首页 > 最新文献

Molecular Science最新文献

英文 中文
Femtosecond Structural Dynamics of Complex Molecular Systems Studied by Time-Domain Raman Spectroscopy Using Few-Cycle Pulses 用时域拉曼光谱研究复杂分子体系的飞秒结构动力学
Pub Date : 2021-01-01 DOI: 10.3175/molsci.15.a0117
H. Kuramochi
One of the frontiers in modern chemical science is to observe nuclear rearrangements during a chemical reaction in real time and unveil structure-function interplay underlying the sophisticated functions of complex molecular systems. In this quest, various time-resolved techniques have been developed in the last decades. Nevertheless, it has not yet been trivial to track structural changes of the molecules proceeding on the time scale of the nuclear motion, i.e., femto-to-picosecond time scale. Recently, we developed femtosecond time-resolved time-domain Raman spectroscopy using < 7-fs pulses, which allows us to track structural changes of the molecules on the femtosecond time scale with exquisite sensitivity. With this technique, we realized real-time observation of the ultrafast structural dynamics in the primary photochemical/photophysical processes in condensed-phase complex molecular systems. In this article, we overview the principle and a brief history of time-domain Raman spectroscopy and then describe the apparatus and recent applica-tions to the femtosecond dynamics of molecules as complex as photoreceptor proteins and molecular assemblies.
实时观察化学反应过程中的原子核重排,揭示复杂分子系统复杂功能背后的结构-功能相互作用,是现代化学科学的前沿之一。在过去的几十年里,各种时间分辨技术得到了发展。然而,在核运动的时间尺度上,即飞秒到皮秒的时间尺度上,跟踪分子的结构变化还不是一件容易的事。最近,我们开发了飞秒时间分辨时域拉曼光谱,使用< 7-fs脉冲,使我们能够在飞秒时间尺度上以极高的灵敏度跟踪分子的结构变化。利用该技术,我们实现了对缩合相复杂分子体系初级光化学/光物理过程的超快结构动力学的实时观测。在本文中,我们概述了时域拉曼光谱的原理和简史,然后描述了仪器和最近的应用在飞秒动力学的分子复杂的光感受器蛋白质和分子组装。
{"title":"Femtosecond Structural Dynamics of Complex Molecular Systems Studied by Time-Domain Raman Spectroscopy Using Few-Cycle Pulses","authors":"H. Kuramochi","doi":"10.3175/molsci.15.a0117","DOIUrl":"https://doi.org/10.3175/molsci.15.a0117","url":null,"abstract":"One of the frontiers in modern chemical science is to observe nuclear rearrangements during a chemical reaction in real time and unveil structure-function interplay underlying the sophisticated functions of complex molecular systems. In this quest, various time-resolved techniques have been developed in the last decades. Nevertheless, it has not yet been trivial to track structural changes of the molecules proceeding on the time scale of the nuclear motion, i.e., femto-to-picosecond time scale. Recently, we developed femtosecond time-resolved time-domain Raman spectroscopy using < 7-fs pulses, which allows us to track structural changes of the molecules on the femtosecond time scale with exquisite sensitivity. With this technique, we realized real-time observation of the ultrafast structural dynamics in the primary photochemical/photophysical processes in condensed-phase complex molecular systems. In this article, we overview the principle and a brief history of time-domain Raman spectroscopy and then describe the apparatus and recent applica-tions to the femtosecond dynamics of molecules as complex as photoreceptor proteins and molecular assemblies.","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78658469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conventional and Unconventional View of Chiro-Optical Effects (Optical Activity) 传统与非传统的手旋光效应(旋光性)观点
Pub Date : 2021-01-01 DOI: 10.3175/molsci.15.a0119
Hiromi Okamoto
{"title":"Conventional and Unconventional View of Chiro-Optical Effects (Optical Activity)","authors":"Hiromi Okamoto","doi":"10.3175/molsci.15.a0119","DOIUrl":"https://doi.org/10.3175/molsci.15.a0119","url":null,"abstract":"","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"224 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77268674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical Study of Lanthanide Luminescence Materials 镧系发光材料的理论研究
Pub Date : 2021-01-01 DOI: 10.3175/molsci.15.a0118
Miho Hatanaka
{"title":"Theoretical Study of Lanthanide Luminescence Materials","authors":"Miho Hatanaka","doi":"10.3175/molsci.15.a0118","DOIUrl":"https://doi.org/10.3175/molsci.15.a0118","url":null,"abstract":"","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77440333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy and Its Application to Interfacial Dynamics 时间分辨外差检测振动和频率产生谱的发展及其在界面动力学中的应用
