首页 > 最新文献

Nature Microbiology最新文献

英文 中文
Early-life colonization by aromatic-lactate-producing bifidobacteria lowers the risk of allergic sensitization 产生芳香乳酸的双歧杆菌在生命早期的定植降低了过敏性致敏的风险。
IF 19.4 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2026-01-12 DOI: 10.1038/s41564-025-02244-9
Pernille Neve Myers, Rasmus Kaae Dehli, Axel Mie, Janne Marie Moll, Henrik Munch Roager, Carsten Eriksen, Martin Frederik Laursen, Ellen Magdalena Staudinger, Ioanna Chatzigiannidou, Pi Lærke Johansen, Niels van Best, Martin O’Hely, Daniel Andersen, Nadja Lund Nørregaard, Mikael Pedersen, Eckard Hamelmann, Susanne Lau, Martin Iain Bahl, Maher Abou Hachem, Tine Rask Licht, Henrik Bjørn Nielsen, Anna Hammerich Thysen, Peter Vuillermin, John Penders, Karsten Kristiansen, Annika Scheynius, Johan Alm, Susanne Brix
Early-life microbial exposures shape immune development and allergy risk. Food allergen sensitization, reflected by the presence of food allergen-specific immunoglobulin E (IgE), is an early indication of impaired immune tolerance. Here we show that early-life transmission of aromatic lactate-producing bifidobacteria strains in 147 children followed from birth to 5 years of age, facilitated by vaginal delivery, exposure to older siblings and exclusive breastfeeding for the first 2 months, led to increased levels of aromatic lactates in the infant gut. This microbiota–metabolite signature was inversely associated with the development of food allergen-specific IgE until 5 years and atopic dermatitis at 2 years. The observed effect was mediated by 4-hydroxy-phenyllactate, which inhibited IgE, but not IgG, production in ex vivo human immune cell cultures. Together, these findings define an early-life microbiota–metabolite–immune axis linking microbial transmission and feeding practices with reduced allergic sensitization. Vaginal birth, exclusive breastfeeding and early contact with siblings promote colonization of the infant gut with bifidobacteria capable of producing aromatic lactates, a microbial and metabolite signal that is inversely related to the risk of allergen-specific sensitization and dermatitis later in life.
生命早期接触微生物会影响免疫发育和过敏风险。食物过敏原致敏,反映在食物过敏原特异性免疫球蛋白E (IgE)的存在,是免疫耐受受损的早期迹象。本研究显示,147名儿童从出生到5岁,通过阴道分娩、与哥哥姐姐接触以及前2个月的纯母乳喂养,产生芳香乳酸的双歧杆菌菌株的早期传播导致了婴儿肠道中芳香乳酸水平的增加。这种微生物代谢物特征在5岁之前与食物过敏原特异性IgE的发展呈负相关,在2岁时与特应性皮炎的发展呈负相关。在体外培养的人免疫细胞中,4-羟基苯基乳酸可抑制IgE的产生,而不抑制IgG的产生。总之,这些发现定义了一个早期生命微生物群-代谢物-免疫轴,将微生物传播和喂养实践与降低过敏致敏性联系起来。
{"title":"Early-life colonization by aromatic-lactate-producing bifidobacteria lowers the risk of allergic sensitization","authors":"Pernille Neve Myers, Rasmus Kaae Dehli, Axel Mie, Janne Marie Moll, Henrik Munch Roager, Carsten Eriksen, Martin Frederik Laursen, Ellen Magdalena Staudinger, Ioanna Chatzigiannidou, Pi Lærke Johansen, Niels van Best, Martin O’Hely, Daniel Andersen, Nadja Lund Nørregaard, Mikael Pedersen, Eckard Hamelmann, Susanne Lau, Martin Iain Bahl, Maher Abou Hachem, Tine Rask Licht, Henrik Bjørn Nielsen, Anna Hammerich Thysen, Peter Vuillermin, John Penders, Karsten Kristiansen, Annika Scheynius, Johan Alm, Susanne Brix","doi":"10.1038/s41564-025-02244-9","DOIUrl":"10.1038/s41564-025-02244-9","url":null,"abstract":"Early-life microbial exposures shape immune development and allergy risk. Food allergen sensitization, reflected by the presence of food allergen-specific immunoglobulin E (IgE), is an early indication of impaired immune tolerance. Here we show that early-life transmission of aromatic lactate-producing bifidobacteria strains in 147 children followed from birth to 5 years of age, facilitated by vaginal delivery, exposure to older siblings and exclusive breastfeeding for the first 2 months, led to increased levels of aromatic lactates in the infant gut. This microbiota–metabolite signature was inversely associated with the development of food allergen-specific IgE until 5 years and atopic dermatitis at 2 years. The observed effect was mediated by 4-hydroxy-phenyllactate, which inhibited IgE, but not IgG, production in ex vivo human immune cell cultures. Together, these findings define an early-life microbiota–metabolite–immune axis linking microbial transmission and feeding practices with reduced allergic sensitization. Vaginal birth, exclusive breastfeeding and early contact with siblings promote colonization of the infant gut with bifidobacteria capable of producing aromatic lactates, a microbial and metabolite signal that is inversely related to the risk of allergen-specific sensitization and dermatitis later in life.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"11 2","pages":"429-441"},"PeriodicalIF":19.4,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring bacterial killing to predict antibiotic treatment outcomes 测量细菌杀灭量以预测抗生素治疗结果。
IF 19.4 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2026-01-12 DOI: 10.1038/s41564-025-02251-w
Baptiste Pradel, Maximiliano G. Gutierrez
Single-cell profiling of antibiotic-driven bacterial cell death predicts in vivo treatment outcomes against mycobacteria and could improve treatment guidance.
