Pub Date : 2017-02-01DOI: 10.3390/molecules22020226
J. Frau, D. Glossman-Mitnik
Several compounds with the known ability to perform as inhibitors of advanced glycation endproducts (AGE) have been studied with Density Functional Theory (DFT) through the use of a number of density functionals whose accuracy has been tested across a broad spectrum of databases in Chemistry and Physics. The chemical reactivity descriptors for these systems have been calculated through Conceptual DFT in an attempt to relate their intrinsic chemical reactivity with the ability to inhibit the action of glycating carbonyl compounds on amino acids and proteins. This knowledge could be useful in the design and development of new drugs which can be potential medicines for diabetes and Alzheimer’s disease.
{"title":"Chemical Reactivity Theory Study of Advanced Glycation Endproduct Inhibitors","authors":"J. Frau, D. Glossman-Mitnik","doi":"10.3390/molecules22020226","DOIUrl":"https://doi.org/10.3390/molecules22020226","url":null,"abstract":"Several compounds with the known ability to perform as inhibitors of advanced glycation endproducts (AGE) have been studied with Density Functional Theory (DFT) through the use of a number of density functionals whose accuracy has been tested across a broad spectrum of databases in Chemistry and Physics. The chemical reactivity descriptors for these systems have been calculated through Conceptual DFT in an attempt to relate their intrinsic chemical reactivity with the ability to inhibit the action of glycating carbonyl compounds on amino acids and proteins. This knowledge could be useful in the design and development of new drugs which can be potential medicines for diabetes and Alzheimer’s disease.","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82337887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.3390/molecules22020319
Fatma S. Elsharabasy, Sobhi M. Gomha, T. Farghaly, Heba S. A. Elzahabi
Novel 2-thiazolylphthalazine derivatives were efficiently synthesized under ultrasound irradiation, resulting in high yields and short reaction times after optimization of the reaction conditions. All prepared compounds were fully characterized using spectroscopic methods. They were screened for their antimicrobial activity against Gram-positive and Gram-negative bacteria as well as for antifungal activity. The antimicrobial activity profile of the tested compounds showed some promising results. The potent activity of compounds 4d, 7b (117% zone inhibition) and 7c (105% zone inhibition) against Salmonella sp., exceeding that of the reference drug Gentamycin is particularly noteworthy. In general, the newly synthesized thiazolylphthalazine derivatives showed higher antimicrobial activity against the tested Gram-negative bacteria than against Gram-positive bacteria and fungi.
{"title":"An Efficient Synthesis of Novel Bioactive Thiazolyl-Phthalazinediones under Ultrasound Irradiation","authors":"Fatma S. Elsharabasy, Sobhi M. Gomha, T. Farghaly, Heba S. A. Elzahabi","doi":"10.3390/molecules22020319","DOIUrl":"https://doi.org/10.3390/molecules22020319","url":null,"abstract":"Novel 2-thiazolylphthalazine derivatives were efficiently synthesized under ultrasound irradiation, resulting in high yields and short reaction times after optimization of the reaction conditions. All prepared compounds were fully characterized using spectroscopic methods. They were screened for their antimicrobial activity against Gram-positive and Gram-negative bacteria as well as for antifungal activity. The antimicrobial activity profile of the tested compounds showed some promising results. The potent activity of compounds 4d, 7b (117% zone inhibition) and 7c (105% zone inhibition) against Salmonella sp., exceeding that of the reference drug Gentamycin is particularly noteworthy. In general, the newly synthesized thiazolylphthalazine derivatives showed higher antimicrobial activity against the tested Gram-negative bacteria than against Gram-positive bacteria and fungi.","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75230504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.3390/molecules22020308
Maria I. Olivero-Acosta, W. Maldonado-Rojas, J. Olivero-Verbel
Small molecules found in natural products provide therapeutic benefits due to their pharmacological or biological activity, which may increase or decrease the expression of human epidermal growth factor receptor (HER), a promising target in the modification of signaling cascades involved in excessive cellular growth. In this study, in silico molecular protein-ligand docking protocols were performed with AutoDock Vina in order to evaluate the interaction of 800 natural compounds (NPs) from the NatProd Collection (http://www.msdiscovery.com/natprod.html), with four human HER family members: HER1 (PDB: 2ITW), HER2 (PDB: 3PP0), HER3 (PDB: 3LMG) and HER4 (PDB: 2R4B). The best binding affinity values (kcal/mol) for docking pairs were obtained for HER1-podototarin (−10.7), HER2-hecogenin acetate (−11.2), HER3-hesperidin (−11.5) and HER4-theaflavin (−10.7). The reliability of the theoretical calculations was evaluated employing published data on HER inhibition correlated with in silico binding calculations. IC50 values followed a significant linear relationship with the theoretical binding Affinity data for HER1 (R = 0.656, p < 0.0001) and HER2 (R = 0.543, p < 0.0001), but not for HER4 (R = 0.364, p > 0.05). In short, this methodology allowed the identification of several NPs as HER inhibitors, being useful in the discovery and design of more potent and selective anticancer drugs.
