Pub Date : 2024-07-01Epub Date: 2024-06-29DOI: 10.1007/s00572-024-01159-3
Camille S Delavaux, Robert J Ramos, Sidney L Stürmer, James D Bever
Recent work established a backbone reference tree and phylogenetic placement pipeline for identification of arbuscular mycorrhizal fungal (AMF) large subunit (LSU) rDNA environmental sequences. Our previously published pipeline allowed any environmental sequence to be identified as putative AMF or within one of the major families. Despite this contribution, difficulties in implementation of the pipeline remain. Here, we present an updated database and pipeline with (1) an expanded backbone tree to include four newly described genera and (2) several changes to improve ease and consistency of implementation. In particular, packages required for the pipeline are now installed as a single folder (conda environment) and the pipeline has been tested across three university computing clusters. This updated backbone tree and pipeline will enable broadened adoption by the community, advancing our understanding of these ubiquitous and ecologically important fungi.
{"title":"An updated LSU database and pipeline for environmental DNA identification of arbuscular mycorrhizal fungi.","authors":"Camille S Delavaux, Robert J Ramos, Sidney L Stürmer, James D Bever","doi":"10.1007/s00572-024-01159-3","DOIUrl":"10.1007/s00572-024-01159-3","url":null,"abstract":"<p><p>Recent work established a backbone reference tree and phylogenetic placement pipeline for identification of arbuscular mycorrhizal fungal (AMF) large subunit (LSU) rDNA environmental sequences. Our previously published pipeline allowed any environmental sequence to be identified as putative AMF or within one of the major families. Despite this contribution, difficulties in implementation of the pipeline remain. Here, we present an updated database and pipeline with (1) an expanded backbone tree to include four newly described genera and (2) several changes to improve ease and consistency of implementation. In particular, packages required for the pipeline are now installed as a single folder (conda environment) and the pipeline has been tested across three university computing clusters. This updated backbone tree and pipeline will enable broadened adoption by the community, advancing our understanding of these ubiquitous and ecologically important fungi.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":" ","pages":"369-373"},"PeriodicalIF":3.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-03DOI: 10.1007/s00572-024-01146-8
Khalfallah F, Bon L, El Mazlouzi M, Bakker M R, Fanin N, Bellanger R, Bernier F, De Schrijver A, Ducatillon C, Fotelli M N, Gateble G, Gundale M J, Larsson M, Legout A, Mason W L, Nordin A, Smolander A, Spyroglou G, Vanguelova E I, Verheyen K, Vesterdal L, Zeller B, Augusto L, Derrien D, Buée M
In European forests, most tree species form symbioses with ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi. The EM fungi are classified into different morphological types based on the development and structure of their extraradical mycelium. These structures could be root extensions that help trees to acquire nutrients. However, the relationship between these morphological traits and functions involved in soil nutrient foraging is still under debate.We described the composition of mycorrhizal fungal communities under 23 tree species in a wide range of climates and humus forms in Europe and investigated the exploratory types of EM fungi. We assessed the response of this tree extended phenotype to humus forms, as an indicator of the functioning and quality of forest soils. We found a significant relationship between the relative proportion of the two broad categories of EM exploration types (short- or long-distance) and the humus form, showing a greater proportion of long-distance types in the least dynamic soils. As past land-use and host tree species are significant factors structuring fungal communities, we showed this relationship was modulated by host trait (gymnosperms versus angiosperms), soil depth and past land use (farmland or forest).We propose that this potential functional trait of EM fungi be used in future studies to improve predictive models of forest soil functioning and tree adaptation to environmental nutrient conditions.