Pub Date : 2021-01-01 DOI: 10.3175/molsci.15.a0116
Ken‐ichi Inoue
chemistry, electrochemistry, biochemistry, and atmospheric chemistry. However, molecular-level understanding of structure and dynamics of their interfaces is still limited due to technical difficulties. Vibrational sum frequency generation (VSFG) spectroscopy is based on a second-order nonlinear optical process and provides interface-specific information. While conventional homodyne-detected VSFG measures the square of second-order nonlinear susceptibility ( |χ (2) | 2 ), heterodyne-detected (HD-) VSFG enables us to directly measure the imaginary part of χ (2) (Im χ (2) ), which corresponds to Im χ (1) obtained with absorption spectroscopy in bulk. We realized the first time-resolved (TR-) HD-VSFG measurement by combining HD-VSFG spectroscopy and pump-probe technique. This review introduces the principle of TR-HD-VSFG spectroscopy and its applica-tions to interfacial dynamics at the metal, water, and lipid monolayer interfaces.
化学、电化学、生物化学和大气化学。然而,由于技术上的困难,对其界面结构和动力学的分子水平理解仍然有限。振动和频率产生(VSFG)光谱是基于二阶非线性光学过程,并提供特定于界面的信息。传统的纯差检测VSFG测量二阶非线性磁化率的平方(|χ(2) | 2),而外差检测(HD-) VSFG使我们能够直接测量χ(2)的虚部(Im χ(2)),对应于用吸收光谱获得的Im χ(1)。我们将HD-VSFG光谱与泵浦探针技术相结合,实现了首次时间分辨(TR-) HD-VSFG测量。本文综述了TR-HD-VSFG光谱的原理及其在金属、水和脂质单层界面动力学中的应用。
{"title":"Development of Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy and Its Application to Interfacial Dynamics","authors":"Ken‐ichi Inoue","doi":"10.3175/molsci.15.a0116","DOIUrl":"https://doi.org/10.3175/molsci.15.a0116","url":null,"abstract":"chemistry, electrochemistry, biochemistry, and atmospheric chemistry. However, molecular-level understanding of structure and dynamics of their interfaces is still limited due to technical difficulties. Vibrational sum frequency generation (VSFG) spectroscopy is based on a second-order nonlinear optical process and provides interface-specific information. While conventional homodyne-detected VSFG measures the square of second-order nonlinear susceptibility ( |χ (2) | 2 ), heterodyne-detected (HD-) VSFG enables us to directly measure the imaginary part of χ (2) (Im χ (2) ), which corresponds to Im χ (1) obtained with absorption spectroscopy in bulk. We realized the first time-resolved (TR-) HD-VSFG measurement by combining HD-VSFG spectroscopy and pump-probe technique. This review introduces the principle of TR-HD-VSFG spectroscopy and its applica-tions to interfacial dynamics at the metal, water, and lipid monolayer interfaces.","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91179099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Single-Molecule Science 单分子科学的发展
Pub Date : 2021-01-01 DOI: 10.3175/molsci.15.a0120
M. Taniguchi
We reviewed the single-molecule science based on single-molecule measurements using tunneling current and ionic current as probes. Single-molecule measurements using tunneling currents can determine the number of molecules connected to a nanogap electrode. In addition, single-molecule measurements enable measuring the molecular vibration, local temperature, thermoelectric power, and electrode-molecule binding energy of a single molecule connected between electrodes. In addition, as a physical quantity, the phase information of the frontier molecular orbital of single molecules is measured. On the other hand, using an ionic current, single-molecule measurements enable highly accurate identification of a bacterium or virus that passes through a nanopore having a through-hole with a diameter of several μ m or less. Nanopores are also a stage for elucidating the flow dynamics of a single substance transported in a liquid confined in a nanospace. Single-molecule science, which is growing as a fundamental discipline, is advancing to applied research targeting biomolecules. Furthermore, the fusion of single-molecule measurements and artificial intelligence will enable data analysis methods that are different from conventional ones. It is also becoming possible to investigate the properties of a single molecule rather than the statistical average molecular behavior.