抗生素驱动的细菌细胞死亡的单细胞分析可以预测体内治疗分枝杆菌的结果,并可以改善治疗指导。
{"title":"Measuring bacterial killing to predict antibiotic treatment outcomes","authors":"Baptiste Pradel, Maximiliano G. Gutierrez","doi":"10.1038/s41564-025-02251-w","DOIUrl":"10.1038/s41564-025-02251-w","url":null,"abstract":"Single-cell profiling of antibiotic-driven bacterial cell death predicts in vivo treatment outcomes against mycobacteria and could improve treatment guidance.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"11 2","pages":"341-342"},"PeriodicalIF":19.4,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145956193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural insights into the assembly and evolution of a complex bacterial flagellar motor. 复杂细菌鞭毛马达组装和进化的结构见解。
IF 28.3 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2026-01-09 DOI: 10.1038/s41564-025-02248-5
Xueyin Feng,Shoichi Tachiyama,Jing He,Siqi Zhu,Hang Zhao,Jack M Botting,Yanran Liu,Yuanyuan Chen,Canfeng Hua,María Lara-Tejero,Matthew A B Baker,Xiang Gao,Jun Liu,Beile Gao
Knowledge of bacterial flagella has largely come from studies of the simpler motors of Escherichia coli and Salmonella enterica. However, many bacteria harbour more complex motors. The function, mechanisms and evolution associated with such auxiliary motor structures are unclear. Here we deploy structural, genetic, biochemical and functional approaches to characterize complex adaptations of the flagellar motor in Campylobacter jejuni. We observed an E ring formed by 17 FlgY homodimers around the MS ring, a cage-like structure made of FcpMNO and PflD, and PflA-PflB interactions in a spoke-rim formation between the E ring and cage. These scaffolds stabilized the 17 torque-generating stator complexes. Phylogenetic analyses suggest an ancient origin and widespread prevalence of the E ring and spokes across diverse flagellated bacteria, and co-option of type IV pilus components in the ancestral motor of phylum Campylobacterota. Collectively, these data provide insight into the assembly, function and evolution of complex flagellar motors.
对细菌鞭毛的了解主要来自于对大肠杆菌和肠炎沙门氏菌的简单运动的研究。然而,许多细菌拥有更复杂的马达。与这些辅助运动结构相关的功能、机制和进化尚不清楚。在这里,我们采用结构,遗传,生化和功能的方法来表征空肠弯曲杆菌鞭毛马达的复杂适应。我们在MS环周围观察到17个FlgY同型二聚体形成的E环,FcpMNO和PflD形成的笼状结构,以及PflA-PflB在E环和笼之间形成的辐状边缘相互作用。这些支架稳定了17个产生扭矩的定子复合物。系统发育分析表明,E环和辐条在各种鞭毛细菌中有着古老的起源和广泛的流行,并且在弯曲菌门的祖先马达中有IV型菌毛成分的共同选择。总的来说,这些数据提供了对复杂鞭毛马达的组装、功能和进化的见解。
{"title":"Structural insights into the assembly and evolution of a complex bacterial flagellar motor.","authors":"Xueyin Feng,Shoichi Tachiyama,Jing He,Siqi Zhu,Hang Zhao,Jack M Botting,Yanran Liu,Yuanyuan Chen,Canfeng Hua,María Lara-Tejero,Matthew A B Baker,Xiang Gao,Jun Liu,Beile Gao","doi":"10.1038/s41564-025-02248-5","DOIUrl":"https://doi.org/10.1038/s41564-025-02248-5","url":null,"abstract":"Knowledge of bacterial flagella has largely come from studies of the simpler motors of Escherichia coli and Salmonella enterica. However, many bacteria harbour more complex motors. The function, mechanisms and evolution associated with such auxiliary motor structures are unclear. Here we deploy structural, genetic, biochemical and functional approaches to characterize complex adaptations of the flagellar motor in Campylobacter jejuni. We observed an E ring formed by 17 FlgY homodimers around the MS ring, a cage-like structure made of FcpMNO and PflD, and PflA-PflB interactions in a spoke-rim formation between the E ring and cage. These scaffolds stabilized the 17 torque-generating stator complexes. Phylogenetic analyses suggest an ancient origin and widespread prevalence of the E ring and spokes across diverse flagellated bacteria, and co-option of type IV pilus components in the ancestral motor of phylum Campylobacterota. Collectively, these data provide insight into the assembly, function and evolution of complex flagellar motors.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"5 1","pages":""},"PeriodicalIF":28.3,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145937702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A giant virus forms a specialized subcellular environment within its amoeba host for efficient translation 巨型病毒在其阿米巴原虫宿主内形成一个专门的亚细胞环境,以进行有效的转译。
IF 19.4 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2026-01-09 DOI: 10.1038/s41564-025-02234-x