在欧洲森林中,大多数树种都与外生菌根真菌(EM)和丛生菌根真菌(AM)形成共生关系。根据外生菌根菌丝的发育和结构,EM真菌可分为不同的形态类型。这些结构可能是帮助树木获取养分的根延伸。我们描述了欧洲多种气候和腐殖质条件下 23 种树木下菌根真菌群落的组成,并调查了 EM 真菌的探索类型。我们评估了这种树木扩展表型对腐殖质形式的反应,以此作为森林土壤功能和质量的指标。我们发现,两大类EM探索类型(短程或长程)的相对比例与腐殖质形态之间存在重要关系,表明在最缺乏活力的土壤中,长程类型的比例更高。由于过去的土地利用和寄主树种是构建真菌群落的重要因素,我们发现这种关系受寄主性状(裸子植物与被子植物)、土壤深度和过去的土地利用(农田或森林)的影响。我们建议在未来的研究中利用 EM 真菌的这一潜在功能性状来改进森林土壤功能和树木对环境营养条件适应性的预测模型。
{"title":"\"Ectomycorrhizal exploration type\" could be a functional trait explaining the spatial distribution of tree symbiotic fungi as a function of forest humus forms.","authors":"Khalfallah F, Bon L, El Mazlouzi M, Bakker M R, Fanin N, Bellanger R, Bernier F, De Schrijver A, Ducatillon C, Fotelli M N, Gateble G, Gundale M J, Larsson M, Legout A, Mason W L, Nordin A, Smolander A, Spyroglou G, Vanguelova E I, Verheyen K, Vesterdal L, Zeller B, Augusto L, Derrien D, Buée M","doi":"10.1007/s00572-024-01146-8","DOIUrl":"10.1007/s00572-024-01146-8","url":null,"abstract":"<p><p>In European forests, most tree species form symbioses with ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi. The EM fungi are classified into different morphological types based on the development and structure of their extraradical mycelium. These structures could be root extensions that help trees to acquire nutrients. However, the relationship between these morphological traits and functions involved in soil nutrient foraging is still under debate.We described the composition of mycorrhizal fungal communities under 23 tree species in a wide range of climates and humus forms in Europe and investigated the exploratory types of EM fungi. We assessed the response of this tree extended phenotype to humus forms, as an indicator of the functioning and quality of forest soils. We found a significant relationship between the relative proportion of the two broad categories of EM exploration types (short- or long-distance) and the humus form, showing a greater proportion of long-distance types in the least dynamic soils. As past land-use and host tree species are significant factors structuring fungal communities, we showed this relationship was modulated by host trait (gymnosperms versus angiosperms), soil depth and past land use (farmland or forest).We propose that this potential functional trait of EM fungi be used in future studies to improve predictive models of forest soil functioning and tree adaptation to environmental nutrient conditions.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":" ","pages":"203-216"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-18DOI: 10.1007/s00572-024-01151-x
Lior Herol, Mor Avidar, Shahar Yirmiahu, Yair Yehoshua Zach, Tamir Klein, Hagai Shemesh, Stav Livne-Luzon
Seedling establishment under natural conditions is limited by numerous interacting factors. Here, we tested the combined effects of drought, herbaceous competition, and ectomycorrhizal inoculation on the performance of Aleppo pine seedlings grown in a net-house. The roots of all pine seedlings were strongly dominated by Geopora, a fungal genus known to colonize seedlings in dry habitats. Ectomycorrhizal fungi (EMF) inoculum significantly increased seedling height, biomass, and the number of side branches. However, under either competition or drought, the positive effect of EMF on seedling biomass and height was greatly reduced, while the effect on shoot branching was maintained. Further, under a combination of drought and competition, EMF had no influence on either plant growth or shape. The discrepancy in pine performance across treatments highlights the complexity of benefits provided to seedlings by EMF under ecologically relevant settings.