本文综述了以隧道电流和离子电流为探针的单分子测量为基础的单分子科学。使用隧道电流的单分子测量可以确定连接到纳米间隙电极的分子数量。此外,单分子测量可以测量分子振动、局部温度、热电功率和连接在电极之间的单个分子的电极-分子结合能。此外,作为物理量,测量了单分子前沿分子轨道的相信息。另一方面,使用离子电流,单分子测量可以高度准确地识别通过具有直径为几微米或更小的通孔的纳米孔的细菌或病毒。纳米孔也是解释单一物质在纳米空间内液体中传输的流动动力学的一个阶段。单分子科学作为一门基础学科正在向以生物分子为目标的应用研究方向发展。此外,单分子测量和人工智能的融合将使数据分析方法与传统方法不同。研究单个分子的性质而不是统计平均分子行为也成为可能。
{"title":"Development of Single-Molecule Science","authors":"M. Taniguchi","doi":"10.3175/molsci.15.a0120","DOIUrl":"https://doi.org/10.3175/molsci.15.a0120","url":null,"abstract":"We reviewed the single-molecule science based on single-molecule measurements using tunneling current and ionic current as probes. Single-molecule measurements using tunneling currents can determine the number of molecules connected to a nanogap electrode. In addition, single-molecule measurements enable measuring the molecular vibration, local temperature, thermoelectric power, and electrode-molecule binding energy of a single molecule connected between electrodes. In addition, as a physical quantity, the phase information of the frontier molecular orbital of single molecules is measured. On the other hand, using an ionic current, single-molecule measurements enable highly accurate identification of a bacterium or virus that passes through a nanopore having a through-hole with a diameter of several μ m or less. Nanopores are also a stage for elucidating the flow dynamics of a single substance transported in a liquid confined in a nanospace. Single-molecule science, which is growing as a fundamental discipline, is advancing to applied research targeting biomolecules. Furthermore, the fusion of single-molecule measurements and artificial intelligence will enable data analysis methods that are different from conventional ones. It is also becoming possible to investigate the properties of a single molecule rather than the statistical average molecular behavior.","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82561156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Biological Study Based on Spectroscopic Analysis of Cone Pigment 基于视锥色素光谱分析的结构生物学研究
Pub Date : 2021-01-01 DOI: 10.3175/molsci.15.a0115
Kota Katayama
Vitamin A is adequately distributed within the body to maintain the biological function of retinoids in the periph-eral tissues and the production of the visual chromophore, 11- cis -retinal, in the eye. One of the mysteries in our vision is that humans recognize color by use of a single chromophore molecule (11- cis -retinal), meaning that the chromophore is identical even between blue-absorbing and red-absorbing sensors. Humans have two different types of retinal contain-ing light-sensitive proteins expressed in the retina, rhodopsin (Rh) achieving the twilight vision and three cone pigments, which mediate color vision. Each different chromophore-protein interaction allows preferential absorption of a selected range of wavelengths. While the structural basis for photoreaction and signal transduction of Rh has been well understood by the determination of its atomic-level structure, structural studies of cone pigments lag far behind those of Rh, mainly because of difficulty in sample preparation and lack of suitable methods in structural analysis. We thus attempted to express monkey cone pigments in HEK293 cell lines for structural analysis using light-induced difference Fourier-transform infrared (FTIR) spectroscopy. The first structural information successfully elicited from the highly accurate spectra for each cone pigment showed that the retinal chromophore is structurally similar between Rh and cone pigments, but the hydrogen-bonding network around the retinal chromophore is entirely different between them. In addition, some spectral differences are observed between cone pigments, including protein-bound water molecules. These differences could be interpreted to play a role in spectral tuning.
