Fibromyalgia (FM) is an idiopathic syndrome with painful burdensome symptoms. Radiotherapy is one of the main therapeutic modalities for treating various malignancies and there is a probable association between FM exacerbation and exposure to ionizing radiation. Based on that nanomedicines progressively being explored for their promising applications in medicine, the aim of the current study is to assess the possible therapeutic benefits of nanoform of pregabalin (N-PG) in managing FM symptoms during being exposed to ionizing radiation.
Rats were allocated into four groups. First group served as control, the other three groups received gamma radiation (2 Gy/day) after 1 h of reserpine administration (1 ml/kg per day, s.c.) to induce FM for three successive days. On the next day, third and fourth groups received (30 mg/kg, p.o.) of PG and N-PG, respectively once daily for ten consecutive days. Tail flick test was performed and von Frey filaments were used to assess mechanical allodynia/hyperalgesia, and then rats were sacrificed to obtain brains.
N-PG effectively replenished reserpine effects and treated both allodynia and hyperalgesia, improved thermal allodynia, effectively recovered all neurotransmitters near to normal baseline, inhibited oxidative stress status via decreasing malondialdehyde (MDA), increasing glutathione (GSH) and superoxide dismutase (SOD), it had strong anti-inflammatory effect as verified by reducing both cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-kB) in addition to inhibition of intrinsic apoptosis through caspase-3 (casp-3) decrease and B-cell lymphoma-2 (Bcl-2) increase. Histopathological and immunohistochemical results confirmed the biochemical findings.
N-PG could be a promising drug for treating FM especially when there is urgent need to expose patient to ionizing radiation.
Ventral tegmental area (VTA) nicotinic acetylcholine receptors (nAChRs) are important for nicotine reinforcement. To determine whether and to what extent these receptors are sufficient for nicotine reinforcement, we expressed β2Leu9′Ser (i.e. sensitized) nAChR subunits in the VTA of adult male rats and assessed the nicotine dose-response relationship in intravenous self-administration (SA). β2Leu9′Ser rats self-administered nicotine doses 50–100 fold lower than the lowest doses that control rats would respond for. Expression of WT β2 subunits confirmed that this enhanced sensitivity to nicotine was due to the Leu9′Ser mutation in β2. Higher unit doses were associated with strong escalation in β2Leu9′Ser rats over 17 fixed ratio sessions. Escalation was minimal or absent in control rats at the same unit doses. In progressive ratio SA, β2Leu9′Ser rats exhibited higher breakpoints than control rats when the nicotine unit dose was 1.5 μg/kg/inf or higher. In intermittent access SA, β2Leu9′Ser rats exhibited response patterns very similar to control rats. By adding nicotine dose-response data, progressive ratio assays, and intermittent access results that rule out stereotypy, these data significantly extend our previous finding that nicotine activation of the mesolimbic dopamine pathway is sufficient for nicotine reinforcement.
Dopamine signaling in the amygdala is known to play a role in associative learning and memory, including the process of learning to associate environmental cues with the reinforcing properties of drugs like cocaine. Evidence suggests that the ventral tegmental area (VTA) dopamine (DA) projection specifically to the basolateral amygdala (BLA) participates in establishing cocaine-cue associations that can promote later craving- and relapse-like responses to the cue alone. In order to further investigate the specific role of VTA-BLA projections in cocaine-reinforced learning, we used chemogenetics to manipulate VTA DA inputs to the BLA during cocaine self-administration, cue- and cocaine-primed reinstatement, and conditioned place preference. We found inhibiting DA input to the BLA during cocaine self-administration inhibited acquisition and weakened the ability of the previously cocaine-paired cue to elicit cocaine-seeking, while acutely inhibiting the pathway on the day of cue-induced reinstatement testing had no effect. Conversely, exciting the projection during self-administration boosted the salience of the cocaine-paired cue as indicated by enhanced responding during cue-induced reinstatement. Importantly, interfering with DA input to the BLA had no impact on the ability of cocaine to elicit a place preference or induce reinstatement in response to a priming cocaine injection. Overall, we show that manipulation of projections underlying DA signaling in the BLA may be useful for developing therapeutic interventions for substance use disorders.