{"title":"Context-dependent benefits of forest soil addition on Aleppo pine seedling performance under drought and grass competition.","authors":"Lior Herol, Mor Avidar, Shahar Yirmiahu, Yair Yehoshua Zach, Tamir Klein, Hagai Shemesh, Stav Livne-Luzon","doi":"10.1007/s00572-024-01151-x","DOIUrl":"10.1007/s00572-024-01151-x","url":null,"abstract":"<p><p>Seedling establishment under natural conditions is limited by numerous interacting factors. Here, we tested the combined effects of drought, herbaceous competition, and ectomycorrhizal inoculation on the performance of Aleppo pine seedlings grown in a net-house. The roots of all pine seedlings were strongly dominated by Geopora, a fungal genus known to colonize seedlings in dry habitats. Ectomycorrhizal fungi (EMF) inoculum significantly increased seedling height, biomass, and the number of side branches. However, under either competition or drought, the positive effect of EMF on seedling biomass and height was greatly reduced, while the effect on shoot branching was maintained. Further, under a combination of drought and competition, EMF had no influence on either plant growth or shape. The discrepancy in pine performance across treatments highlights the complexity of benefits provided to seedlings by EMF under ecologically relevant settings.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":" ","pages":"217-227"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166812/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-17DOI: 10.1007/s00572-024-01149-5
Patrick Neuberger, Carlos Romero, Keunbae Kim, Xiying Hao, Tim A McAllister, Skyler Ngo, Chunli Li, Monika A Gorzelak
Arbuscular mycorrhizal fungi (AMF) colonize biochar in soils, yet the processes governing their colonization and growth in biochar are not well characterized. Biochar amendment improves soil health by increasing soil carbon, decreasing bulk density, and improving soil water retention, all of which can increase yield and alleviate environmental stress on crops. Biochar is often applied with nutrient addition, impacting mycorrhizal communities. To understand how mycorrhizas explore soils containing biochar, we buried packets of non-activated biochar in root exclusion mesh bags in contrasting agricultural soils. In this greenhouse experiment, with quinoa (Chenopodium quinoa) as the host plant, we tested impacts of mineral nutrient (as manure and fertilizer) and biochar addition on mycorrhizal colonization of biochar. Paraglomus appeared to dominate the biochar packets, and the community of AMF found in the biochar was a subset (12 of 18) of the virtual taxa detected in soil communities. We saw differences in AMF community composition between soils with different edaphic properties, and while nutrient addition shifted those communities, the shifts were inconsistent between soil types and did not significantly influence the observation that Paraglomus appeared to selectively colonize biochar. This observation may reflect differences in AMF traits, with Paraglomus previously identified only in soils (not in roots) pointing to predominately soil exploratory traits. Conversely, the absence of some AMF from the biochar implies either a reduced tendency to explore soils or an ability to avoid recalcitrant nutrient sources. Our results point to a selective colonization of biochar in agricultural soils.
{"title":"Biochar is colonized by select arbuscular mycorrhizal fungi in agricultural soils.","authors":"Patrick Neuberger, Carlos Romero, Keunbae Kim, Xiying Hao, Tim A McAllister, Skyler Ngo, Chunli Li, Monika A Gorzelak","doi":"10.1007/s00572-024-01149-5","DOIUrl":"10.1007/s00572-024-01149-5","url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) colonize biochar in soils, yet the processes governing their colonization and growth in biochar are not well characterized. Biochar amendment improves soil health by increasing soil carbon, decreasing bulk density, and improving soil water retention, all of which can increase yield and alleviate environmental stress on crops. Biochar is often applied with nutrient addition, impacting mycorrhizal communities. To understand how mycorrhizas explore soils containing biochar, we buried packets of non-activated biochar in root exclusion mesh bags in contrasting agricultural soils. In this greenhouse experiment, with quinoa (Chenopodium quinoa) as the host plant, we tested impacts of mineral nutrient (as manure and fertilizer) and biochar addition on mycorrhizal colonization of biochar. Paraglomus appeared to dominate the biochar packets, and the community of AMF found in the biochar was a subset (12 of 18) of the virtual taxa detected in soil communities. We saw differences in AMF community composition between soils with different edaphic properties, and while nutrient addition shifted those communities, the shifts were inconsistent between soil types and did not significantly influence the observation that Paraglomus appeared to selectively colonize biochar. This observation may reflect differences in AMF traits, with Paraglomus previously identified only in soils (not in roots) pointing to predominately soil exploratory traits. Conversely, the absence of some AMF from the biochar implies either a reduced tendency to explore soils or an ability to avoid recalcitrant nutrient sources. Our results point to a selective colonization of biochar in agricultural soils.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":" ","pages":"191-201"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-21DOI: 10.1007/s00572-024-01148-6
Neha Sharma, Ashwani Tapwal
Taxus, a genus of conifers known for its medicinal significance, faces various conservation challenges with several species classified under different threat categories by the IUCN. The overharvesting of bark and leaves for the well-known chemotherapy drug paclitaxel has resulted in its population decline. Exploring the mycorrhizal relationship in Taxus is of utmost importance, as mycorrhizal fungi play pivotal roles in nutrition, growth, and ecological resilience. Taxus predominantly associates with arbuscular mycorrhizal fungi (AM), and reports suggest ectomycorrhizal (EM) or dual mycorrhizal associations as well. This review consolidates existing literature on mycorrhizal associations in Taxus species, focusing on structural, physiological, and molecular aspects. AM associations are well-documented in Taxus, influencing plant physiology and propagation. Conversely, EM associations remain relatively understudied, with limited evidence suggesting their occurrence. The review highlights the importance of further research to elucidate dual mycorrhizal associations in Taxus, emphasizing the need for detailed structural and physiological examinations to understand their impact on growth and survival.