Ruixuan Zhang, Lotte Mayer, Hiroyuki Hikida, Yuichi Shichino, Mari Mito, Anouk Willemsen, Shintaro Iwasaki, Hiroyuki Ogata
Many eukaryotic viruses, including amoeba-infecting mimiviruses, have codon usage that deviates from their hosts. However, codon usage patterns that align with the cellular tRNA pool enable efficient translation. How these viruses cope with the mismatch between tRNA supply and demand is unclear. Here we show that Acanthamoeba polyphaga mimivirus (APMV) generates a subcellular area to translate viral mRNAs. tRNA sequencing showed that the tRNA pool was not substantially altered during the infection, even though the virus encodes tRNA genes. Using in situ labelling, we found that viral mRNAs and newly synthesized proteins were localized in the periphery of the viral factory, suggesting that APMV creates a discrete subcellular environment to facilitate translation. Frequently used codons in viral mRNAs had higher tRNA accessibility than the same type of codons in amoeba mRNAs. Our data show how local translation assists the virus in overcoming the mismatch between tRNA supply and demand. Acanthamoeba polyphaga mimivirus generates a subcellular area in host cells that overcomes the mismatch between host and viral tRNA supply and demand.
许多真核病毒,包括感染阿米巴原虫的咪咪病毒,其密码子的使用与宿主不同。然而,与细胞tRNA池一致的密码子使用模式可以实现有效的翻译。这些病毒如何应对tRNA供应和需求之间的不匹配尚不清楚。在这里,我们展示了棘阿米巴多食性mimivirus (APMV)产生一个亚细胞区域来翻译病毒mrna。tRNA测序显示,尽管病毒编码tRNA基因,但在感染期间,tRNA池并未发生实质性改变。通过原位标记,我们发现病毒mrna和新合成的蛋白质定位在病毒工厂的外围,这表明APMV创造了一个离散的亚细胞环境来促进翻译。病毒mrna中常用的密码子比变形虫mrna中相同类型的密码子具有更高的tRNA可及性。我们的数据显示了局部转译如何帮助病毒克服tRNA供应和需求之间的不匹配。
{"title":"A giant virus forms a specialized subcellular environment within its amoeba host for efficient translation","authors":"Ruixuan Zhang, Lotte Mayer, Hiroyuki Hikida, Yuichi Shichino, Mari Mito, Anouk Willemsen, Shintaro Iwasaki, Hiroyuki Ogata","doi":"10.1038/s41564-025-02234-x","DOIUrl":"10.1038/s41564-025-02234-x","url":null,"abstract":"Many eukaryotic viruses, including amoeba-infecting mimiviruses, have codon usage that deviates from their hosts. However, codon usage patterns that align with the cellular tRNA pool enable efficient translation. How these viruses cope with the mismatch between tRNA supply and demand is unclear. Here we show that Acanthamoeba polyphaga mimivirus (APMV) generates a subcellular area to translate viral mRNAs. tRNA sequencing showed that the tRNA pool was not substantially altered during the infection, even though the virus encodes tRNA genes. Using in situ labelling, we found that viral mRNAs and newly synthesized proteins were localized in the periphery of the viral factory, suggesting that APMV creates a discrete subcellular environment to facilitate translation. Frequently used codons in viral mRNAs had higher tRNA accessibility than the same type of codons in amoeba mRNAs. Our data show how local translation assists the virus in overcoming the mismatch between tRNA supply and demand. Acanthamoeba polyphaga mimivirus generates a subcellular area in host cells that overcomes the mismatch between host and viral tRNA supply and demand.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"11 2","pages":"584-596"},"PeriodicalIF":19.4,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41564-025-02234-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145937732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungal commensal promotes intestinal repair via its secreted peptide in mice 真菌共生菌通过分泌肽促进小鼠肠道修复。
IF 19.4 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2026-01-09 DOI: 10.1038/s41564-025-02233-y
Yiru Gao, Tengyu Wang, Nan Nan, Feng Tian, Lingchen Tan, Huining Yan, Xueqiang Peng, Shaoqin Zheng, Yan He, Haijiao Zhang, Hui Li, Qing Fan, Chenhao Suo, Wanli Zhang, Yafang Shi, Wei Du, Jincong Jiang, Hailong Li, Mingyu Zhang, Jiahui Wu, Haiyao Zhou, Yan Cheng, Yidi Nian, Xiao Wang, Xun Sun, Ren Sheng, Qianqian Zheng, Chen Ding