维生素A在体内充分分布,以维持外周组织中类维甲酸的生物功能和眼睛中视觉发色团11-顺式视网膜的产生。我们视觉中的一个谜团是人类通过使用单一的发色团分子(11-顺式-视网膜)来识别颜色,这意味着即使在蓝色和红色吸收传感器之间,发色团也是相同的。人类有两种不同类型的视网膜,其中包含在视网膜中表达的光敏蛋白,一种是实现黄昏视觉的视紫红质(Rh),另一种是调节色觉的三种视锥色素。每种不同的发色团-蛋白质相互作用允许优先吸收选定的波长范围。虽然通过测定其原子水平结构已经很好地了解了Rh光反应和信号转导的结构基础,但锥色素的结构研究远远落后于Rh,主要原因是样品制备困难和缺乏合适的结构分析方法。因此,我们尝试在HEK293细胞系中表达猴锥色素,并利用光诱导差分傅立叶变换红外(FTIR)光谱对其进行结构分析。从每个视锥色素的高精度光谱中成功获得的第一个结构信息表明,Rh和视锥色素之间的视网膜发色团结构相似,但它们之间视网膜发色团周围的氢键网络完全不同。此外,在锥体色素(包括蛋白质结合水分子)之间观察到一些光谱差异。这些差异可以解释为在光谱调谐中起作用。
{"title":"Structural Biological Study Based on Spectroscopic Analysis of Cone Pigment","authors":"Kota Katayama","doi":"10.3175/molsci.15.a0115","DOIUrl":"https://doi.org/10.3175/molsci.15.a0115","url":null,"abstract":"Vitamin A is adequately distributed within the body to maintain the biological function of retinoids in the periph-eral tissues and the production of the visual chromophore, 11- cis -retinal, in the eye. One of the mysteries in our vision is that humans recognize color by use of a single chromophore molecule (11- cis -retinal), meaning that the chromophore is identical even between blue-absorbing and red-absorbing sensors. Humans have two different types of retinal contain-ing light-sensitive proteins expressed in the retina, rhodopsin (Rh) achieving the twilight vision and three cone pigments, which mediate color vision. Each different chromophore-protein interaction allows preferential absorption of a selected range of wavelengths. While the structural basis for photoreaction and signal transduction of Rh has been well understood by the determination of its atomic-level structure, structural studies of cone pigments lag far behind those of Rh, mainly because of difficulty in sample preparation and lack of suitable methods in structural analysis. We thus attempted to express monkey cone pigments in HEK293 cell lines for structural analysis using light-induced difference Fourier-transform infrared (FTIR) spectroscopy. The first structural information successfully elicited from the highly accurate spectra for each cone pigment showed that the retinal chromophore is structurally similar between Rh and cone pigments, but the hydrogen-bonding network around the retinal chromophore is entirely different between them. In addition, some spectral differences are observed between cone pigments, including protein-bound water molecules. These differences could be interpreted to play a role in spectral tuning.","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"88 22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84072175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic Approach to Electron Correlation via Spin-symmetry Breaking and Restoration 通过自旋对称破缺和恢复的电子相关的系统方法
Pub Date : 2020-01-01 DOI: 10.3175/molsci.14.a0109
T. Tsuchimochi