{"title":"Mycorrhizal symbiosis in Taxus: a review","authors":"Neha Sharma, Ashwani Tapwal","doi":"10.1007/s00572-024-01148-6","DOIUrl":"https://doi.org/10.1007/s00572-024-01148-6","url":null,"abstract":"<p><i>Taxus</i>, a genus of conifers known for its medicinal significance, faces various conservation challenges with several species classified under different threat categories by the IUCN. The overharvesting of bark and leaves for the well-known chemotherapy drug paclitaxel has resulted in its population decline. Exploring the mycorrhizal relationship in <i>Taxus</i> is of utmost importance, as mycorrhizal fungi play pivotal roles in nutrition, growth, and ecological resilience. <i>Taxus</i> predominantly associates with arbuscular mycorrhizal fungi (AM), and reports suggest ectomycorrhizal (EM) or dual mycorrhizal associations as well. This review consolidates existing literature on mycorrhizal associations in <i>Taxus</i> species, focusing on structural, physiological, and molecular aspects. AM associations are well-documented in <i>Taxus</i>, influencing plant physiology and propagation. Conversely, EM associations remain relatively understudied, with limited evidence suggesting their occurrence. The review highlights the importance of further research to elucidate dual mycorrhizal associations in <i>Taxus</i>, emphasizing the need for detailed structural and physiological examinations to understand their impact on growth and survival.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"120 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1007/s00572-024-01145-9
Ryota Kusakabe, Moe Sasuga, Masahide Yamato
Due to the loss of photosynthetic ability during evolution, some plant species rely on mycorrhizal fungi for their carbon source, and this nutritional strategy is known as mycoheterotrophy. Mycoheterotrophic plants forming Paris-type arbuscular mycorrhizas (AM) exhibit two distinctive mycorrhizal features: degeneration of fungal materials and specialization towards particular fungal lineages. To explore the possibility that some understory AM plants show partial mycoheterotrophy, i.e., both photosynthetic and mycoheterotrophic nutritional strategies, we investigated 13 green herbaceous plant species collected from five Japanese temperate forests. Following microscopic observation, degenerated hyphal coils were observed in four species: two Colchicaceae species, Disporum sessile and Disporum smilacinum, and two Gentianaceae species, Gentiana scabra and Swertia japonica. Through amplicon sequencing, however, we found that all examined plant species exhibited no specificity toward AM fungi. Several AM fungi were consistently found across most sites and all plant species studied. Because previous studies reported the detection of these AM fungi from various tree species in Japanese temperate forests, our findings suggest the presence of ubiquitous AM fungi in forest ecosystems. If the understory plants showing fungal degeneration exhibit partial mycoheterotrophy, they may obtain carbon compounds indirectly from a wide range of surrounding plants utilizing such ubiquitous AM fungi.