The intestinal epithelium relies on continuous stem cell-driven renewal to maintain barrier function and recover from injury. While bacterial signals are known to influence intestinal stem cell behaviour, the regenerative capacity of the gut mycobiome has remained largely unexplored. Here we identify the commensal fungus Kazachstania pintolopesii (Kp) as a critical mediator of intestinal regeneration through its secreted protein Ygp1. We found that a 12-amino acid peptide fragment of Ygp1, CD12, was sufficient to promote intestinal organoid differentiation and accelerate intestinal healing in murine models of colitis and chemotherapy-induced injury. Transcriptomics, simulations and molecular interaction experiments revealed that CD12 binds mammalian α-enolase (ENO1), enhancing YAP1 (Yes-associated protein 1) protein levels and activating regenerative transcriptional programmes through the Hippo signalling pathway. Engineered probiotics expressing CD12 replicated its therapeutic benefits, offering a translatable delivery strategy. Our work expands the therapeutic potential of the mycobiome, positioning it as a source of biologics for inflammatory and iatrogenic gut disorders. A short peptide derived from a commensal-fungal-secreted protein promotes repair in models of colon epithelial damage when delivered directly or via probiotic microbes.
肠上皮依赖于干细胞驱动的持续更新来维持屏障功能并从损伤中恢复。虽然已知细菌信号会影响肠道干细胞的行为,但肠道菌群的再生能力在很大程度上仍未被探索。在这里,我们发现共生真菌Kazachstania pintolopesii (Kp)通过其分泌的蛋白Ygp1作为肠道再生的关键介质。我们发现,在小鼠结肠炎和化疗损伤模型中,Ygp1的一个12个氨基酸肽片段CD12足以促进肠道类器官分化并加速肠道愈合。转录组学、模拟和分子相互作用实验表明,CD12结合哺乳动物α-烯醇酶(ENO1),通过Hippo信号通路增强YAP1 (es-associated protein 1)蛋白水平,激活再生转录程序。表达CD12的工程益生菌复制了其治疗益处,提供了一种可翻译的递送策略。我们的工作扩大了真菌组的治疗潜力,将其定位为炎症性和医源性肠道疾病的生物制剂来源。
{"title":"Fungal commensal promotes intestinal repair via its secreted peptide in mice","authors":"Yiru Gao, Tengyu Wang, Nan Nan, Feng Tian, Lingchen Tan, Huining Yan, Xueqiang Peng, Shaoqin Zheng, Yan He, Haijiao Zhang, Hui Li, Qing Fan, Chenhao Suo, Wanli Zhang, Yafang Shi, Wei Du, Jincong Jiang, Hailong Li, Mingyu Zhang, Jiahui Wu, Haiyao Zhou, Yan Cheng, Yidi Nian, Xiao Wang, Xun Sun, Ren Sheng, Qianqian Zheng, Chen Ding","doi":"10.1038/s41564-025-02233-y","DOIUrl":"10.1038/s41564-025-02233-y","url":null,"abstract":"The intestinal epithelium relies on continuous stem cell-driven renewal to maintain barrier function and recover from injury. While bacterial signals are known to influence intestinal stem cell behaviour, the regenerative capacity of the gut mycobiome has remained largely unexplored. Here we identify the commensal fungus Kazachstania pintolopesii (Kp) as a critical mediator of intestinal regeneration through its secreted protein Ygp1. We found that a 12-amino acid peptide fragment of Ygp1, CD12, was sufficient to promote intestinal organoid differentiation and accelerate intestinal healing in murine models of colitis and chemotherapy-induced injury. Transcriptomics, simulations and molecular interaction experiments revealed that CD12 binds mammalian α-enolase (ENO1), enhancing YAP1 (Yes-associated protein 1) protein levels and activating regenerative transcriptional programmes through the Hippo signalling pathway. Engineered probiotics expressing CD12 replicated its therapeutic benefits, offering a translatable delivery strategy. Our work expands the therapeutic potential of the mycobiome, positioning it as a source of biologics for inflammatory and iatrogenic gut disorders. A short peptide derived from a commensal-fungal-secreted protein promotes repair in models of colon epithelial damage when delivered directly or via probiotic microbes.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"11 2","pages":"476-491"},"PeriodicalIF":19.4,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145937744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale testing of antimicrobial lethality at single-cell resolution predicts mycobacterial infection outcomes 单细胞分辨率抗菌素致死率的大规模测试可预测分枝杆菌感染的结果。
IF 19.4 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2026-01-09 DOI: 10.1038/s41564-025-02217-y
Alexander Jovanovic, Frederick K. Bright, Ahmad Sadeghi, Basil Wicki, Santiago E. Caño Muñiz, Greta C. Giannini, Sara Toprak, Loïc Sauteur, Anna Rodoni, Andreas Wüst, Andréanne Lupien, Sonia Borrell, Dorothy M. Grogono, Nicole E. Wheeler, Philippe Dehio, Johannes Nemeth, Hans Pargger, Rachel Thomson, Scott C. Bell, Sebastien Gagneux, Josephine M. Bryant, Tingying Peng, Andreas H. Diacon, R. Andres Floto, Michael Abanto, Lucas Boeck
