Pub Date : 2024-06-01Epub Date: 2023-09-22DOI: 10.4103/1673-5374.385862
Vinata Vedam-Mai, Jacob M Samuel, Boone M Prentice
{"title":"Imaging mass spectrometry: a molecular microscope for studying the role of lipids in Parkinson's disease.","authors":"Vinata Vedam-Mai, Jacob M Samuel, Boone M Prentice","doi":"10.4103/1673-5374.385862","DOIUrl":"10.4103/1673-5374.385862","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"19 6","pages":"1179-1180"},"PeriodicalIF":5.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71413246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-09-22DOI: 10.4103/1673-5374.385845
Tingting Han, Yuxiang Xu, Lin Sun, Makoto Hashimoto, Jianshe Wei
Abstract: Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging; they have a great impact on the aging process and are the main risk factors for neurodegeneration. Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases. This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and Parkinson's disease. This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states. Therefore, inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
{"title":"Microglial response to aging and neuroinflammation in the development of neurodegenerative diseases.","authors":"Tingting Han, Yuxiang Xu, Lin Sun, Makoto Hashimoto, Jianshe Wei","doi":"10.4103/1673-5374.385845","DOIUrl":"10.4103/1673-5374.385845","url":null,"abstract":"<p><strong>Abstract: </strong>Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging; they have a great impact on the aging process and are the main risk factors for neurodegeneration. Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases. This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and Parkinson's disease. This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states. Therefore, inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"19 6","pages":"1241-1248"},"PeriodicalIF":5.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71413253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-09-22DOI: 10.4103/1673-5374.385849
Daniel J Hellenbrand, Charles M Quinn, Zachariah J Piper, Ryan T Elder, Raveena R Mishra, Taylor L Marti, Phoebe M Omuro, Rylie M Roddick, Jae Sung Lee, William L Murphy, Amgad S Hanna
{"title":"The secondary injury cascade after spinal cord injury: an analysis of local cytokine/chemokine regulation.","authors":"Daniel J Hellenbrand, Charles M Quinn, Zachariah J Piper, Ryan T Elder, Raveena R Mishra, Taylor L Marti, Phoebe M Omuro, Rylie M Roddick, Jae Sung Lee, William L Murphy, Amgad S Hanna","doi":"10.4103/1673-5374.385849","DOIUrl":"10.4103/1673-5374.385849","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"19 6","pages":"1308-1317"},"PeriodicalIF":5.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467934/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71413271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4103/1673-5374.382235
Diogo Cordeiro, Tchelet Stern, Shani Stern
{"title":"Focusing on the tetra-partite synapse in Parkinson's disease research using human patient-derived neurons.","authors":"Diogo Cordeiro, Tchelet Stern, Shani Stern","doi":"10.4103/1673-5374.382235","DOIUrl":"10.4103/1673-5374.382235","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"19 5","pages":"979-981"},"PeriodicalIF":5.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10749603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49680233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.4103/1673-5374.382256
Fan Bu, Jia-Wei Min, Md Abdur Razzaque, Ahmad El Hamamy, Anthony Patrizz, Li Qi, Akihiko Urayama, Jun Li
Brain functional impairment after stroke is common; however, the molecular mechanisms of post-stroke recovery remain unclear. It is well-recognized that age is the most important independent predictor of poor outcomes after stroke as older patients show poorer functional outcomes following stroke. Mounting evidence suggests that axonal regeneration and angiogenesis, the major forms of brain plasticity responsible for post-stroke recovery, diminished with advanced age. Previous studies suggest that Ras-related C3 botulinum toxin substrate (Rac) 1 enhances stroke recovery as activation of Rac1 improved behavior recovery in a young mice stroke model. Here, we investigated the role of Rac1 signaling in long-term functional recovery and brain plasticity in an aged (male, 18 to 22 months old C57BL/6J) brain after ischemic stroke. We found that as mice aged, Rac1 expression declined in the brain. Delayed overexpression of Rac1, using lentivirus encoding Rac1 injected day 1 after ischemic stroke, promoted cognitive (assessed using novel object recognition test) and sensorimotor (assessed using adhesive removal tests) recovery on days 14-28. This was accompanied by the increase of neurite and proliferative endothelial cells in the peri-infarct zone assessed by immunostaining. In a reverse approach, pharmacological inhibition of Rac1 by intraperitoneal injection of Rac1 inhibitor NSC23766 for 14 successive days after ischemic stroke worsened the outcome with the reduction of neurite and proliferative endothelial cells. Furthermore, Rac1 inhibition reduced the activation of p21-activated kinase 1, the protein level of brain-derived neurotrophic factor, and increased the protein level of glial fibrillary acidic protein in the ischemic brain on day 28 after stroke. Our work provided insight into the mechanisms behind the diminished plasticity after cerebral ischemia in aged brains and identified Rac1 as a potential therapeutic target for improving functional recovery in the older adults after stroke.