由于在进化过程中丧失了光合作用能力,一些植物物种依靠菌根真菌获得碳源,这种营养策略被称为 "菌根营养"(mycoheterotrophy)。形成巴黎型丛枝菌根(AM)的菌根营养植物表现出两个独特的菌根特征:真菌材料退化和对特定真菌品系的特化。为了探索一些林下 AM 植物是否表现出部分菌根营养,即同时具有光合作用和菌根营养策略,我们调查了从日本 5 个温带森林采集的 13 种绿色草本植物。通过显微镜观察,我们发现有四个物种存在退化的脑线圈,它们分别是两种秋兰科植物(Disporum sessile 和 Disporum smilacinum)和两种龙胆科植物(Gentiana scabra 和 Swertia japonica)。然而,通过扩增子测序,我们发现所有受检植物物种对 AM 真菌都没有表现出特异性。在研究的大多数地点和所有植物物种中,都持续发现了几种 AM 真菌。由于之前的研究报告称,在日本温带森林的不同树种中都发现了这些 AM 真菌,因此我们的研究结果表明,AM 真菌在森林生态系统中无处不在。如果出现真菌退化的林下植物表现出部分菌根营养,那么它们可能会利用这种无处不在的AM真菌从周围多种植物中间接获得碳化合物。
{"title":"Ubiquitous arbuscular mycorrhizal fungi in the roots of herbaceous understory plants with hyphal degeneration in Colchicaceae and Gentianaceae","authors":"Ryota Kusakabe, Moe Sasuga, Masahide Yamato","doi":"10.1007/s00572-024-01145-9","DOIUrl":"https://doi.org/10.1007/s00572-024-01145-9","url":null,"abstract":"<p>Due to the loss of photosynthetic ability during evolution, some plant species rely on mycorrhizal fungi for their carbon source, and this nutritional strategy is known as mycoheterotrophy. Mycoheterotrophic plants forming <i>Paris</i>-type arbuscular mycorrhizas (AM) exhibit two distinctive mycorrhizal features: degeneration of fungal materials and specialization towards particular fungal lineages. To explore the possibility that some understory AM plants show partial mycoheterotrophy, i.e., both photosynthetic and mycoheterotrophic nutritional strategies, we investigated 13 green herbaceous plant species collected from five Japanese temperate forests. Following microscopic observation, degenerated hyphal coils were observed in four species: two Colchicaceae species, <i>Disporum sessile</i> and <i>Disporum smilacinum</i>, and two Gentianaceae species, <i>Gentiana scabra</i> and <i>Swertia japonica</i>. Through amplicon sequencing, however, we found that all examined plant species exhibited no specificity toward AM fungi. Several AM fungi were consistently found across most sites and all plant species studied. Because previous studies reported the detection of these AM fungi from various tree species in Japanese temperate forests, our findings suggest the presence of ubiquitous AM fungi in forest ecosystems. If the understory plants showing fungal degeneration exhibit partial mycoheterotrophy, they may obtain carbon compounds indirectly from a wide range of surrounding plants utilizing such ubiquitous AM fungi.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"69 1 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Climate change and global warming have contributed to increase terrestrial drought, causing negative impacts on agricultural production. Drought stress may be addressed using novel agronomic practices and beneficial soil microorganisms, such as arbuscular mycorrhizal fungi (AMF), able to enhance plant use efficiency of soil resources and water and increase plant antioxidant defence systems. Specific traits functional to plant resilience improvement in dry conditions could have developed in AMF growing in association with xerophytic plants in maritime sand dunes, a drought-stressed and low-fertility environment. The most studied of such plants are European beachgrass (Ammophila arenaria Link), native to Europe and the Mediterranean basin, and American beachgrass (Ammophila breviligulata Fern.), found in North America. Given the critical role of AMF for the survival of these beachgrasses, knowledge of the composition of AMF communities colonizing their roots and rhizospheres and their distribution worldwide is fundamental for the location and isolation of native AMF as potential candidates to be tested for promoting crop growth and resilience under climate change. This review provides quantitative and qualitative data on the occurrence of AMF communities of A. arenaria and A. breviligulata growing in European, Mediterranean basin and North American maritime sand dunes, as detected by morphological studies, trap culture isolation and molecular methods, and reports on their symbiotic performance. Moreover, the review indicates the dominant AMF species associated with the two Ammophila species and the common species to be further studied to assess possible specific traits increasing their host plants resilience toward drought stress under climate change.