In vitro antibiotic testing is important for guiding therapy and drug development. Current methods are focused on growth inhibition in bulk bacterial populations but often fail to accurately predict treatment responses. Here we introduce Antimicrobial Single-Cell Testing (ASCT), a large-scale live-cell imaging approach that quantifies bacterial killing in real time at single-cell resolution. By tracking over 140 million mycobacteria and analysing ~20,000 time–kill curves, we identify key determinants of antibiotic killing and its clinical relevance. For Mycobacterium tuberculosis, we found that drug-specific killing dynamics in starved bacteria, rather than growth inhibition or killing of growing cells, predict regimen efficacy in mice and humans. Extending this approach to Mycobacterium abscessus and comparing 405 bacterial strains, we show that antibiotic killing is also a genetically encoded bacterial trait (drug tolerance). We demonstrate that tolerance patterns cluster by antibiotic targets, identify a phage protein that modulates antibiotic killing, and show that strain-specific killing dynamics are associated with individual patient outcomes independent of drug resistance. Together, these findings establish a framework that reveals how drug properties and bacterial diversity shape treatment responses, offering a path to more effective and personalized therapies. Via high-throughput imaging and tracking over 140 million single mycobacteria, the authors show that drug- and strain-specific killing predict treatment outcomes, with potential to improve drug development and personalized therapy.
体外抗生素测试对指导治疗和药物开发具有重要意义。目前的方法侧重于抑制大量细菌的生长,但往往不能准确预测治疗反应。在这里,我们介绍抗菌素单细胞检测(ASCT),这是一种大规模的活细胞成像方法,可以在单细胞分辨率下实时量化细菌杀伤。通过追踪超过1.4亿个分枝杆菌并分析约20,000条时间杀伤曲线,我们确定了抗生素杀伤的关键决定因素及其临床相关性。对于结核分枝杆菌,我们发现饥饿细菌的药物特异性杀伤动力学,而不是生长抑制或杀死生长细胞,预测方案在小鼠和人类中的疗效。将这种方法扩展到脓肿分枝杆菌并比较405株菌株,我们发现抗生素杀伤也是一种遗传编码的细菌特性(耐药性)。我们证明了耐受性模式通过抗生素靶点聚集,鉴定了一种调节抗生素杀伤的噬菌体蛋白,并表明菌株特异性杀伤动力学与个体患者结果相关,独立于耐药性。总之,这些发现建立了一个框架,揭示了药物特性和细菌多样性如何影响治疗反应,为更有效和个性化的治疗提供了一条途径。
{"title":"Large-scale testing of antimicrobial lethality at single-cell resolution predicts mycobacterial infection outcomes","authors":"Alexander Jovanovic, Frederick K. Bright, Ahmad Sadeghi, Basil Wicki, Santiago E. Caño Muñiz, Greta C. Giannini, Sara Toprak, Loïc Sauteur, Anna Rodoni, Andreas Wüst, Andréanne Lupien, Sonia Borrell, Dorothy M. Grogono, Nicole E. Wheeler, Philippe Dehio, Johannes Nemeth, Hans Pargger, Rachel Thomson, Scott C. Bell, Sebastien Gagneux, Josephine M. Bryant, Tingying Peng, Andreas H. Diacon, R. Andres Floto, Michael Abanto, Lucas Boeck","doi":"10.1038/s41564-025-02217-y","DOIUrl":"10.1038/s41564-025-02217-y","url":null,"abstract":"In vitro antibiotic testing is important for guiding therapy and drug development. Current methods are focused on growth inhibition in bulk bacterial populations but often fail to accurately predict treatment responses. Here we introduce Antimicrobial Single-Cell Testing (ASCT), a large-scale live-cell imaging approach that quantifies bacterial killing in real time at single-cell resolution. By tracking over 140 million mycobacteria and analysing ~20,000 time–kill curves, we identify key determinants of antibiotic killing and its clinical relevance. For Mycobacterium tuberculosis, we found that drug-specific killing dynamics in starved bacteria, rather than growth inhibition or killing of growing cells, predict regimen efficacy in mice and humans. Extending this approach to Mycobacterium abscessus and comparing 405 bacterial strains, we show that antibiotic killing is also a genetically encoded bacterial trait (drug tolerance). We demonstrate that tolerance patterns cluster by antibiotic targets, identify a phage protein that modulates antibiotic killing, and show that strain-specific killing dynamics are associated with individual patient outcomes independent of drug resistance. Together, these findings establish a framework that reveals how drug properties and bacterial diversity shape treatment responses, offering a path to more effective and personalized therapies. Via high-throughput imaging and tracking over 140 million single mycobacteria, the authors show that drug- and strain-specific killing predict treatment outcomes, with potential to improve drug development and personalized therapy.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"11 2","pages":"566-583"},"PeriodicalIF":19.4,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41564-025-02217-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145937746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uropathogenic Escherichia coli invade luminal prostate cells via FimH–PPAP receptor binding 尿路致病性大肠杆菌通过FimH-PPAP受体结合侵入前列腺腔内细胞
