors. 实体瘤定植过程中的细菌种群动态。
IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-15 DOI: 10.1038/s44320-025-00175-5
Serkan Sayin, Motasem ElGamel, Brittany Rosener, Michael Brehm, Andrew Mugler, Amir Mitchell

Bacterial colonization of tumors is widespread, yet the dynamics during colonization remain underexplored. Here we discover strong variability in the sizes of intratumor bacterial clones and use this variability to infer the mechanisms of colonization. We monitored bacterial population dynamics in murine tumors after introducing millions of genetically barcoded Escherichia coli cells. Results from intravenous injection revealed that roughly a hundred bacteria seeded a tumor and that colonizers underwent rapid, yet highly nonuniform growth. Within a day, bacteria reached a steady-state and then sustained load and clone diversity. Intratumor injections, circumventing colonization bottlenecks, revealed that the nonuniformity persists and that the sizes of bacterial progenies followed a scale-free distribution. Theory suggested that our observations are compatible with a growth model constrained by a local niche load, global resource competition, and noise. Our work provides the first dynamical model of tumor colonization and may allow distinguishing genuine tumor microbiomes from contamination.

细菌在肿瘤中的定植是广泛存在的,但定植过程中的动力学仍未得到充分研究。在这里,我们发现肿瘤内细菌克隆的大小有很强的可变性,并利用这种可变性来推断定植的机制。在引入数百万个基因条形码的大肠杆菌细胞后,我们监测了小鼠肿瘤中的细菌种群动态。静脉注射的结果显示,大约有100个细菌在肿瘤上播种,这些细菌的定植经历了快速但高度不均匀的生长。在一天之内,细菌达到稳定状态,然后持续负载和克隆多样性。肿瘤内注射,绕过定植瓶颈,显示不均匀性持续存在,细菌后代的大小遵循无标度分布。理论表明,我们的观察结果符合受局部生态位负荷、全球资源竞争和噪声约束的增长模型。我们的工作提供了肿瘤定植的第一个动力学模型,并可能允许区分真正的肿瘤微生物组和污染。
{"title":"Bacterial population dynamics during colonization of solid tumors.","authors":"Serkan Sayin, Motasem ElGamel, Brittany Rosener, Michael Brehm, Andrew Mugler, Amir Mitchell","doi":"10.1038/s44320-025-00175-5","DOIUrl":"10.1038/s44320-025-00175-5","url":null,"abstract":"<p><p>Bacterial colonization of tumors is widespread, yet the dynamics during colonization remain underexplored. Here we discover strong variability in the sizes of intratumor bacterial clones and use this variability to infer the mechanisms of colonization. We monitored bacterial population dynamics in murine tumors after introducing millions of genetically barcoded Escherichia coli cells. Results from intravenous injection revealed that roughly a hundred bacteria seeded a tumor and that colonizers underwent rapid, yet highly nonuniform growth. Within a day, bacteria reached a steady-state and then sustained load and clone diversity. Intratumor injections, circumventing colonization bottlenecks, revealed that the nonuniformity persists and that the sizes of bacterial progenies followed a scale-free distribution. Theory suggested that our observations are compatible with a growth model constrained by a local niche load, global resource competition, and noise. Our work provides the first dynamical model of tumor colonization and may allow distinguishing genuine tumor microbiomes from contamination.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145763277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CANTAO: guiding clustering and annotation in single-cell RNA sequencing using average overlap. CANTAO:利用平均重叠指导单细胞RNA测序的聚类和注释。
IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-08 DOI: 10.1038/s44320-025-00176-4
Christopher Thai, Amartya Singh, Daniel Herranz, Hossein Khiabanian

Single-cell RNA sequencing allows defining cellular identities based on transcriptional similarity using unsupervised clustering. However, a single clustering resolution may not yield groups of cells that represent both broad, well-defined populations and smaller subpopulations simultaneously. Therefore, when cell identities are not known prior to sequencing, robust comparison and annotation of inferred de novo clusters remains a challenge. Here, we introduce CANTAO, in which we propose the average overlap metric to define the distance between single-cell clusters by comparing ranked lists of differentially expressed genes in a top-weighted manner. We benchmark CANTAO in truth-known datasets comprised of similar yet distinct cell populations and show that evaluating clusters with average overlap results in a consistent, precise, and biologically meaningful recapitulation of true cell identities. We then analyze unsorted mouse thymocytes and characterize stages of T-cell development in the thymus, including minor populations of double-negative (CD4-CD8-) T cells that are difficult to confidently detect among unsorted single cells. We demonstrate that CANTAO enables robust, reproducible characterization of single-cell data and clarifies biological interpretation of underlying identities in homogeneous populations.