气候变化和全球变暖加剧了陆地干旱,对农业生产造成了负面影响。干旱胁迫可以通过新型农艺措施和有益的土壤微生物(如丛枝菌根真菌)来解决,这些微生物能够提高植物对土壤资源和水分的利用效率,增强植物的抗氧化防御系统。在干旱胁迫和低肥力环境下的海洋沙丘中,与旱生植物共同生长的丛枝菌根真菌可能具有提高植物在干旱条件下抗逆性的特殊功能。对这类植物研究最多的是欧洲沙滩草(Ammophila arenaria Link)和美洲沙滩草(Ammophila breviligulata Fern.)鉴于AMF对这些海滨草的生存起着至关重要的作用,了解定殖于其根部和根瘤的AMF群落的组成及其在全球的分布情况,对于定位和隔离本地AMF,将其作为促进作物生长和适应气候变化的潜在候选者进行测试至关重要。本综述提供了生长在欧洲、地中海盆地和北美海洋沙丘上的 A. arenaria 和 A. breviligulata 的 AMF 群落的定量和定性数据,这些数据是通过形态学研究、诱捕培养分离和分子方法检测到的,并报告了它们的共生表现。此外,综述还指出了与这两种Ammophila物种相关的主要AMF物种,以及有待进一步研究的常见物种,以评估在气候变化条件下,这些物种可能具有的提高寄主植物抗旱能力的特异性。
{"title":"Bioprospecting for plant resilience to climate change: mycorrhizal symbionts of European and American beachgrass (Ammophila arenaria and Ammophila breviligulata) from maritime sand dunes","authors":"Arianna Grassi, Irene Pagliarani, Luciano Avio, Caterina Cristani, Federico Rossi, Alessandra Turrini, Manuela Giovannetti, Monica Agnolucci","doi":"10.1007/s00572-024-01144-w","DOIUrl":"https://doi.org/10.1007/s00572-024-01144-w","url":null,"abstract":"<p>Climate change and global warming have contributed to increase terrestrial drought, causing negative impacts on agricultural production. Drought stress may be addressed using novel agronomic practices and beneficial soil microorganisms, such as arbuscular mycorrhizal fungi (AMF), able to enhance plant use efficiency of soil resources and water and increase plant antioxidant defence systems. Specific traits functional to plant resilience improvement in dry conditions could have developed in AMF growing in association with xerophytic plants in maritime sand dunes, a drought-stressed and low-fertility environment. The most studied of such plants are European beachgrass (<i>Ammophila arenaria</i> Link), native to Europe and the Mediterranean basin, and American beachgrass (<i>Ammophila breviligulata</i> Fern.), found in North America. Given the critical role of AMF for the survival of these beachgrasses, knowledge of the composition of AMF communities colonizing their roots and rhizospheres and their distribution worldwide is fundamental for the location and isolation of native AMF as potential candidates to be tested for promoting crop growth and resilience under climate change. This review provides quantitative and qualitative data on the occurrence of AMF communities of <i>A. arenaria</i> and <i>A. breviligulata</i> growing in European, Mediterranean basin and North American maritime sand dunes, as detected by morphological studies, trap culture isolation and molecular methods, and reports on their symbiotic performance. Moreover, the review indicates the dominant AMF species associated with the two <i>Ammophila</i> species and the common species to be further studied to assess possible specific traits increasing their host plants resilience toward drought stress under climate change.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"55 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-21DOI: 10.1007/s00572-024-01138-8
Takahiro Yagame, Tomáš Figura, Eiji Tanaka, Marc-André Selosse, Tomohisa Yukawa
We have investigated whether mycobiont identity and environmental conditions affect morphology and physiology of the chlorophyllous orchid: Cremastra variabilis. This species grows in a broad range of environmental conditions and associates with saprotrophic rhizoctonias including Tulasnellaceae and saprotrophic non-rhizoctonian fungi from the family Psathyrellaceae. We cultured the orchid from seeds under aseptic culture conditions and subsequently inoculated the individuals with either a Tulasnellaceae or a Psathyrellaceae isolate. We observed underground organ development of the inoculated C. variabilis plants and estimated their nutritional dependency on fungi using stable isotope abundance. Coralloid rhizome development was observed in all individuals inoculated with the Psathyrellaceae isolate, and 1-5 shoots per seedling grew from the tip of the coralloid rhizome. In contrast, individuals associated with the Tulasnellaceae isolate did not develop coralloid rhizomes, and only one shoot emerged per plantlet. In darkness, δ13C enrichment was significantly higher with both fungal isolates, whereas δ15N values were only significantly higher in plants associated with the Psathyrellaceae isolate. We conclude that C. variabilis changes its nutritional dependency on fungal symbionts depending on light availability and secondly that the identity of fungal symbiont influences the morphology of underground organs.