{"title":"Natural Products as Chemopreventive Agents by Potential Inhibition of the Kinase Domain in ErbB Receptors","authors":"Maria I. Olivero-Acosta, W. Maldonado-Rojas, J. Olivero-Verbel","doi":"10.3390/molecules22020308","DOIUrl":"https://doi.org/10.3390/molecules22020308","url":null,"abstract":"Small molecules found in natural products provide therapeutic benefits due to their pharmacological or biological activity, which may increase or decrease the expression of human epidermal growth factor receptor (HER), a promising target in the modification of signaling cascades involved in excessive cellular growth. In this study, in silico molecular protein-ligand docking protocols were performed with AutoDock Vina in order to evaluate the interaction of 800 natural compounds (NPs) from the NatProd Collection (http://www.msdiscovery.com/natprod.html), with four human HER family members: HER1 (PDB: 2ITW), HER2 (PDB: 3PP0), HER3 (PDB: 3LMG) and HER4 (PDB: 2R4B). The best binding affinity values (kcal/mol) for docking pairs were obtained for HER1-podototarin (−10.7), HER2-hecogenin acetate (−11.2), HER3-hesperidin (−11.5) and HER4-theaflavin (−10.7). The reliability of the theoretical calculations was evaluated employing published data on HER inhibition correlated with in silico binding calculations. IC50 values followed a significant linear relationship with the theoretical binding Affinity data for HER1 (R = 0.656, p < 0.0001) and HER2 (R = 0.543, p < 0.0001), but not for HER4 (R = 0.364, p > 0.05). In short, this methodology allowed the identification of several NPs as HER inhibitors, being useful in the discovery and design of more potent and selective anticancer drugs.","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75369027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.3390/molecules22020270
S. Hwang, S. Kwon, Y. Kang, Jae-yong Lee, S. Lim
Response surface methodology (RSM), based on a central composite design, was used to determine the best liquid-to-raw material ratio (10:3–15 mL/g), extraction time (1–3 h), and ethanol concentration (50%–100%) for maximum content of α-asarone from Perilla frutescens (PF) extract. Experimental values of α-asarone were 9.51–46.36 mg/g; the results fitted a second-order quadratic polynomial model and correlated with the proposed model (R2 > 0.9354). The best conditions were obtained with extraction time of 1.76 h, liquid-to-raw material ratio of 10:13.5 mL/g, and ethanol concentration of 90.37%. Under these conditions, the model predicted extraction content of 40.56 mg/g, while experimental PF content of α-asarone was 43.84 mg/g dried plant. Optimized conditions determined for maximum content of α-asarone were similar to the experimental range. Experimental values agreed with those predicted, thus validating and indicating suitability of both the model and the RSM approach for optimizing extraction conditions. In addition, a reliable, reproducible and accurate method for the quantitative determination of α-asarone by High Performance Liquid Chromatography (HPLC) analysis was developed with limit of detection (LOD), limit of quantitation (LOQ) values of 0.10 and 0.29 µg/mL and excellent linearity (R2 > 0.9999).