{"title":"Activation of cerebral Ras-related C3 botulinum toxin substrate (Rac) 1 promotes post-ischemic stroke functional recovery in aged mice.","authors":"Fan Bu, Jia-Wei Min, Md Abdur Razzaque, Ahmad El Hamamy, Anthony Patrizz, Li Qi, Akihiko Urayama, Jun Li","doi":"10.4103/1673-5374.382256","DOIUrl":"10.4103/1673-5374.382256","url":null,"abstract":"<p><p>Brain functional impairment after stroke is common; however, the molecular mechanisms of post-stroke recovery remain unclear. It is well-recognized that age is the most important independent predictor of poor outcomes after stroke as older patients show poorer functional outcomes following stroke. Mounting evidence suggests that axonal regeneration and angiogenesis, the major forms of brain plasticity responsible for post-stroke recovery, diminished with advanced age. Previous studies suggest that Ras-related C3 botulinum toxin substrate (Rac) 1 enhances stroke recovery as activation of Rac1 improved behavior recovery in a young mice stroke model. Here, we investigated the role of Rac1 signaling in long-term functional recovery and brain plasticity in an aged (male, 18 to 22 months old C57BL/6J) brain after ischemic stroke. We found that as mice aged, Rac1 expression declined in the brain. Delayed overexpression of Rac1, using lentivirus encoding Rac1 injected day 1 after ischemic stroke, promoted cognitive (assessed using novel object recognition test) and sensorimotor (assessed using adhesive removal tests) recovery on days 14-28. This was accompanied by the increase of neurite and proliferative endothelial cells in the peri-infarct zone assessed by immunostaining. In a reverse approach, pharmacological inhibition of Rac1 by intraperitoneal injection of Rac1 inhibitor NSC23766 for 14 successive days after ischemic stroke worsened the outcome with the reduction of neurite and proliferative endothelial cells. Furthermore, Rac1 inhibition reduced the activation of p21-activated kinase 1, the protein level of brain-derived neurotrophic factor, and increased the protein level of glial fibrillary acidic protein in the ischemic brain on day 28 after stroke. Our work provided insight into the mechanisms behind the diminished plasticity after cerebral ischemia in aged brains and identified Rac1 as a potential therapeutic target for improving functional recovery in the older adults after stroke.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"19 4","pages":"881-886"},"PeriodicalIF":5.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.4103/1673-5374.382249
David C Wong, Stefan Williams
{"title":"Artificial intelligence analysis of videos to augment clinical assessment: an overview.","authors":"David C Wong, Stefan Williams","doi":"10.4103/1673-5374.382249","DOIUrl":"10.4103/1673-5374.382249","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"19 4","pages":"717-718"},"PeriodicalIF":5.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.4103/1673-5374.382223
Xiaoyan Liu, Yi Liu, Junlin Liu, Hantao Zhang, Chaofan Shan, Yinglu Guo, Xun Gong, Mengmeng Cui, Xiubin Li, Min Tang
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
{"title":"Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence.","authors":"Xiaoyan Liu, Yi Liu, Junlin Liu, Hantao Zhang, Chaofan Shan, Yinglu Guo, Xun Gong, Mengmeng Cui, Xiubin Li, Min Tang","doi":"10.4103/1673-5374.382223","DOIUrl":"10.4103/1673-5374.382223","url":null,"abstract":"<p><p>A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"19 4","pages":"833-845"},"PeriodicalIF":5.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.4103/1673-5374.380820
Diego García-Ayuso, Johnny Di Pierdomenico, Ana Martínez-Vacas, Manuel Vidal-Sanz, Serge Picaud, María P Villegas-Pérez
Taurine is considered a non-essential amino acid because it is synthesized by most mammals. However, dietary intake of taurine may be necessary to achieve the physiological levels required for the development, maintenance, and function of certain tissues. Taurine may be especially important for the retina. The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress, apoptosis, and degeneration of photoreceptors and retinal ganglion cells. Low plasma taurine levels may also underlie retinal degeneration in humans and therefore, taurine administration could exert retinal neuroprotective effects. Taurine has antioxidant, anti-apoptotic, immunomodulatory, and calcium homeostasis-regulatory properties. This review summarizes the role of taurine in retinal health and disease, where it appears that taurine may be a promising nutraceutical.
{"title":"Taurine: a promising nutraceutic in the prevention of retinal degeneration.","authors":"Diego García-Ayuso, Johnny Di Pierdomenico, Ana Martínez-Vacas, Manuel Vidal-Sanz, Serge Picaud, María P Villegas-Pérez","doi":"10.4103/1673-5374.380820","DOIUrl":"10.4103/1673-5374.380820","url":null,"abstract":"<p><p>Taurine is considered a non-essential amino acid because it is synthesized by most mammals. However, dietary intake of taurine may be necessary to achieve the physiological levels required for the development, maintenance, and function of certain tissues. Taurine may be especially important for the retina. The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress, apoptosis, and degeneration of photoreceptors and retinal ganglion cells. Low plasma taurine levels may also underlie retinal degeneration in humans and therefore, taurine administration could exert retinal neuroprotective effects. Taurine has antioxidant, anti-apoptotic, immunomodulatory, and calcium homeostasis-regulatory properties. This review summarizes the role of taurine in retinal health and disease, where it appears that taurine may be a promising nutraceutical.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"19 3","pages":"606-610"},"PeriodicalIF":5.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e3/6d/NRR-19-606.PMC10581579.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10280468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.4103/1673-5374.380887
Boyoung Lee, Hyun Joo An
{"title":"Small but big leaps towards neuroglycomics: exploring N-glycome in the brain to advance the understanding of brain development and function.","authors":"Boyoung Lee, Hyun Joo An","doi":"10.4103/1673-5374.380887","DOIUrl":"10.4103/1673-5374.380887","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"19 3","pages":"489-490"},"PeriodicalIF":5.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/30/31/NRR-19-489.PMC10581581.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10291374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}