单细胞RNA测序允许使用无监督聚类定义基于转录相似性的细胞身份。然而,单一的聚类分辨率可能无法产生同时代表广泛的、定义良好的种群和较小的亚种群的细胞群。因此,当在测序之前不知道细胞身份时,对推断的新生簇进行稳健的比较和注释仍然是一个挑战。在这里,我们引入CANTAO,其中我们提出了平均重叠度量来定义单细胞簇之间的距离,通过顶加权的方式比较差异表达基因的排名列表。我们在由相似但不同的细胞群组成的真实已知数据集中对CANTAO进行基准测试,并表明评估具有平均重叠的簇导致对真实细胞身份的一致,精确和具有生物学意义的再现。然后,我们分析了未分选的小鼠胸腺细胞,并描述了胸腺中T细胞发育的阶段,包括在未分选的单细胞中难以自信地检测到的双阴性(CD4-CD8-) T细胞的少数群体。我们证明CANTAO能够对单细胞数据进行稳健、可重复的表征,并阐明同质群体中潜在身份的生物学解释。
{"title":"CANTAO: guiding clustering and annotation in single-cell RNA sequencing using average overlap.","authors":"Christopher Thai, Amartya Singh, Daniel Herranz, Hossein Khiabanian","doi":"10.1038/s44320-025-00176-4","DOIUrl":"10.1038/s44320-025-00176-4","url":null,"abstract":"<p><p>Single-cell RNA sequencing allows defining cellular identities based on transcriptional similarity using unsupervised clustering. However, a single clustering resolution may not yield groups of cells that represent both broad, well-defined populations and smaller subpopulations simultaneously. Therefore, when cell identities are not known prior to sequencing, robust comparison and annotation of inferred de novo clusters remains a challenge. Here, we introduce CANTAO, in which we propose the average overlap metric to define the distance between single-cell clusters by comparing ranked lists of differentially expressed genes in a top-weighted manner. We benchmark CANTAO in truth-known datasets comprised of similar yet distinct cell populations and show that evaluating clusters with average overlap results in a consistent, precise, and biologically meaningful recapitulation of true cell identities. We then analyze unsorted mouse thymocytes and characterize stages of T-cell development in the thymus, including minor populations of double-negative (CD4-CD8-) T cells that are difficult to confidently detect among unsorted single cells. We demonstrate that CANTAO enables robust, reproducible characterization of single-cell data and clarifies biological interpretation of underlying identities in homogeneous populations.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetics-mediated regulation of intestinal gene expression on microbiome contributes to human disease heritability. 肠道微生物组基因表达的遗传调控有助于人类疾病的遗传。
IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-05 DOI: 10.1038/s44320-025-00173-7
Haochuan Wang, Chengyu Li, Zhen Hu, Haonan Feng, Luowei Chen, Ke Ding, Jiuhong Nan, Yuhan Wu, Jinghao Sheng, Xushen Xiong

The gut microbiome plays fundamental roles in physiological and pathological processes, yet its interaction with host gene expression and contribution to disease remain underexplored. Here, we integrate the genetic regulatory maps of 116 microbial genera with gene expression quantitative trait loci (eQTLs) and DNA methylation QTLs (mQTLs) in three intestinal tissues to dissect host-microbiome interaction. We identify 6088, 5810, and 2398 gene-to-microbiome regulatory loci in the transverse colon, sigmoid colon, and ileum, respectively. Among these, 13.2% of genes show broad regulatory effects on multiple genera, with functional enrichments in developmental, metabolic, and immune-related pathways. Integrative analysis with genome-wide association studies (GWASs) reveals 283 microbiome-dependent disease loci. We observe pleiotropic effects mediated by the gene-to-microbiome regulation at both microbiome and disease layers. Notably, we predict and experimentally validate the suppressive effect of Allisonella on depression through regulating bile acid abundance, and the regulation of Parasutterella on short-chain fatty acid and its contribution to allergic rhinitis. The gene-microbiome-disease regulatory maps are available at our interactive database ( https://xiongxslab.github.io/microbiomeMR/ ).