{"title":"Rapid High Performance Liquid Chromatography Determination and Optimization of Extraction Parameters of the α-Asarone Isolated from Perilla frutescens L.","authors":"S. Hwang, S. Kwon, Y. Kang, Jae-yong Lee, S. Lim","doi":"10.3390/molecules22020270","DOIUrl":"https://doi.org/10.3390/molecules22020270","url":null,"abstract":"Response surface methodology (RSM), based on a central composite design, was used to determine the best liquid-to-raw material ratio (10:3–15 mL/g), extraction time (1–3 h), and ethanol concentration (50%–100%) for maximum content of α-asarone from Perilla frutescens (PF) extract. Experimental values of α-asarone were 9.51–46.36 mg/g; the results fitted a second-order quadratic polynomial model and correlated with the proposed model (R2 > 0.9354). The best conditions were obtained with extraction time of 1.76 h, liquid-to-raw material ratio of 10:13.5 mL/g, and ethanol concentration of 90.37%. Under these conditions, the model predicted extraction content of 40.56 mg/g, while experimental PF content of α-asarone was 43.84 mg/g dried plant. Optimized conditions determined for maximum content of α-asarone were similar to the experimental range. Experimental values agreed with those predicted, thus validating and indicating suitability of both the model and the RSM approach for optimizing extraction conditions. In addition, a reliable, reproducible and accurate method for the quantitative determination of α-asarone by High Performance Liquid Chromatography (HPLC) analysis was developed with limit of detection (LOD), limit of quantitation (LOQ) values of 0.10 and 0.29 µg/mL and excellent linearity (R2 > 0.9999).","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76144859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.3390/molecules22020204
Bolanle C Akinwumi, P. Raj, Danielle I. Lee, C. Acosta, Liping Yu, Samuel M. Thomas, K. Nagabhushanam, M. Majeed, N. Davies, T. Netticadan, Hope D Anderson
Stilbenoids are bioactive polyphenols, and resveratrol (trans-3,5,4′-trihydroxystilbene) is a representative stilbenoid that reportedly exerts cardioprotective actions. As resveratrol exhibits low oral bioavailability, we turned our attention to other stilbenoid compounds with a history of medicinal use and/or improved bioavailability. We determined the effects of gnetol (trans-3,5,2′,6′-tetrahydroxystilbene) and pterostilbene (trans-3,5-dimethoxy-4′-hydroxystilbene) on cardiac hypertrophy. In vitro, gnetol and pterostilbene prevented endothelin-1-induced indicators of cardiomyocyte hypertrophy including cell enlargement and protein synthesis. Gnetol and pterostilbene stimulated AMP-activated protein kinase (AMPK), and inhibition of AMPK, using compound C or shRNA knockdown, abolished these anti-hypertrophic effects. In contrast, resveratrol, gnetol, nor pterostilbene reduced blood pressure or hypertrophy in the spontaneously hypertensive heart failure (SHHF) rat. In fact, AMPK levels were similar between Sprague-Dawley and SHHF rats whether treated by stilbenoids or not. These data suggest that the anti-hypertrophic actions of resveratrol (and other stilbenoids?) do not extend to the SHHF rat, which models heart failure superimposed on hypertension. Notably, SHHF rat hearts exhibited prolonged isovolumic relaxation time (an indicator of diastolic dysfunction), and this was improved by stilbenoid treatment. In conclusion, stilbenoid-based treatment as a viable strategy to prevent pathological cardiac hypertrophy, a major risk factor for heart failure, may be context-dependent and requires further study.