{"title":"Mycobiont identity and light conditions affect belowground morphology and physiology of a mixotrophic orchid Cremastra variabilis (Orchidaceae).","authors":"Takahiro Yagame, Tomáš Figura, Eiji Tanaka, Marc-André Selosse, Tomohisa Yukawa","doi":"10.1007/s00572-024-01138-8","DOIUrl":"10.1007/s00572-024-01138-8","url":null,"abstract":"<p><p>We have investigated whether mycobiont identity and environmental conditions affect morphology and physiology of the chlorophyllous orchid: Cremastra variabilis. This species grows in a broad range of environmental conditions and associates with saprotrophic rhizoctonias including Tulasnellaceae and saprotrophic non-rhizoctonian fungi from the family Psathyrellaceae. We cultured the orchid from seeds under aseptic culture conditions and subsequently inoculated the individuals with either a Tulasnellaceae or a Psathyrellaceae isolate. We observed underground organ development of the inoculated C. variabilis plants and estimated their nutritional dependency on fungi using stable isotope abundance. Coralloid rhizome development was observed in all individuals inoculated with the Psathyrellaceae isolate, and 1-5 shoots per seedling grew from the tip of the coralloid rhizome. In contrast, individuals associated with the Tulasnellaceae isolate did not develop coralloid rhizomes, and only one shoot emerged per plantlet. In darkness, δ<sup>13</sup>C enrichment was significantly higher with both fungal isolates, whereas δ<sup>15</sup>N values were only significantly higher in plants associated with the Psathyrellaceae isolate. We conclude that C. variabilis changes its nutritional dependency on fungal symbionts depending on light availability and secondly that the identity of fungal symbiont influences the morphology of underground organs.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":" ","pages":"19-31"},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-14DOI: 10.1007/s00572-024-01140-0
Juan David Sanchez-Tello, Adriana Corrales
Worldwide urban landscapes are expanding because of the growing human population. Urban ecosystems serve as habitats to highly diverse communities. However, studies focusing on the diversity and structure of ectomycorrhizal communities are uncommon in this habitat. In Colombia, Quercus humboldtii Bonpl. is an ectomycorrhizal tree thriving in tropical montane forests hosting a high diversity of ectomycorrhizal fungi. Q. humboldtii is planted as an urban tree in Bogotá (Colombia). We studied how root-associated fungal communities of this tree change between natural and urban areas. Using Illumina sequencing, we amplified the ITS1 region and analyzed the resulting data using both OTUs and Amplicon Sequence Variants (ASVs) bioinformatics pipelines. The results obtained using both pipelines showed no substantial differences between OTUs and ASVs for the community patterns of root-associated fungi, and only differences in species richness were observed. We found no significant differences in the species richness between urban and rural sites based on Fisher's alpha or species-accumulation curves. However, we found significant differences in the community composition of fungi present in the roots of rural and urban trees with rural communities being dominated by Russula and Lactarius and urban communities by Scleroderma, Hydnangium, and Trechispora, suggesting a high impact of urban disturbances on ectomycorrhizal fungal communities. Our results highlight the importance of urban trees as reservoirs of fungal diversity and the potential impact of urban conditions on favoring fungal species adapted to more disturbed ecosystems.