Migraine is a highly prevalent neurological disorder. Alpha-asarone (ASA), a major active component found in Acorus tatarinowii, plays a crucial role in analgesia and anti-inflammation for neuropathic pain. This study aimed to assess the efficacy of ASA against migraine and elucidate its potential mechanisms using a well-established inflammatory soup (IS) migraine female rat model. Mechanical pain thresholds were assessed daily before IS infusion, followed by post-infusion administration of ASA. Subsequently, spontaneous locomotor activities, exploratory behavior, short-term spatial memory, and photophobia were blindly evaluated after the final drug administration. The rats were then sacrificed for investigation into the underlying mechanisms of action. Network pharmacology was also employed to predict potential targets and pathways of ASA against migraine. The anti-inflammatory activity of ASA and pathway-related proteins were examined in BV2 cells stimulated with lipopolysaccharides (LPS). The results demonstrated that ASA ameliorated cutaneous hyperalgesia and photophobia while improving spatial memory and increasing exploratory behavior in IS rats. ASA attenuated central sensitization-related indicators and excessive glutamate levels while enhancing GABA synthesis. ASA rescued neuronal loss in the cortex and hippocampus of IS rats. Notably, the ability of ASA to improve spatial memory performance in the Y maze test was not observed with sumatriptan, a first-line treatment drug, suggesting the potential involvement of the TLR4 pathway. Moreover, ASA suppressed microglial activation, reduced pro-inflammatory factors, and downregulated TLR4, MyD88, p–NF–κB/NF-κB, NLRP3, caspase-1, IL-1β, and IL-18. Overall, ASA demonstrated its potential to alleviate hyperalgesia and improve behavioral performance in migraine rats by inhibiting hyperexcitability and microglia-related inflammation.
With the current unmet demand for effective pain relief, analgesics without major central adverse effects are highly appealing, such as peripherally restricted kappa-opioid receptor (KOR) agonists. In this study, Conorphin-66, an analog of the selective KOR peptide agonist Conorphin T, was pharmacologically characterized in a series of experiments, with CR845 serving as the reference compound. Firstly, in vitro functional assay indicated that Conorphin-66 selectively activates KOR and exhibits weak β-arrestin2 signaling bias (−1.54 versus −4.35 for CR845). Additionally, subcutaneous Conorphin-66 produced potent antinociception in mouse pain models with ED50 values ranged from 0.02 to 3.28 μmol/kg, including tail-flick test, post-operative pain, formalin pain, and acetic acid-induced visceral pain. Similarly, CR845 exert potent antinociception in mouse pain models ranged from 0.15 to 1.47 μmol/kg. Notably, antagonism studies revealed that the analgesic effects of Conorphin-66 were mainly mediated by the peripheral KOR. Furthermore, Conorphin-66 produced non-tolerance-forming antinociception over 8 days. Unlike CR845, subcutaneous Conorphin-66 did not promote the sedation, anxiogenic effects, depressive-like effects, but did exhibit diuretic activity. Further study showed that Conorphin-66 does not have apparent antipruritic effects in an acute itch model. Overall, Conorphin-66 emerges as a novel peripherally restricted KOR agonist that produced potent antinociception with reduced side effects.
Stigma can create divisions within societies, hindering social cohesion and cooperation. Notably, it has significant public health implications, especially during infectious disease outbreaks like COVID-19. However, little is known about the neural and molecular basis of disease-related stigma and their association with individual differences.
To address this gap, we performed a double-blind, placebo-controlled, within-subject design study with 70 males, to investigate the effect of intranasal oxytocin (OT) administration on the explicit and implicit processing of disease-related stigma (i.e., COVID-19 stigma). After self-administrated 24 IU of OT or placebo, participants completed a stigma evaluation task and an Implicit Association Test (IAT) to assess the explicit and implicit processes of stigma evaluation, respectively.
The results showed that oxytocin amplified the differences between participants with high and low social anxiety in explicit COVID-19 stigma, with a higher inclination to attribute the stigmatized status of the stigmatized targets (i.e., COVID-19 related group) to personal causes in high social anxiety individuals, but reduced blame towards the stigmatized targets in low social anxiety individuals under oxytocin compared to placebo treatment. Furthermore, oxytocin strengthened the connections between responsibility attribution and the other processes (i.e., emotional, approach motivation, social deviance). While no modulation of oxytocin on implicit stigma emerged, oxytocin did modulate the associations between specific dimensions of explicit stigma (i.e., social deviance and approach motivation) and implicit stigma.
In conclusion, these findings demonstrated that intranasal oxytocin administration could temporally impact the explicit cognitive judgment in disease-related stigma but not the implicit aspect; furthermore, it modulated in distinct ways in individuals with different levels of social anxiety. These findings highlight the trait-dependent oxytocin modulation on disease-related stigma, implying that oxytocin is partly involved in the endocrine system of disease-related stigma. By unraveling the molecular basis of stigma and its association with individual traits, such as social anxiety, we can tailor interventions to meet specific needs of different individuals in the future.