{"title":"Disparate Effects of Stilbenoid Polyphenols on Hypertrophic Cardiomyocytes In Vitro vs. in the Spontaneously Hypertensive Heart Failure Rat","authors":"Bolanle C Akinwumi, P. Raj, Danielle I. Lee, C. Acosta, Liping Yu, Samuel M. Thomas, K. Nagabhushanam, M. Majeed, N. Davies, T. Netticadan, Hope D Anderson","doi":"10.3390/molecules22020204","DOIUrl":"https://doi.org/10.3390/molecules22020204","url":null,"abstract":"Stilbenoids are bioactive polyphenols, and resveratrol (trans-3,5,4′-trihydroxystilbene) is a representative stilbenoid that reportedly exerts cardioprotective actions. As resveratrol exhibits low oral bioavailability, we turned our attention to other stilbenoid compounds with a history of medicinal use and/or improved bioavailability. We determined the effects of gnetol (trans-3,5,2′,6′-tetrahydroxystilbene) and pterostilbene (trans-3,5-dimethoxy-4′-hydroxystilbene) on cardiac hypertrophy. In vitro, gnetol and pterostilbene prevented endothelin-1-induced indicators of cardiomyocyte hypertrophy including cell enlargement and protein synthesis. Gnetol and pterostilbene stimulated AMP-activated protein kinase (AMPK), and inhibition of AMPK, using compound C or shRNA knockdown, abolished these anti-hypertrophic effects. In contrast, resveratrol, gnetol, nor pterostilbene reduced blood pressure or hypertrophy in the spontaneously hypertensive heart failure (SHHF) rat. In fact, AMPK levels were similar between Sprague-Dawley and SHHF rats whether treated by stilbenoids or not. These data suggest that the anti-hypertrophic actions of resveratrol (and other stilbenoids?) do not extend to the SHHF rat, which models heart failure superimposed on hypertension. Notably, SHHF rat hearts exhibited prolonged isovolumic relaxation time (an indicator of diastolic dysfunction), and this was improved by stilbenoid treatment. In conclusion, stilbenoid-based treatment as a viable strategy to prevent pathological cardiac hypertrophy, a major risk factor for heart failure, may be context-dependent and requires further study.","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82459854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.3390/molecules22020224
E. Tuenter, Karen Segers, K. Kang, Johan Viaene, S. Sung, P. Cos, L. Maes, Y. Vander Heyden, L. Pieters
Cyclopeptide alkaloids are polyamidic, macrocyclic compounds, containing a 13-, 14-, or 15-membered ring. The ring system consists of a hydroxystyrylamine moiety, an amino acid, and a β-hydroxy amino acid; attached to the ring is a side chain, comprised of one or two more amino acid moieties. In vitro antiplasmodial activity was shown before for several compounds belonging to this class, and in this paper the antiplasmodial and cytotoxic activities of ten more cyclopeptide alkaloids are reported. Combining these results and the IC50 values that were reported by our group previously, a library consisting of 19 cyclopeptide alkaloids was created. A qualitative SAR (structure-activity relationship) study indicated that a 13-membered macrocyclic ring is preferable over a 14-membered one. Furthermore, the presence of a β-hydroxy proline moiety could correlate with higher antiplasmodial activity, and methoxylation (or, to a lesser extent, hydroxylation) of the styrylamine moiety could be important for displaying antiplasmodial activity. In addition, QSAR (quantitative structure-activity relationship) models were developed, using PLS (partial least squares regression) and MLR (multiple linear regression). On the one hand, these models allow for the indication of the most important descriptors (molecular properties) responsible for the antiplasmodial activity. Additionally, predictions made for interesting structures did not contradict the expectations raised in the qualitative SAR study.