{"title":"Systematic Approach to Electron Correlation via Spin-symmetry Breaking and Restoration","authors":"T. Tsuchimochi","doi":"10.3175/molsci.14.a0109","DOIUrl":"https://doi.org/10.3175/molsci.14.a0109","url":null,"abstract":"","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89470624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Molecular Spectroscopy in Condensed Phase and Quantum Chemistry 凝聚态与量子化学分子光谱学研究进展
Pub Date : 2020-01-01 DOI: 10.3175/molsci.14.a0114
Y. Ozaki
1. はじめに 分子分光学は 19世紀の終わりに誕生し,20世紀に大き く発展した。20世紀中の進歩の非常に大きな部分は,最後 の 30年ばかりの間に起こったと考えてよい。とくに重要な のは,レーザーが広く普及した 70年代の進歩である。筆者 が関係したラマン分光学を見てみると,共鳴ラマン,表面 増強ラマン散乱(SERS),顕微ラマン,非線形ラマン,時 間分解ラマン,ラマン光学活性など今日,非常に注目され ている様々なラマン分光法のほとんどが 70年代に誕生し た 。ラマンに限らず紫外可視,けい光分光の顕微分光法 や時間分解分光法も同じである。レーザーだけのおかげで はないが,レーザーの発展が果たした役割は果てしなく大 きい。80年代には FT-IRが広く普及し,顕微赤外,時間分 解赤外などが大きく進展した 。90年代に入ると,まず 近赤外分光法が成長し ,さらにその後半になるとテラ ヘルツ分光法(terahertz time-domain spectroscopy; THz-TDS) が登場した 。凝集相に関して言えば,20世紀の最後に なって紫外域(145 nm)から遠赤外/テラヘルツ領域(3.3 cm-1; 0.1 THz)までシームレスに繋がったのである 。 90年代に入るまでは,レーザーや分光器,検出器など ハードの進歩が大方分光学の進歩を引っ張ってきたわけで あるが,90年代に入るとソフトの進歩も分光学を支えるよ うになった。とくに量子化学の発展が目覚ましい 。振動 分光学,電子分光学など分子分光学のどの分野においても 量子化学は中心的な役割を果たしている。ケモメトリック スも分光学にかなり寄与した。ケモメトリックスは,最初 は主に分析化学的応用に用いられたが,最近では物理化学 的な研究にも盛んに用いられている。21世紀に入り,約 10 年前に筆者らは ATR法を遠紫外域に導入することにより, 凝集相の分子分光学を 145 nm(8.5 eV)まで拡張した 。 21世紀に入りようやく凝集相の分子分光学が,遠紫外から 遠赤外/テラヘルツまで拡がったのである。 量子化学の分子分光学への応用においてとくに重要な出 来事は,1964年のK. Kohnらによる密度汎関数法(Density
前言分子光谱学诞生于十九世纪末,二十世纪有了很大的发展。可以认为,二十世纪中进步的很大一部分是在最后三十年里发生的。尤其重要的是激光广泛普及的70年代的进步。笔者所接触的拉曼光谱学,包括共鸣拉曼、表面增强拉曼散射(SERS)、显微拉曼、非线性拉曼、时间分解拉曼、拉曼光学活性等,这些学科在今天非常受关注。各种各样的拉曼光谱几乎都诞生于70年代。不仅是拉曼,紫外光可见、景光光谱的显微光谱法和时间分解光谱法也是如此。虽然这不仅仅是激光的功劳,但激光的发展起到了巨大的作用。80年代,FT-IR得到广泛普及,显微红外、时间分解红外等得到了很大进展。进入90年代,近红外光谱法首先得到发展,再到后期,太赫兹光谱法(terahertz time-domain spectroscopy;THz-TDS)登场了。就凝聚相而言,到了20世纪的最后,从紫外区域(145nm)到远红外/太赫兹区域(3.3 cm-1;0.1 THz)的无缝连接。在进入90年代之前,激光、光谱仪、检测器等硬件的进步带动了光谱学的进步,但进入90年代后,软件的进步也成为光谱学的支柱。特别是量子化学的发展令人瞩目。在振动光谱学、电子光谱学等分子光谱学的任何领域中,量子化学都发挥着核心作用。毛量度也对光谱学做出了相当大的贡献。化学计量最初主要用于分析化学的应用,最近在物理化学的研究中也得到广泛应用。进入21世纪后,大约10年前,笔者等人通过将ATR法引入远紫外区域,将凝聚相分子光谱学扩展到了145nm (8.5 eV)。进入21世纪,凝聚相的分子光谱学才从远紫外扩展到远红外/太赫兹。量子化学在分子光谱学的应用中,特别重要的出现是1964年K. Kohn等人的密度泛函法(Density
{"title":"Advances in Molecular Spectroscopy in Condensed Phase and Quantum Chemistry","authors":"Y. Ozaki","doi":"10.3175/molsci.14.a0114","DOIUrl":"https://doi.org/10.3175/molsci.14.a0114","url":null,"abstract":"1. はじめに 分子分光学は 19世紀の終わりに誕生し,20世紀に大き く発展した。20世紀中の進歩の非常に大きな部分は,最後 の 30年ばかりの間に起こったと考えてよい。とくに重要な のは,レーザーが広く普及した 70年代の進歩である。筆者 が関係したラマン分光学を見てみると,共鳴ラマン,表面 増強ラマン散乱(SERS),顕微ラマン,非線形ラマン,時 間分解ラマン,ラマン光学活性など今日,非常に注目され ている様々なラマン分光法のほとんどが 70年代に誕生し た 。ラマンに限らず紫外可視,けい光分光の顕微分光法 や時間分解分光法も同じである。レーザーだけのおかげで はないが,レーザーの発展が果たした役割は果てしなく大 きい。80年代には FT-IRが広く普及し,顕微赤外,時間分 解赤外などが大きく進展した 。90年代に入ると,まず 近赤外分光法が成長し ,さらにその後半になるとテラ ヘルツ分光法(terahertz time-domain spectroscopy; THz-TDS) が登場した 。凝集相に関して言えば,20世紀の最後に なって紫外域(145 nm)から遠赤外/テラヘルツ領域(3.3 cm-1; 0.1 THz)までシームレスに繋がったのである 。 90年代に入るまでは,レーザーや分光器,検出器など ハードの進歩が大方分光学の進歩を引っ張ってきたわけで あるが,90年代に入るとソフトの進歩も分光学を支えるよ うになった。とくに量子化学の発展が目覚ましい 。振動 分光学,電子分光学など分子分光学のどの分野においても 量子化学は中心的な役割を果たしている。ケモメトリック スも分光学にかなり寄与した。ケモメトリックスは,最初 は主に分析化学的応用に用いられたが,最近では物理化学 的な研究にも盛んに用いられている。21世紀に入り,約 10 年前に筆者らは ATR法を遠紫外域に導入することにより, 凝集相の分子分光学を 145 nm(8.5 eV)まで拡張した 。 21世紀に入りようやく凝集相の分子分光学が,遠紫外から 遠赤外/テラヘルツまで拡がったのである。 量子化学の分子分光学への応用においてとくに重要な出 来事は,1964年のK. Kohnらによる密度汎関数法(Density","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78267533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterodyne-Detected Chiral Vibrational Sum Frequency Generation and Its Applications 外差检测手性振动和频率的产生及其应用