Aggregation and deposition of amyloid beta-protein 1–42 (Aβ42) in the brain, primarily owing to hydrophobic interactions between Aβ42 chains, is a common pathology in all forms of Alzheimer's disease (AD). Hydrophilic oligosaccharides are widely present in the extracellular matrix and on the cytoplasmic membrane. To determine if oligosaccharides bind to Aβ42 or its aggregates and consequently affect their aggregation and cellular function, this study examined the interaction of typical functional oligosaccharides with Aβ42 or its aggregates. Isomaltooligosaccharides (IMOs), particularly isomaltotriose, panose, and isomaltotetraose, functioned as molecular chaperones for Aβ42 by binding directly to Aβ42, preserving Aβ42's active conformation and cytotrophic activity. Oral IMOs reduced total plasma Aβ level and indirectly caused a slight reduction in the load of Aβ42 spots/plaques in the brain of AD model mice (male). Another branched oligosaccharide, bianntennary core pentasaccharide (BCP), had a relatively high binding specificity for Aβ42 oligomers (Aβ42O) and acted as an antagonistic binding partner for Aβ42O. Free BCP effectively blocked/prevented further assembly of Aβ42O and their toxicity to neural and vascular endothelial cell lines. Since BCP is also a signaling component of membrane targets (glycolipids, glycoproteins or receptors), it seemed that BCP had two opposing effects on the binding of Aβ42O to target cells. This study's findings suggest that these branched oligosaccharides may be potential candidates for blocking or preventing Aβ42 aggregation and Aβ42O cytotoxicity/neurotoxicity, respectively, and that IMO-like or free BCP-like oligosaccharide deficiencies in the brain may be one of the underlying mechanisms for Aβ42 aggregation and Aβ42O cytotoxicity.
Familial Alzheimer’s disease (FAD) presenilin 1 E280A (PSEN1 E280A) is a severe neurological condition due to the loss of cholinergic neurons (ChNs), accumulation of amyloid beta (Aβ), and abnormal phosphorylation of the TAU protein. Up to date, there are no effective therapies available. The need for innovative treatments for this illness is critical. We found that minocycline (MC, 5 μM) was innocuous toward wild-type (WT) PSEN1 ChLNs but significantly (i) reduces the accumulation of intracellular Aβ by −69%, (ii) blocks both abnormal phosphorylation of the protein TAU at residue Ser202/Thr205 by −33% and (iii) phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by −25%, (iv) diminishes oxidized DJ-1 at Cys106-SO3 by −29%, (v) downregulates the expression of transcription factor TP53, (vi) BH-3-only protein PUMA, and (vii) cleaved caspase 3 (CC3) by −33, −86, and −78%, respectively, compared with untreated PSEN1 E280A ChLNs. Additionally, MC increases the response to ACh-induced Ca2+ influx by +92% in mutant ChLNs. Oxygen radical absorbance capacity (ORAC) and ferric ion-reducing antioxidant power (FRAP) analysis showed that MC might operate more efficiently as a hydrogen atom transfer agent than a single electron transfer agent. In silico molecular docking analysis predicts that MC binds with high affinity to Aβ (Vina Score −6.6 kcal/mol), TAU (VS -6.5 kcal/mol), and caspase 3 (VS -7.1 kcal/mol). Taken together, our findings suggest that MC demonstrates antioxidant, anti-amyloid, and anti-apoptosis activity and promotes physiological ACh-induced Ca2+ influx in PSEN1 E280A ChLNs. The MC has therapeutic potential for treating early-onset FAD.
When a naïve observer meets with a familiar conspecific in pain, mice may have a myriad of social (sniffing, allolicking, allogrooming, huddling) and non-social (self-grooming) behaviors under dyadic social interaction (DSI) paradigm. Unlike male, female observers express more allolicking behavior toward injury site of a familiar female in pain, but with less body allogrooming. In current study, we investigated roles of natural estrus cycle phases and ovarian estrogen in these behaviors and results showed that: (1) there was no changes in above behaviors in terms of latency, time and bouts across different natural estrus cycle phases in intact female. (2) however, ovariectomy (OVX) changed estrus cycle phases, lowered circulating level of ovarian estrogen, reduced time and bouts of allolicking behavior and increased time of self-grooming without affecting other behaviors. Moreover, OVX in observers decreased social buffering effect of DSI on spontaneous pain-related behavior in demonstrator relative to naïve and sham controls. (3) treatment of OVX-female with β-estradiol (E2) or progesterone (PROG) as replacement therapies, only E2 reversed impairment of allolicking behavior. (4) Additionally, socially transferred pain could be identified in intact female across all estrus cycle phases post-DSI, but disappeared in OVX-female, which could be reversed completely by E2 but not by PROG. (5) Finally, serum levels of estrogen, PROG, oxytocin, arginine vasopressin (AVP), prolactin, norepinephrine and 5-HT were examined by ELISA after E2, results showed only AVP level was significantly increased. These results suggest both injury site-targeted caring behavior and socially transferred pain are selectively dependent on ovarian estrogen.