{"title":"Antiplasmodial Activity, Cytotoxicity and Structure-Activity Relationship Study of Cyclopeptide Alkaloids","authors":"E. Tuenter, Karen Segers, K. Kang, Johan Viaene, S. Sung, P. Cos, L. Maes, Y. Vander Heyden, L. Pieters","doi":"10.3390/molecules22020224","DOIUrl":"https://doi.org/10.3390/molecules22020224","url":null,"abstract":"Cyclopeptide alkaloids are polyamidic, macrocyclic compounds, containing a 13-, 14-, or 15-membered ring. The ring system consists of a hydroxystyrylamine moiety, an amino acid, and a β-hydroxy amino acid; attached to the ring is a side chain, comprised of one or two more amino acid moieties. In vitro antiplasmodial activity was shown before for several compounds belonging to this class, and in this paper the antiplasmodial and cytotoxic activities of ten more cyclopeptide alkaloids are reported. Combining these results and the IC50 values that were reported by our group previously, a library consisting of 19 cyclopeptide alkaloids was created. A qualitative SAR (structure-activity relationship) study indicated that a 13-membered macrocyclic ring is preferable over a 14-membered one. Furthermore, the presence of a β-hydroxy proline moiety could correlate with higher antiplasmodial activity, and methoxylation (or, to a lesser extent, hydroxylation) of the styrylamine moiety could be important for displaying antiplasmodial activity. In addition, QSAR (quantitative structure-activity relationship) models were developed, using PLS (partial least squares regression) and MLR (multiple linear regression). On the one hand, these models allow for the indication of the most important descriptors (molecular properties) responsible for the antiplasmodial activity. Additionally, predictions made for interesting structures did not contradict the expectations raised in the qualitative SAR study.","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"115 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77971504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Six new furan derivatives, named 5-(3-methoxy-3-oxopropyl)-furan-2-carboxylic acid (1), 1-(5-(2-hydroxypropanoyl)-furan-2-yl)-pentan-3-one (2), 2-hydroxy-1-(5-(1-hydroxypentyl)-furan-2-yl)-propan-1-one (3), 1-(5-(1,2-dihydroxypropyl)-furan-2-yl)-pentan-1-one (4), 5-(1-hydroxypent-4-en-1-yl)-furan-2-carboxylic acid (5) and 5-(3-hydroxypentyl)-furan-2-carboxylic acid (6), together with two new natural products, named 5-(1-hydroxypentyl)-furan-2-carboxylic acid (7) and (E)-5-(2-carboxyvinyl)-furan-2-carboxylic acid (8), were isolated from the solid rice fermentation of endophytic fungus Coriolopsis sp. J5, which was derived from mangrove plant Ceriops tagal. Their structures were unambiguously elucidated based on 1D and 2D NMR spectroscopy, and by HRESIMS measurements, as well as by comparison with the literature.
{"title":"New Furan Derivatives from a Mangrove-Derived Endophytic Fungus Coriolopsis sp. J5","authors":"Liang-Liang Chen, Pei-Pei Wang, Huiqin Chen, Zhi-kai Guo, Hao Wang, Haofu Dai, Wenli Mei","doi":"10.3390/molecules22020261","DOIUrl":"https://doi.org/10.3390/molecules22020261","url":null,"abstract":"Six new furan derivatives, named 5-(3-methoxy-3-oxopropyl)-furan-2-carboxylic acid (1), 1-(5-(2-hydroxypropanoyl)-furan-2-yl)-pentan-3-one (2), 2-hydroxy-1-(5-(1-hydroxypentyl)-furan-2-yl)-propan-1-one (3), 1-(5-(1,2-dihydroxypropyl)-furan-2-yl)-pentan-1-one (4), 5-(1-hydroxypent-4-en-1-yl)-furan-2-carboxylic acid (5) and 5-(3-hydroxypentyl)-furan-2-carboxylic acid (6), together with two new natural products, named 5-(1-hydroxypentyl)-furan-2-carboxylic acid (7) and (E)-5-(2-carboxyvinyl)-furan-2-carboxylic acid (8), were isolated from the solid rice fermentation of endophytic fungus Coriolopsis sp. J5, which was derived from mangrove plant Ceriops tagal. Their structures were unambiguously elucidated based on 1D and 2D NMR spectroscopy, and by HRESIMS measurements, as well as by comparison with the literature.","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86962897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.3390/molecules22020240
Chunwa Jiang, Muqaddas Masood, A. Rasul, Wei Wei, Ya Wang, Muhammad Ali, M. Mustaqeem, Jiang Li, Xiaomeng Li