IF 19.4 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2026-01-08 DOI: 10.1038/s41564-025-02231-0
Maria Guedes, Simon Peters, Amruta Joshi, Sina Dorn, Janina Rieger, Kimberly Klapproth, Tristan Beste, Alexander M. Leipold, Mathias Rosenfeldt, Antoine-Emmanuel Saliba, Ulrich Dobrindt, Charis Kalogirou, Carmen Aguilar
Bacterial prostatitis caused by uropathogenic Escherichia coli (UPEC) strains is a highly prevalent and recurrent infection responsible for significant morbidity in men. The molecular pathogenesis of prostatitis remains poorly understood, partly due to a lack of suitable in vitro models. Here we developed a 2D mouse stem cell-derived prostate epithelial organoid model. In the organoid model, 5α-dihydrotestosterone promoted differentiation of basal into luminal cells, while transcriptomic analyses validated the model in comparison to 3D models and mouse prostate tissue. Infection analyses revealed that UPEC preferentially attached to, invaded and replicated within luminal prostate cells. Experiments with a UPEC mutant strain lacking the bacterial adhesin, FimH, alongside immunoprecipitation, mass spectrometry, biochemistry and infection experiments with host gene knockouts revealed that FimH–prostatic acid phosphatase (PPAP) binding interactions promote UPEC invasion of luminal prostate cells. ᴅ-Mannose competitively inhibited FimH–PPAP interactions. Findings were validated using ex vivo human prostate tissue. These data highlight the adaptability of FimH in engaging host receptors and the potential for FimH-targeting strategies to reduce bacterial prostatitis. Uropathogenic Escherichia coli infection of a murine prostate organoid model reveals a bacterial FimH–host prostatic acid phosphatase adhesin-receptor interaction enabling invasion and replication within the host tissue.
由尿路致病性大肠杆菌(UPEC)菌株引起的细菌性前列腺炎是一种高度流行和复发的感染,在男性中发病率很高。前列腺炎的分子发病机制仍然知之甚少,部分原因是缺乏合适的体外模型。在这里,我们建立了一个2D小鼠干细胞衍生的前列腺上皮类器官模型。在类器官模型中,5α-二氢睾酮促进基底细胞向腔细胞分化,而转录组学分析与3D模型和小鼠前列腺组织相比验证了该模型。感染分析显示,UPEC优先附着、侵入和复制在管腔前列腺细胞内。对缺乏细菌粘附素FimH的UPEC突变株进行的实验,以及免疫沉淀、质谱、生物化学和宿主基因敲除的感染实验表明,FimH -前列腺酸性磷酸酶(PPAP)结合相互作用促进UPEC侵袭前列腺腔细胞。甘露糖竞争性地抑制FimH-PPAP相互作用。研究结果在离体人前列腺组织中得到了验证。这些数据强调了FimH参与宿主受体的适应性,以及FimH靶向策略减少细菌性前列腺炎的潜力。
{"title":"Uropathogenic Escherichia coli invade luminal prostate cells via FimH–PPAP receptor binding","authors":"Maria Guedes, Simon Peters, Amruta Joshi, Sina Dorn, Janina Rieger, Kimberly Klapproth, Tristan Beste, Alexander M. Leipold, Mathias Rosenfeldt, Antoine-Emmanuel Saliba, Ulrich Dobrindt, Charis Kalogirou, Carmen Aguilar","doi":"10.1038/s41564-025-02231-0","DOIUrl":"10.1038/s41564-025-02231-0","url":null,"abstract":"Bacterial prostatitis caused by uropathogenic Escherichia coli (UPEC) strains is a highly prevalent and recurrent infection responsible for significant morbidity in men. The molecular pathogenesis of prostatitis remains poorly understood, partly due to a lack of suitable in vitro models. Here we developed a 2D mouse stem cell-derived prostate epithelial organoid model. In the organoid model, 5α-dihydrotestosterone promoted differentiation of basal into luminal cells, while transcriptomic analyses validated the model in comparison to 3D models and mouse prostate tissue. Infection analyses revealed that UPEC preferentially attached to, invaded and replicated within luminal prostate cells. Experiments with a UPEC mutant strain lacking the bacterial adhesin, FimH, alongside immunoprecipitation, mass spectrometry, biochemistry and infection experiments with host gene knockouts revealed that FimH–prostatic acid phosphatase (PPAP) binding interactions promote UPEC invasion of luminal prostate cells. ᴅ-Mannose competitively inhibited FimH–PPAP interactions. Findings were validated using ex vivo human prostate tissue. These data highlight the adaptability of FimH in engaging host receptors and the potential for FimH-targeting strategies to reduce bacterial prostatitis. Uropathogenic Escherichia coli infection of a murine prostate organoid model reveals a bacterial FimH–host prostatic acid phosphatase adhesin-receptor interaction enabling invasion and replication within the host tissue.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"11 2","pages":"535-550"},"PeriodicalIF":19.4,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41564-025-02231-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbial ethanol metabolism contributes to auto-brewery syndrome in an observational cohort 在一项观察性队列研究中,肠道微生物乙醇代谢有助于自动酿造综合征