肠道微生物组在生理和病理过程中发挥着重要作用,但其与宿主基因表达的相互作用和对疾病的贡献仍未得到充分探讨。在这里,我们整合了三个肠道组织中116个微生物属的基因表达数量性状位点(eQTLs)和DNA甲基化QTLs (mQTLs)的遗传调控图谱,以剖析宿主-微生物组的相互作用。我们分别在横结肠、乙状结肠和回肠中鉴定出6088个、5810个和2398个基因-微生物组调控位点。其中,13.2%的基因在多个属中表现出广泛的调控作用,在发育、代谢和免疫相关途径中具有功能丰富。与全基因组关联研究(GWASs)的整合分析揭示了283个微生物组依赖的疾病位点。我们在微生物组和疾病层观察到由基因-微生物组调控介导的多效效应。值得注意的是,我们预测并实验验证了Allisonella通过调节胆酸丰度对抑郁症的抑制作用,以及Parasutterella对短链脂肪酸的调节及其在变应性鼻炎中的作用。基因-微生物组-疾病调控图谱可在我们的互动数据库(https://xiongxslab.github.io/microbiomeMR/)中获得。
{"title":"Genetics-mediated regulation of intestinal gene expression on microbiome contributes to human disease heritability.","authors":"Haochuan Wang, Chengyu Li, Zhen Hu, Haonan Feng, Luowei Chen, Ke Ding, Jiuhong Nan, Yuhan Wu, Jinghao Sheng, Xushen Xiong","doi":"10.1038/s44320-025-00173-7","DOIUrl":"https://doi.org/10.1038/s44320-025-00173-7","url":null,"abstract":"<p><p>The gut microbiome plays fundamental roles in physiological and pathological processes, yet its interaction with host gene expression and contribution to disease remain underexplored. Here, we integrate the genetic regulatory maps of 116 microbial genera with gene expression quantitative trait loci (eQTLs) and DNA methylation QTLs (mQTLs) in three intestinal tissues to dissect host-microbiome interaction. We identify 6088, 5810, and 2398 gene-to-microbiome regulatory loci in the transverse colon, sigmoid colon, and ileum, respectively. Among these, 13.2% of genes show broad regulatory effects on multiple genera, with functional enrichments in developmental, metabolic, and immune-related pathways. Integrative analysis with genome-wide association studies (GWASs) reveals 283 microbiome-dependent disease loci. We observe pleiotropic effects mediated by the gene-to-microbiome regulation at both microbiome and disease layers. Notably, we predict and experimentally validate the suppressive effect of Allisonella on depression through regulating bile acid abundance, and the regulation of Parasutterella on short-chain fatty acid and its contribution to allergic rhinitis. The gene-microbiome-disease regulatory maps are available at our interactive database ( https://xiongxslab.github.io/microbiomeMR/ ).</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":7.7,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145687700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic profiling of shed cells enables spatial mapping of cellular turnover in human organs. 脱壳细胞的转录组学分析使人类器官中细胞周转的空间定位成为可能。
IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-10-02 DOI: 10.1038/s44320-025-00154-w
Tal Barkai, Oran Yakubovsky, Yael Korem Kohanim, Keren Bahar Halpern, Sapir Shir, Noa Oren, Michal Fine, Paz Kelmer, Amit Talmon, Alon Israeli, Niv Pencovich, Ron Pery, Ido Nachmany, Shalev Itzkovitz

Single-cell atlases provide valuable insights into gene expression states but lack information on cellular dynamics. Understanding cell turnover rates-the time between a cell's birth and death-can shed light on stemness potential and susceptibility to damage. However, measuring turnover rates in human organs has been a significant challenge. In this study, we integrate transcriptomic data from both tissue and shed cells to assign turnover scores to individual cells, leveraging their expression profiles in spatially resolved expression atlases. By performing RNA sequencing on shed cells from the upper gastrointestinal tract, collected via nasogastric tubes, we infer turnover rates in the human esophagus, stomach, and small intestine. In addition, we analyze colonic fecal washes to map turnover patterns in the human large intestine. Our findings reveal a subset of short-lived, interferon-stimulated colonocytes within a distinct pro-inflammatory microenvironment. Our approach introduces a dynamic dimension to single-cell atlases, offering broad applicability across different organs and diseases.