Altholactone, a natural compound isolated from Goniothalamus spp., has demonstrated anti-inflammatory and anticancer activities, but its molecular mechanisms are still not fully defined. Nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) play pivotal roles in the cell survival of many human tumors. The objective of this study was to elucidate the mechanism of action of altholactone against prostate cancer DU145 cells and to evaluate whether its effects are mediated by inhibition of NF-κB and STAT3 activity. Altholactone inhibited proliferation of DU145 cells and induced cell cycle arrest in S phase and triggered apoptosis. Reporter assays revealed that altholactone repressed p65- and TNF-α-enhanced NF-κB transcriptional activity and also inhibited both constitutive and IL-6-induced transcriptional activity of STAT3. Consistent with this, altholactone down-regulated phosphorylation of STAT3 and moreover, decreased constitutively active mutant of STAT3 (STAT3C)-induced transcriptional activity. Altholactone treatment also results in down-regulation of STAT3 target genes such as survivin, and Bcl-2 followed by up regulation of pro-apoptotic Bax protein. However, pre-treatment with the antioxidant N-acetylcysteine (NAC) significantly inhibited the activation of Bax and prevented down-regulation of STAT3 target genes. Collectively, our findings suggest that altholactone induces DU145 cells death through inhibition of NF-κB and STAT3 activity.
{"title":"Altholactone Inhibits NF-κB and STAT3 Activation and Induces Reactive Oxygen Species-Mediated Apoptosis in Prostate Cancer DU145 Cells","authors":"Chunwa Jiang, Muqaddas Masood, A. Rasul, Wei Wei, Ya Wang, Muhammad Ali, M. Mustaqeem, Jiang Li, Xiaomeng Li","doi":"10.3390/molecules22020240","DOIUrl":"https://doi.org/10.3390/molecules22020240","url":null,"abstract":"Altholactone, a natural compound isolated from Goniothalamus spp., has demonstrated anti-inflammatory and anticancer activities, but its molecular mechanisms are still not fully defined. Nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) play pivotal roles in the cell survival of many human tumors. The objective of this study was to elucidate the mechanism of action of altholactone against prostate cancer DU145 cells and to evaluate whether its effects are mediated by inhibition of NF-κB and STAT3 activity. Altholactone inhibited proliferation of DU145 cells and induced cell cycle arrest in S phase and triggered apoptosis. Reporter assays revealed that altholactone repressed p65- and TNF-α-enhanced NF-κB transcriptional activity and also inhibited both constitutive and IL-6-induced transcriptional activity of STAT3. Consistent with this, altholactone down-regulated phosphorylation of STAT3 and moreover, decreased constitutively active mutant of STAT3 (STAT3C)-induced transcriptional activity. Altholactone treatment also results in down-regulation of STAT3 target genes such as survivin, and Bcl-2 followed by up regulation of pro-apoptotic Bax protein. However, pre-treatment with the antioxidant N-acetylcysteine (NAC) significantly inhibited the activation of Bax and prevented down-regulation of STAT3 target genes. Collectively, our findings suggest that altholactone induces DU145 cells death through inhibition of NF-κB and STAT3 activity.","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"132 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76690709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study performed an optimization of the fermentation conditions to activate the expression of the zunyimycin family biosynthesis genes of the zunyimycin-producing streptomycetes strain Streptomyces sp. FJS31-2. Bioassay-guided isolation and purification by varied chromatographic methods yielded two new compounds of the zunyimycin derivatives, namely, 31-2-7 and 31-2-8, accompanied with three known anthrabenzoxocinones family members of zunyimycin A, BE24566B, and chloroanthrabenzoxocinone. Their structures were elucidated by NMR, HRESIMS, IR, UV, and CD. Results showed that these two compounds were structurally similar to the previously reported compound zunyimycin A but differed in positions and number of chlorine atom substitution. The two novel compounds were called zunyimycins B and C. Antibacterial activity assay indicated that zunyimycin C showed a good inhibitory effect on the methicillin-resistant Staphylococcus aureus and Enterococci.