{"title":"Ectomycorrhizal fungal communities in natural and urban ecosystems: Quercus humboldtii as a study case in the tropical Andes.","authors":"Juan David Sanchez-Tello, Adriana Corrales","doi":"10.1007/s00572-024-01140-0","DOIUrl":"10.1007/s00572-024-01140-0","url":null,"abstract":"<p><p>Worldwide urban landscapes are expanding because of the growing human population. Urban ecosystems serve as habitats to highly diverse communities. However, studies focusing on the diversity and structure of ectomycorrhizal communities are uncommon in this habitat. In Colombia, Quercus humboldtii Bonpl. is an ectomycorrhizal tree thriving in tropical montane forests hosting a high diversity of ectomycorrhizal fungi. Q. humboldtii is planted as an urban tree in Bogotá (Colombia). We studied how root-associated fungal communities of this tree change between natural and urban areas. Using Illumina sequencing, we amplified the ITS1 region and analyzed the resulting data using both OTUs and Amplicon Sequence Variants (ASVs) bioinformatics pipelines. The results obtained using both pipelines showed no substantial differences between OTUs and ASVs for the community patterns of root-associated fungi, and only differences in species richness were observed. We found no significant differences in the species richness between urban and rural sites based on Fisher's alpha or species-accumulation curves. However, we found significant differences in the community composition of fungi present in the roots of rural and urban trees with rural communities being dominated by Russula and Lactarius and urban communities by Scleroderma, Hydnangium, and Trechispora, suggesting a high impact of urban disturbances on ectomycorrhizal fungal communities. Our results highlight the importance of urban trees as reservoirs of fungal diversity and the potential impact of urban conditions on favoring fungal species adapted to more disturbed ecosystems.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":" ","pages":"45-55"},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2023-12-27DOI: 10.1007/s00572-023-01133-5
Daniela Leon, Gwendolyn Peyre, Martin Zobel, Mari Moora, Yiming Meng, Maria Diaz, C Guillermo Bueno
The Andean paramo, hereafter "paramo", is a Neotropical high-mountain region between the treeline and permanent snowline (3500-4800 m) and is considered the world's coolest biodiversity hotspot. Because of paramo's high humidity, solar radiation and temperature variation, mycorrhizal symbiosis is expected to be essential for plants. Existing theory suggests that replacement of arbuscular mycorrhizal (AM) by ectomycorrhizal (ECM) and then ericoid mycorrhizal plants (ERM) can be expected with increasing elevation. Previous findings also suggest that non-(NM) and facultatively mycorrhizal (FM) species predominate over obligatory mycorrhizal (OM) species at high elevations. However, these expectations have never been tested outside of the northern temperate zone. We addressed the distribution and environmental drivers of plant mycorrhizal types (AM, ECM and ERM) and statuses (NM, FM and OM) along the paramo's elevational gradient. We used vegetation plots from the VegParamo database, climatic and edaphic data from online repositories, and up-to-date observation information about plant mycorrhizal traits at species and genus level, the latter being proposed as hypotheses. AM plants were dominant along the entire gradient, and ERM plants were most abundant at the lowest elevations (2500-3000 m). The share of FM plants increased and that of OM plants decreased with elevation, while NM plants increased above 4000 m. Temperature and soil pH were positively related to the abundance of AM plants and negatively to ERM plants. Our results reveal patterns that contrast with those observed in temperate northern-hemisphere ecosystems.
{"title":"Mycorrhizal symbioses in the Andean paramo.","authors":"Daniela Leon, Gwendolyn Peyre, Martin Zobel, Mari Moora, Yiming Meng, Maria Diaz, C Guillermo Bueno","doi":"10.1007/s00572-023-01133-5","DOIUrl":"10.1007/s00572-023-01133-5","url":null,"abstract":"<p><p>The Andean paramo, hereafter \"paramo\", is a Neotropical high-mountain region between the treeline and permanent snowline (3500-4800 m) and is considered the world's coolest biodiversity hotspot. Because of paramo's high humidity, solar radiation and temperature variation, mycorrhizal symbiosis is expected to be essential for plants. Existing theory suggests that replacement of arbuscular mycorrhizal (AM) by ectomycorrhizal (ECM) and then ericoid mycorrhizal plants (ERM) can be expected with increasing elevation. Previous findings also suggest that non-(NM) and facultatively mycorrhizal (FM) species predominate over obligatory mycorrhizal (OM) species at high elevations. However, these expectations have never been tested outside of the northern temperate zone. We addressed the distribution and environmental drivers of plant mycorrhizal types (AM, ECM and ERM) and statuses (NM, FM and OM) along the paramo's elevational gradient. We used vegetation plots from the VegParamo database, climatic and edaphic data from online repositories, and up-to-date observation information about plant mycorrhizal traits at species and genus level, the latter being proposed as hypotheses. AM plants were dominant along the entire gradient, and ERM plants were most abundant at the lowest elevations (2500-3000 m). The share of FM plants increased and that of OM plants decreased with elevation, while NM plants increased above 4000 m. Temperature and soil pH were positively related to the abundance of AM plants and negatively to ERM plants. Our results reveal patterns that contrast with those observed in temperate northern-hemisphere ecosystems.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":" ","pages":"107-117"},"PeriodicalIF":3.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}