单细胞图谱提供了对基因表达状态有价值的见解,但缺乏细胞动力学的信息。了解细胞周转率——细胞出生和死亡之间的时间——可以揭示干细胞的潜力和对损伤的易感性。然而,测量人体器官的周转率一直是一个重大挑战。在这项研究中,我们整合了来自组织和脱落细胞的转录组学数据,利用它们在空间解析表达图谱中的表达谱,为单个细胞分配周转分数。通过对通过鼻胃管收集的上消化道脱落细胞进行RNA测序,我们推断了人类食道、胃和小肠的周转率。此外,我们分析结肠粪便洗涤来绘制人类大肠的周转模式。我们的研究结果揭示了在一个独特的促炎微环境中,一个短命的、受干扰素刺激的结肠炎细胞子集。我们的方法为单细胞图谱引入了一个动态维度,提供了跨不同器官和疾病的广泛适用性。
{"title":"Transcriptomic profiling of shed cells enables spatial mapping of cellular turnover in human organs.","authors":"Tal Barkai, Oran Yakubovsky, Yael Korem Kohanim, Keren Bahar Halpern, Sapir Shir, Noa Oren, Michal Fine, Paz Kelmer, Amit Talmon, Alon Israeli, Niv Pencovich, Ron Pery, Ido Nachmany, Shalev Itzkovitz","doi":"10.1038/s44320-025-00154-w","DOIUrl":"10.1038/s44320-025-00154-w","url":null,"abstract":"<p><p>Single-cell atlases provide valuable insights into gene expression states but lack information on cellular dynamics. Understanding cell turnover rates-the time between a cell's birth and death-can shed light on stemness potential and susceptibility to damage. However, measuring turnover rates in human organs has been a significant challenge. In this study, we integrate transcriptomic data from both tissue and shed cells to assign turnover scores to individual cells, leveraging their expression profiles in spatially resolved expression atlases. By performing RNA sequencing on shed cells from the upper gastrointestinal tract, collected via nasogastric tubes, we infer turnover rates in the human esophagus, stomach, and small intestine. In addition, we analyze colonic fecal washes to map turnover patterns in the human large intestine. Our findings reveal a subset of short-lived, interferon-stimulated colonocytes within a distinct pro-inflammatory microenvironment. Our approach introduces a dynamic dimension to single-cell atlases, offering broad applicability across different organs and diseases.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1778-1792"},"PeriodicalIF":7.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12673112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput 3D engineered paediatric tumour models for precision medicine. 高精度医学的高通量3D工程儿科肿瘤模型。
IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-10-01 DOI: 10.1038/s44320-025-00152-y
MoonSun Jung, Valentina Poltavets, Joanna N Skhinas, Gabor Tax, Alvin Kamili, Jinhan Xie, Sarah Ghamrawi, Philipp Graber, Jie Mao, Marie Wong-Erasmus, Louise Cui, Kathleen Kimpton, Pooja Venkat, Chelsea Mayoh, Angela Lin, Emmy D G Fleuren, Ashleigh M Fordham, Zara Barger, John Grady, David M Thomas, Eric Y Du, Nicole S Graf, Mark J Cowley, Andrew J Gifford, Jamie I Fletcher, Loretta M S Lau, M Emmy M Dolman, J Justin Gooding, Maria Kavallaris

Precision medicine for paediatric and adult cancers that incorporates drug sensitivity profiling can identify effective therapies for individual patients. However, obtaining adequate biopsy samples for high-throughput (HTP) screening remains challenging, with tumours needing to be expanded in culture or patient-derived xenografts, this is time-consuming and often unsuccessful. Herein, we have developed paediatric patient-derived tumour models using an engineered extracellular matrix (ECM) tissue mimic hydrogel system and HTP 3D bioprinting. Gene expression analysis from a neuroblastoma and sarcoma paediatric patient cohort identified key components of the ECM in these tumour types. Engineered hydrogels with ECM-mimic peptides were used to bioprint and create patient-specific tumouroids using patient-derived cells from xenograft models, and the approach was further confirmed on direct patient tumour samples. Bioprinted tumouroids from the PDX models recapitulated the genetic and phenotypic characteristics of the original tumours and retained tumourigenicity. HTP drug screening of these models identified individualised drug sensitivities. Our approach offers a timely and clinically relevant technology platform for precision medicine in paediatric cancers, potentially transforming preclinical testing across multiple cancer types.