IF 19.4 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2026-01-08 DOI: 10.1038/s41564-025-02225-y
Cynthia L. Hsu, Shikha Shukla, Linton Freund, Annie C. Chou, Yongqiang Yang, Ryan Bruellman, Fernanda Raya Tonetti, Noemí Cabré, Susan Mayo, Hyun Gyu Lim, Valeria Magallan, Barbara J. Cordell, Sonja Lang, Münevver Demir, Peter Stärkel, Cristina Llorente, Bernhard O. Palsson, Chitra Mandyam, Brigid S. Boland, Elizabeth Hohmann, Bernd Schnabl
Auto-brewery syndrome (ABS) is a rarely diagnosed disorder of alcohol intoxication due to gut microbial ethanol production. Despite case reports and a small cohort study, the microbiological profiles of patients remain poorly understood. Here we conducted an observational study of 22 patients with ABS and 21 unaffected household partners. Faecal samples from individuals with ABS during a flare produced more ethanol in vitro, which could be reduced by antibiotic treatment. Gut microbiome analysis using metagenomics revealed an enrichment of Proteobacteria, including Escherichia coli and Klebsiella pneumoniae. Genes in metabolic pathways associated with ethanol production were enriched, including the mixed-acid fermentation pathway, heterolactic fermentation pathway and ethanolamine utilization pathway. Faecal metabolomics revealed increased acetate levels associated with ABS, which correlated with blood alcohol concentrations. Finally, one patient was treated with faecal microbiota transplantation, with positive correlations between gut microbiota composition and function, and symptoms. These findings can inform future clinical interventions for ABS. Gut microorganisms capable of producing ethanol cause alcohol intoxication, which can be corrected via faecal microbiota transplantation.
自动酿酒综合征(ABS)是一种罕见的诊断障碍的酒精中毒由于肠道微生物乙醇生产。尽管有病例报告和一项小型队列研究,但对患者的微生物概况仍然知之甚少。在这里,我们对22名ABS患者和21名未受影响的家庭伴侣进行了观察性研究。在耀斑期间,ABS患者的粪便样本在体外产生了更多的乙醇,这可以通过抗生素治疗减少。利用宏基因组学进行的肠道微生物组分析显示,包括大肠杆菌和肺炎克雷伯菌在内的变形菌群富集。与乙醇生产相关的代谢途径基因丰富,包括混合酸发酵途径、异乳酸发酵途径和乙醇胺利用途径。粪便代谢组学显示,与ABS相关的醋酸盐水平增加,与血液酒精浓度相关。最后,一名患者接受了粪便微生物群移植治疗,肠道微生物群组成和功能与症状呈正相关。这些发现可以为未来的ABS临床干预提供信息。
{"title":"Gut microbial ethanol metabolism contributes to auto-brewery syndrome in an observational cohort","authors":"Cynthia L. Hsu, Shikha Shukla, Linton Freund, Annie C. Chou, Yongqiang Yang, Ryan Bruellman, Fernanda Raya Tonetti, Noemí Cabré, Susan Mayo, Hyun Gyu Lim, Valeria Magallan, Barbara J. Cordell, Sonja Lang, Münevver Demir, Peter Stärkel, Cristina Llorente, Bernhard O. Palsson, Chitra Mandyam, Brigid S. Boland, Elizabeth Hohmann, Bernd Schnabl","doi":"10.1038/s41564-025-02225-y","DOIUrl":"10.1038/s41564-025-02225-y","url":null,"abstract":"Auto-brewery syndrome (ABS) is a rarely diagnosed disorder of alcohol intoxication due to gut microbial ethanol production. Despite case reports and a small cohort study, the microbiological profiles of patients remain poorly understood. Here we conducted an observational study of 22 patients with ABS and 21 unaffected household partners. Faecal samples from individuals with ABS during a flare produced more ethanol in vitro, which could be reduced by antibiotic treatment. Gut microbiome analysis using metagenomics revealed an enrichment of Proteobacteria, including Escherichia coli and Klebsiella pneumoniae. Genes in metabolic pathways associated with ethanol production were enriched, including the mixed-acid fermentation pathway, heterolactic fermentation pathway and ethanolamine utilization pathway. Faecal metabolomics revealed increased acetate levels associated with ABS, which correlated with blood alcohol concentrations. Finally, one patient was treated with faecal microbiota transplantation, with positive correlations between gut microbiota composition and function, and symptoms. These findings can inform future clinical interventions for ABS. Gut microorganisms capable of producing ethanol cause alcohol intoxication, which can be corrected via faecal microbiota transplantation.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"11 2","pages":"415-428"},"PeriodicalIF":19.4,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approaches for accelerating microbial gene function discovery using artificial intelligence 利用人工智能加速微生物基因功能发现的方法