{"title":"Zunyimycins B and C, New Chloroanthrabenzoxocinones Antibiotics against Methicillin-Resistant Staphylococcus aureus and Enterococci from Streptomyces sp. FJS31-2","authors":"Yuhong Lü, Meiyun Shao, Yinyin Wang, Shengyan Qian, Miao Wang, Yingquan Wang, Xiaoqian Li, Yuxin Bao, Chengmin Deng, Changwu Yue, Daishun Liu, Ning Liu, Minghao Liu, Ying Huang, Zehui Chen, Yonglin Hu","doi":"10.3390/molecules22020251","DOIUrl":"https://doi.org/10.3390/molecules22020251","url":null,"abstract":"This study performed an optimization of the fermentation conditions to activate the expression of the zunyimycin family biosynthesis genes of the zunyimycin-producing streptomycetes strain Streptomyces sp. FJS31-2. Bioassay-guided isolation and purification by varied chromatographic methods yielded two new compounds of the zunyimycin derivatives, namely, 31-2-7 and 31-2-8, accompanied with three known anthrabenzoxocinones family members of zunyimycin A, BE24566B, and chloroanthrabenzoxocinone. Their structures were elucidated by NMR, HRESIMS, IR, UV, and CD. Results showed that these two compounds were structurally similar to the previously reported compound zunyimycin A but differed in positions and number of chlorine atom substitution. The two novel compounds were called zunyimycins B and C. Antibacterial activity assay indicated that zunyimycin C showed a good inhibitory effect on the methicillin-resistant Staphylococcus aureus and Enterococci.","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79324198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.3390/molecules22020254
Patrycja Miszczyk, D. Wieczorek, J. Gałęzowska, B. Dziuk, J. Wietrzyk, E. Chmielewska
The reaction of diethyl phosphite with triethyl orthoformate and a primary amine followed by hydrolysis is presented, and the reaction was suitable for the preparation of (aminomethylene)bisphosphonates. 3-Amino-1,2,4-triazole was chosen as an interesting substrate for this reaction because it possesses multiple groups that can serve as the amino component in the reaction—namely, the side-chain and triazole amines. This substrate readily forms 1,2,4-triazolyl-3-yl-aminomethylenebisphosphonic acid (compound 1) as a major product, along with N-ethylated bisphosphonates as side products. The in vitro antiproliferative effects of the synthesized aminomethylenebisphosphonic acids against J774E macrophages were determined. These compounds exhibit similar activity to zoledronic acid and higher activity than incadronic acid.
{"title":"Reaction of 3-Amino-1,2,4-Triazole with Diethyl Phosphite and Triethyl Orthoformate: Acid-Base Properties and Antiosteoporotic Activities of the Products","authors":"Patrycja Miszczyk, D. Wieczorek, J. Gałęzowska, B. Dziuk, J. Wietrzyk, E. Chmielewska","doi":"10.3390/molecules22020254","DOIUrl":"https://doi.org/10.3390/molecules22020254","url":null,"abstract":"The reaction of diethyl phosphite with triethyl orthoformate and a primary amine followed by hydrolysis is presented, and the reaction was suitable for the preparation of (aminomethylene)bisphosphonates. 3-Amino-1,2,4-triazole was chosen as an interesting substrate for this reaction because it possesses multiple groups that can serve as the amino component in the reaction—namely, the side-chain and triazole amines. This substrate readily forms 1,2,4-triazolyl-3-yl-aminomethylenebisphosphonic acid (compound 1) as a major product, along with N-ethylated bisphosphonates as side products. The in vitro antiproliferative effects of the synthesized aminomethylenebisphosphonic acids against J774E macrophages were determined. These compounds exhibit similar activity to zoledronic acid and higher activity than incadronic acid.","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"124 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75931968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}