结合药物敏感性分析的儿科和成人癌症精准医学可以为个体患者确定有效的治疗方法。然而,获得足够的活检样本进行高通量(HTP)筛查仍然具有挑战性,肿瘤需要在培养或患者来源的异种移植物中扩大,这是耗时且通常不成功的。在此,我们利用工程细胞外基质(ECM)组织模拟水凝胶系统和HTP 3D生物打印技术开发了儿科患者来源的肿瘤模型。来自神经母细胞瘤和肉瘤患儿队列的基因表达分析确定了这些肿瘤类型中ECM的关键组成部分。利用来自异种移植模型的患者来源的细胞,将带有ecm模拟肽的工程水凝胶用于生物打印和创建患者特异性类肿瘤,并在直接患者肿瘤样本上进一步证实了该方法。来自PDX模型的生物打印类肿瘤再现了原始肿瘤的遗传和表型特征,并保留了致瘤性。这些模型的HTP药物筛选确定了个体化药物敏感性。我们的方法为儿科癌症的精准医学提供了一个及时和临床相关的技术平台,有可能改变多种癌症类型的临床前测试。
{"title":"High-throughput 3D engineered paediatric tumour models for precision medicine.","authors":"MoonSun Jung, Valentina Poltavets, Joanna N Skhinas, Gabor Tax, Alvin Kamili, Jinhan Xie, Sarah Ghamrawi, Philipp Graber, Jie Mao, Marie Wong-Erasmus, Louise Cui, Kathleen Kimpton, Pooja Venkat, Chelsea Mayoh, Angela Lin, Emmy D G Fleuren, Ashleigh M Fordham, Zara Barger, John Grady, David M Thomas, Eric Y Du, Nicole S Graf, Mark J Cowley, Andrew J Gifford, Jamie I Fletcher, Loretta M S Lau, M Emmy M Dolman, J Justin Gooding, Maria Kavallaris","doi":"10.1038/s44320-025-00152-y","DOIUrl":"10.1038/s44320-025-00152-y","url":null,"abstract":"<p><p>Precision medicine for paediatric and adult cancers that incorporates drug sensitivity profiling can identify effective therapies for individual patients. However, obtaining adequate biopsy samples for high-throughput (HTP) screening remains challenging, with tumours needing to be expanded in culture or patient-derived xenografts, this is time-consuming and often unsuccessful. Herein, we have developed paediatric patient-derived tumour models using an engineered extracellular matrix (ECM) tissue mimic hydrogel system and HTP 3D bioprinting. Gene expression analysis from a neuroblastoma and sarcoma paediatric patient cohort identified key components of the ECM in these tumour types. Engineered hydrogels with ECM-mimic peptides were used to bioprint and create patient-specific tumouroids using patient-derived cells from xenograft models, and the approach was further confirmed on direct patient tumour samples. Bioprinted tumouroids from the PDX models recapitulated the genetic and phenotypic characteristics of the original tumours and retained tumourigenicity. HTP drug screening of these models identified individualised drug sensitivities. Our approach offers a timely and clinically relevant technology platform for precision medicine in paediatric cancers, potentially transforming preclinical testing across multiple cancer types.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1748-1777"},"PeriodicalIF":7.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12673126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145206934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PatientProfiler: building patient-specific signaling models from proteogenomic data. PatientProfiler:从蛋白质基因组学数据中构建患者特异性信号模型。
IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-10-10 DOI: 10.1038/s44320-025-00160-y
Veronica Lombardi, Lorenzo Di Rocco, Eleonora Meo, Veronica Venafra, Elena Di Nisio, Valerio Perticaroli, Mihail Lorentz Nicolaeasa, Chiara Cencioni, Francesco Spallotta, Rodolfo Negri, Francesca Sacco, Livia Perfetto