IF 19.4 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2026-01-07 DOI: 10.1038/s41564-025-02214-1
Bernhard O. Palsson, Sang Yup Lee, Gi Bae Kim
Although genome sequencing technologies have advanced rapidly, microbial genomes still contain numerous genes with unknown functions, posing ongoing challenges for comprehensive genome annotation. Traditional annotation methods are constrained by a lack of scalable experimental techniques and the limitations of conventional homology-based computational approaches. Recent computational innovations, particularly deep learning, have substantially improved gene function prediction, facilitating more efficient annotation of transcription factors, enzymes and other protein classes. Integrating computational and experimental approaches has enabled the development of workflows that systematize gene function discovery, paving the way for faster, more accurate and comprehensive genome annotation. Continued refinement of these integrated methods holds great promise for deepening our understanding of microorganisms. Here we review recent advances in artificial intelligence for gene function discovery and discuss future directions for achieving interpretable and high-throughput artificial intelligence-guided annotation. In this Review, the authors discuss how artificial intelligence can aid microbial gene function discovery.
尽管基因组测序技术发展迅速,但微生物基因组中仍含有大量功能未知的基因,这给全面的基因组注释带来了持续的挑战。传统的标注方法由于缺乏可扩展的实验技术和传统的基于同构的计算方法的局限性而受到限制。最近的计算创新,特别是深度学习,极大地改善了基因功能预测,促进了转录因子、酶和其他蛋白质类别的更有效注释。集成计算和实验方法使工作流程的发展能够使基因功能发现系统化,为更快,更准确和全面的基因组注释铺平了道路。这些综合方法的不断完善为加深我们对微生物的理解带来了巨大的希望。本文综述了人工智能在基因功能发现方面的最新进展,并讨论了实现可解释和高通量人工智能引导注释的未来方向。在这篇综述中,作者讨论了人工智能如何帮助发现微生物基因功能。
{"title":"Approaches for accelerating microbial gene function discovery using artificial intelligence","authors":"Bernhard O. Palsson, Sang Yup Lee, Gi Bae Kim","doi":"10.1038/s41564-025-02214-1","DOIUrl":"10.1038/s41564-025-02214-1","url":null,"abstract":"Although genome sequencing technologies have advanced rapidly, microbial genomes still contain numerous genes with unknown functions, posing ongoing challenges for comprehensive genome annotation. Traditional annotation methods are constrained by a lack of scalable experimental techniques and the limitations of conventional homology-based computational approaches. Recent computational innovations, particularly deep learning, have substantially improved gene function prediction, facilitating more efficient annotation of transcription factors, enzymes and other protein classes. Integrating computational and experimental approaches has enabled the development of workflows that systematize gene function discovery, paving the way for faster, more accurate and comprehensive genome annotation. Continued refinement of these integrated methods holds great promise for deepening our understanding of microorganisms. Here we review recent advances in artificial intelligence for gene function discovery and discuss future directions for achieving interpretable and high-throughput artificial intelligence-guided annotation. In this Review, the authors discuss how artificial intelligence can aid microbial gene function discovery.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"11 2","pages":"350-358"},"PeriodicalIF":19.4,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145907986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taming Candida with IL-17 用IL-17驯服假丝酵母
IF 19.4 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2026-01-05 DOI: 10.1038/s41564-025-02227-w
Michail S. Lionakis
IL-17 modulates fungal fitness to maintain Candida albicans in a less pathogenic state within the oral mucosa.
IL-17调节真菌适应度以维持口腔黏膜内白色念珠菌处于较低致病性状态。
{"title":"Taming Candida with IL-17","authors":"Michail S. Lionakis","doi":"10.1038/s41564-025-02227-w","DOIUrl":"10.1038/s41564-025-02227-w","url":null,"abstract":"IL-17 modulates fungal fitness to maintain Candida albicans in a less pathogenic state within the oral mucosa.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"11 1","pages":"14-15"},"PeriodicalIF":19.4,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1