Pub Date : 2020-01-01 DOI: 10.3175/molsci.14.a0111
Masanari Okuno
VSFG (HD-chiral VSFG) spectroscopy for the first time, which enables us to determine the phase of the electric field of a chiral VSFG signal. We show that HD-chiral VSFG spectroscopy is capable of the detection and distinction of chirality even from monolayers. In addition, we have studied fundamental aspects of chiral VSFG such as electronic resonance effects and the spatial origin of the signals by using HD-chiral VSFG spectroscopy. This review introduces the principle of chiral VSFG, HD-chiral VSFG spectrometer we have constructed, and its applications to not only bulk samples but also inter-faces including monolayers and thin films.
首次研究了手性VSFG (HD-chiral VSFG)光谱,使我们能够确定手性VSFG信号的电场相位。研究表明,hd -手性VSFG光谱能够检测和区分手性,即使是单层的手性。此外,我们还利用hd -手性VSFG光谱研究了手性VSFG的基本方面,如电子共振效应和信号的空间来源。本文介绍了手性VSFG的工作原理,自制的hd -手性VSFG谱仪,以及它在大量样品和包括单层和薄膜在内的界面中的应用。
{"title":"Heterodyne-Detected Chiral Vibrational Sum Frequency Generation and Its Applications","authors":"Masanari Okuno","doi":"10.3175/molsci.14.a0111","DOIUrl":"https://doi.org/10.3175/molsci.14.a0111","url":null,"abstract":"VSFG (HD-chiral VSFG) spectroscopy for the first time, which enables us to determine the phase of the electric field of a chiral VSFG signal. We show that HD-chiral VSFG spectroscopy is capable of the detection and distinction of chirality even from monolayers. In addition, we have studied fundamental aspects of chiral VSFG such as electronic resonance effects and the spatial origin of the signals by using HD-chiral VSFG spectroscopy. This review introduces the principle of chiral VSFG, HD-chiral VSFG spectrometer we have constructed, and its applications to not only bulk samples but also inter-faces including monolayers and thin films.","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87659326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“Hidden Frustration” in Molecule-based K4 and Diamond Lattices Revealed by the Line Graph Transformation 线形变换揭示分子基K4和金刚石晶格中的“隐藏挫折”
Pub Date : 2020-01-01 DOI: 10.3175/molsci.14.a0113
R. Suizu, K. Awaga
{"title":"“Hidden Frustration” in Molecule-based K4 and Diamond Lattices Revealed by the Line Graph Transformation","authors":"R. Suizu, K. Awaga","doi":"10.3175/molsci.14.a0113","DOIUrl":"https://doi.org/10.3175/molsci.14.a0113","url":null,"abstract":"","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"280 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76131797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1