Deciphering patient-specific mechanisms of cancer cell reprogramming remains a crucial challenge in systems oncology, as it is key to improving patient diagnosis and treatment. For this reason, comprehensive and patient-specific multi-omic characterization of tumor specimens has become increasingly common in clinical practice. Here, we developed PatientProfiler, a computational workflow that integrates proteogenomic data with curated causal interaction networks to generate mechanistic models of signal transduction for individual patients. PatientProfiler allows multi-omic data analysis and standardization, generation of patient-specific mechanistic models of signal transduction, and extraction of network-based prognostic biomarkers. We successfully benchmarked the tool on proteogenomic and clinical data derived from 122 biopsies of treatment-naïve breast cancer, available through the CPTAC portal. We identified patient-specific mechanistic models that recapitulate oncogenic signaling pathways. In-depth topological exploration of these networks revealed seven subgroups of patients, associated with unique transcriptomic signatures and distinct prognostic values. We identified well-known Basal-like 1 and 2 subtypes, while also highlighting distinct mechanistic drivers such as the MYC-CDK4/6 axis or NF-kappaB-mediated inflammatory programs. Beyond breast cancer, PatientProfiler offers a generalizable framework to transform cohort-level multi-omic data into interpretable mechanistic models, making it applicable across diverse cancer types and other complex diseases.

破解癌症细胞重编程的患者特异性机制仍然是系统肿瘤学的一个关键挑战,因为它是改善患者诊断和治疗的关键。因此,在临床实践中,对肿瘤标本进行全面的、具有患者特异性的多组学表征已越来越普遍。在这里,我们开发了PatientProfiler,这是一个计算工作流程,将蛋白质基因组学数据与精心策划的因果相互作用网络集成在一起,以生成个体患者信号转导的机制模型。PatientProfiler允许多组学数据分析和标准化,生成患者特异性的信号转导机制模型,并提取基于网络的预后生物标志物。我们成功地以蛋白质基因组学和临床数据为基准,这些数据来自122例treatment-naïve乳腺癌的活检,可通过CPTAC门户网站获得。我们确定了概括致癌信号通路的患者特异性机制模型。对这些网络的深入拓扑探索揭示了七个亚组患者,它们具有独特的转录组特征和独特的预后价值。我们确定了众所周知的基底样1和2亚型,同时也强调了不同的机制驱动因素,如MYC-CDK4/6轴或nf - kappab介导的炎症程序。除了乳腺癌,PatientProfiler还提供了一个可推广的框架,将队列水平的多组学数据转化为可解释的机制模型,使其适用于各种癌症类型和其他复杂疾病。
{"title":"PatientProfiler: building patient-specific signaling models from proteogenomic data.","authors":"Veronica Lombardi, Lorenzo Di Rocco, Eleonora Meo, Veronica Venafra, Elena Di Nisio, Valerio Perticaroli, Mihail Lorentz Nicolaeasa, Chiara Cencioni, Francesco Spallotta, Rodolfo Negri, Francesca Sacco, Livia Perfetto","doi":"10.1038/s44320-025-00160-y","DOIUrl":"10.1038/s44320-025-00160-y","url":null,"abstract":"<p><p>Deciphering patient-specific mechanisms of cancer cell reprogramming remains a crucial challenge in systems oncology, as it is key to improving patient diagnosis and treatment. For this reason, comprehensive and patient-specific multi-omic characterization of tumor specimens has become increasingly common in clinical practice. Here, we developed PatientProfiler, a computational workflow that integrates proteogenomic data with curated causal interaction networks to generate mechanistic models of signal transduction for individual patients. PatientProfiler allows multi-omic data analysis and standardization, generation of patient-specific mechanistic models of signal transduction, and extraction of network-based prognostic biomarkers. We successfully benchmarked the tool on proteogenomic and clinical data derived from 122 biopsies of treatment-naïve breast cancer, available through the CPTAC portal. We identified patient-specific mechanistic models that recapitulate oncogenic signaling pathways. In-depth topological exploration of these networks revealed seven subgroups of patients, associated with unique transcriptomic signatures and distinct prognostic values. We identified well-known Basal-like 1 and 2 subtypes, while also highlighting distinct mechanistic drivers such as the MYC-CDK4/6 axis or NF-kappaB-mediated inflammatory programs. Beyond breast cancer, PatientProfiler offers a generalizable framework to transform cohort-level multi-omic data into interpretable mechanistic models, making it applicable across diverse cancer types and other complex diseases.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1845-1865"},"PeriodicalIF":7.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12672659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145275238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A scheduler for rhythmic gene expression. 节律性基因表达的调度器。
IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-10-10 DOI: 10.1038/s44320-025-00155-9
Dimos Gaidatzis, Maike Graf-Landua, Stephen P Methot, Michaela Wölk, Giovanna Brancati, Yannick P Hauser, Milou W M Meeuse, Smita Nahar, Kathrin Braun, Marit van der Does, Sirisha Aluri, Hubertus Kohler, Sebastien Smallwood, Helge Großhans

