首页 > 最新文献

2012 16th International Symposium on Wearable Computers最新文献

英文 中文
Inertial Body-Worn Sensor Data Segmentation by Boosting Threshold-Based Detectors 基于阈值增强检测器的惯性体磨损传感器数据分割
Pub Date : 2012-06-18 DOI: 10.1109/ISWC.2012.27
Yue Shi, Yuanchun Shi, Xia Wang
Using inertial body-worn sensors, we propose a segmentation approach to detect when a user changes actions. We use Adaboost to combine three threshold-based detectors: force/gravity ratios, peaks of autocorrelation, and local minimums of velocity. Experimenting with the CMU Multi-Modal Activity Database, we find that the first two features are the most important, and our combination approach improves performance with an acceptable level of granularity.
利用惯性穿戴式传感器,我们提出了一种分割方法来检测用户何时改变动作。我们使用Adaboost结合三个基于阈值的检测器:力/重力比、自相关峰值和局部最小速度。通过对CMU多模态活动数据库的实验,我们发现前两个特征是最重要的,我们的组合方法在可接受的粒度水平上提高了性能。
{"title":"Inertial Body-Worn Sensor Data Segmentation by Boosting Threshold-Based Detectors","authors":"Yue Shi, Yuanchun Shi, Xia Wang","doi":"10.1109/ISWC.2012.27","DOIUrl":"https://doi.org/10.1109/ISWC.2012.27","url":null,"abstract":"Using inertial body-worn sensors, we propose a segmentation approach to detect when a user changes actions. We use Adaboost to combine three threshold-based detectors: force/gravity ratios, peaks of autocorrelation, and local minimums of velocity. Experimenting with the CMU Multi-Modal Activity Database, we find that the first two features are the most important, and our combination approach improves performance with an acceptable level of granularity.","PeriodicalId":190627,"journal":{"name":"2012 16th International Symposium on Wearable Computers","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127824312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
At Which Station Am I?: Identifying Subway Stations Using Only a Pressure Sensor 我该在哪一站?:仅使用压力传感器识别地铁站
Pub Date : 2012-06-18 DOI: 10.1109/ISWC.2012.18
Takafumi Watanabe, D. Kamisaka, S. Muramatsu, Hiroyuki Yokoyama
This paper presents the first study to identify a current station in a large subway network using only a pressure sensor. The air pressure in a train is changed by geographical and structural factors such as the difference in elevation and air flow caused by vents etc. This gives us a good clue in locating our present position especially in underground tunnels. We applied this method to the actual data of the air pressure measured in the Tokyo Metro including 9 lines with 192 stations, and achieved 85 % accuracy to infer at which station we are.
本文首次提出了仅使用压力传感器识别大型地铁网络中的当前站点的研究。列车内的气压受地理和结构因素的影响,如海拔差异和通风口引起的气流等。这给我们提供了一个很好的线索来定位我们现在的位置,特别是在地下隧道中。将该方法应用于东京地铁9条线路192个站点的实际气压测量数据中,可以准确地推断出我们在哪个站点。
{"title":"At Which Station Am I?: Identifying Subway Stations Using Only a Pressure Sensor","authors":"Takafumi Watanabe, D. Kamisaka, S. Muramatsu, Hiroyuki Yokoyama","doi":"10.1109/ISWC.2012.18","DOIUrl":"https://doi.org/10.1109/ISWC.2012.18","url":null,"abstract":"This paper presents the first study to identify a current station in a large subway network using only a pressure sensor. The air pressure in a train is changed by geographical and structural factors such as the difference in elevation and air flow caused by vents etc. This gives us a good clue in locating our present position especially in underground tunnels. We applied this method to the actual data of the air pressure measured in the Tokyo Metro including 9 lines with 192 stations, and achieved 85 % accuracy to infer at which station we are.","PeriodicalId":190627,"journal":{"name":"2012 16th International Symposium on Wearable Computers","volume":"123 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123583476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Pattern-Based Alignment of Audio Data for Ad Hoc Secure Device Pairing 基于模式的Ad Hoc安全设备配对音频数据对齐
Pub Date : 2012-06-18 DOI: 10.1109/ISWC.2012.14
Ngu Nguyen, S. Sigg, An Huynh, Yusheng Ji
When studying the use of ambient audio to generate a secure cryptographic shared key among mobile phones, we encounter a misalignment problem for recorded audio data. The diversity in software and hardware causes mobile phones to produce badly-aligned audio chunks. It decreases the identical fraction in audio samples recorded in nearby mobile phones and consequently the common information available to create a secure key. Unless the mobile devices are real-time capable, this problem can not be solved with standard distributed time synchronisation approaches. We propose a pattern-based approximative matching process to achieve synchronisation independently on each device. Our experimental results show that this method can help to improve the similarity of the audio fingerprints, which are the source to create the communication key.
在研究使用环境音频在移动电话之间生成安全加密共享密钥时,我们遇到了录制音频数据的错位问题。软件和硬件的多样性导致手机产生的音频块排列不整齐。它减少了附近移动电话记录的音频样本中的相同部分,从而减少了可用于创建安全密钥的公共信息。除非移动设备具有实时能力,否则这个问题无法用标准的分布式时间同步方法来解决。我们提出了一种基于模式的近似匹配过程,以实现每个设备上独立的同步。实验结果表明,该方法有助于提高音频指纹的相似度,而音频指纹是生成通信密钥的来源。
{"title":"Pattern-Based Alignment of Audio Data for Ad Hoc Secure Device Pairing","authors":"Ngu Nguyen, S. Sigg, An Huynh, Yusheng Ji","doi":"10.1109/ISWC.2012.14","DOIUrl":"https://doi.org/10.1109/ISWC.2012.14","url":null,"abstract":"When studying the use of ambient audio to generate a secure cryptographic shared key among mobile phones, we encounter a misalignment problem for recorded audio data. The diversity in software and hardware causes mobile phones to produce badly-aligned audio chunks. It decreases the identical fraction in audio samples recorded in nearby mobile phones and consequently the common information available to create a secure key. Unless the mobile devices are real-time capable, this problem can not be solved with standard distributed time synchronisation approaches. We propose a pattern-based approximative matching process to achieve synchronisation independently on each device. Our experimental results show that this method can help to improve the similarity of the audio fingerprints, which are the source to create the communication key.","PeriodicalId":190627,"journal":{"name":"2012 16th International Symposium on Wearable Computers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127115946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
期刊
2012 16th International Symposium on Wearable Computers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1