Genetic oscillators drive precisely timed gene expression, crucial for development and physiology. Using the C. elegans molting clock as a model, we investigate how oscillators can schedule the orderly expression of thousands of genes. Single-cell RNA sequencing reveals a broad peak phase dispersion in individual tissues, mirrored by rhythmic changes in chromatin accessibility at thousands of regulatory elements identified by time-resolved ATAC-seq. We develop a linear model to predict chromatin dynamics based on the binding of >200 transcription factors. This identifies nine key regulators acting additively to determine the peak phase and amplitude of each regulatory element. Strikingly, these factors can also generate constitutive, non-rhythmic activity through destructive interference. Validating its power, the model accurately predicts the impact of GRH-1/Grainyhead perturbation on both chromatin and transcript dynamics. This work provides a conceptual framework for understanding how combinatorial, non-cooperative transcription factor binding schedules complex gene expression patterns in development and other dynamic biological processes.

基因振荡器驱动精确定时的基因表达,对发育和生理至关重要。以秀丽隐杆线虫的蜕皮时钟为模型,我们研究了振荡子如何安排数千个基因的有序表达。单细胞RNA测序揭示了个体组织中广泛的峰相分散,这反映了通过时间分辨ATAC-seq鉴定的数千个调节元件的染色质可及性的节律变化。我们建立了一个线性模型来预测基于bbb200转录因子结合的染色质动力学。这确定了九个关键的调节作用相加,以确定每个调节元件的峰值相位和幅度。引人注目的是,这些因素也可以通过破坏性干扰产生构成性的、无节奏的活动。该模型验证了其能力,准确地预测了GRH-1/Grainyhead扰动对染色质和转录物动力学的影响。这项工作为理解在发育和其他动态生物过程中组合的、非合作的转录因子结合如何调节复杂的基因表达模式提供了一个概念框架。
{"title":"A scheduler for rhythmic gene expression.","authors":"Dimos Gaidatzis, Maike Graf-Landua, Stephen P Methot, Michaela Wölk, Giovanna Brancati, Yannick P Hauser, Milou W M Meeuse, Smita Nahar, Kathrin Braun, Marit van der Does, Sirisha Aluri, Hubertus Kohler, Sebastien Smallwood, Helge Großhans","doi":"10.1038/s44320-025-00155-9","DOIUrl":"10.1038/s44320-025-00155-9","url":null,"abstract":"<p><p>Genetic oscillators drive precisely timed gene expression, crucial for development and physiology. Using the C. elegans molting clock as a model, we investigate how oscillators can schedule the orderly expression of thousands of genes. Single-cell RNA sequencing reveals a broad peak phase dispersion in individual tissues, mirrored by rhythmic changes in chromatin accessibility at thousands of regulatory elements identified by time-resolved ATAC-seq. We develop a linear model to predict chromatin dynamics based on the binding of >200 transcription factors. This identifies nine key regulators acting additively to determine the peak phase and amplitude of each regulatory element. Strikingly, these factors can also generate constitutive, non-rhythmic activity through destructive interference. Validating its power, the model accurately predicts the impact of GRH-1/Grainyhead perturbation on both chromatin and transcript dynamics. This work provides a conceptual framework for understanding how combinatorial, non-cooperative transcription factor binding schedules complex gene expression patterns in development and other dynamic biological processes.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1793-1821"},"PeriodicalIF":7.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12673066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145275209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and furious: mapping epithelial cellular turnover into intestinal transcriptomic atlases. 速度与激情:将上皮细胞转化成肠道转录组图谱。
IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-10-02 DOI: 10.1038/s44320-025-00156-8
Christoph Kilian, Lorenz Adlung
{"title":"Fast and furious: mapping epithelial cellular turnover into intestinal transcriptomic atlases.","authors":"Christoph Kilian, Lorenz Adlung","doi":"10.1038/s44320-025-00156-8","DOIUrl":"10.1038/s44320-025-00156-8","url":null,"abstract":"","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1674-1675"},"PeriodicalIF":7.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12673081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Systems Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1