This study aims to elucidate the target and mechanism of baicalin, a clinically utilized drug, in the treatment of neuroinflammatory diseases. Neuroinflammation, characterized by the activation of glial cells and the release of various pro-inflammatory cytokines, plays a critical role in the pathogenesis of various diseases, including spinal cord injury (SCI). The remission of such diseases is significantly dependent on the improvement of inflammatory microenvironment. Toll-like receptor 4/myeloid differentiation protein 2 (TLR4/MD2) complex plays an important role in pathogen recognition and innate immune activation. baicalin, a natural flavonoid, is renowned for its potent anti-inflammatory property. In this study, we discovered that baicalin significantly reduced the activation of glial cells and the levels of pro-inflammatory cytokines at the lesion site of SCI mice, thereby mitigating demyelination and neuronal damage. By directly occupying the active pocket of TLR4/MD2 complex on microglia, baicalin inhibited PI3K/AKT/NF-κB pathway, thereby exerting its anti-inflammatory effect. These findings were corroborated in mice induced by lipopolysaccharide, a TLR4 agonist. Furthermore, baicalin indirectly altered phenotype of astrocytes by reducing secretion of TNF-α, IL-1α, and C1q levels from microglia. Our work demonstrated that baicalin effectively alleviated neuroinflammation by directly targeting microglia and indirectly modulating astrocytes phenotype. As a natural flavonoid, baicalin holds significant potential as a therapeutic candidate for diseases characterized by neuroinflammation.
{"title":"Baicalin ameliorates neuroinflammation by targeting TLR4/MD2 complex on microglia via PI3K/AKT/NF-κB signaling pathway.","authors":"Yufang Lu, Ruiying Zhou, Ruyi Zhu, Xue Wu, Jin Liu, Yue Ma, Xin Zhang, Yaling Zhang, Luting Yang, Yanhua Li, Yuan Zhang, Yaping Yan, Qian Zhang","doi":"10.1016/j.neuropharm.2025.110296","DOIUrl":"10.1016/j.neuropharm.2025.110296","url":null,"abstract":"<p><p>This study aims to elucidate the target and mechanism of baicalin, a clinically utilized drug, in the treatment of neuroinflammatory diseases. Neuroinflammation, characterized by the activation of glial cells and the release of various pro-inflammatory cytokines, plays a critical role in the pathogenesis of various diseases, including spinal cord injury (SCI). The remission of such diseases is significantly dependent on the improvement of inflammatory microenvironment. Toll-like receptor 4/myeloid differentiation protein 2 (TLR4/MD2) complex plays an important role in pathogen recognition and innate immune activation. baicalin, a natural flavonoid, is renowned for its potent anti-inflammatory property. In this study, we discovered that baicalin significantly reduced the activation of glial cells and the levels of pro-inflammatory cytokines at the lesion site of SCI mice, thereby mitigating demyelination and neuronal damage. By directly occupying the active pocket of TLR4/MD2 complex on microglia, baicalin inhibited PI3K/AKT/NF-κB pathway, thereby exerting its anti-inflammatory effect. These findings were corroborated in mice induced by lipopolysaccharide, a TLR4 agonist. Furthermore, baicalin indirectly altered phenotype of astrocytes by reducing secretion of TNF-α, IL-1α, and C1q levels from microglia. Our work demonstrated that baicalin effectively alleviated neuroinflammation by directly targeting microglia and indirectly modulating astrocytes phenotype. As a natural flavonoid, baicalin holds significant potential as a therapeutic candidate for diseases characterized by neuroinflammation.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":" ","pages":"110296"},"PeriodicalIF":4.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1016/j.neuropharm.2025.110298
Adrianna Kirckof, Emma Kneller, Erika M Vitale, Michael A Johnson, Adam S Smith
In humans, grief is characterized by intense sadness, intrusive thoughts of the deceased, and intense longing for reunion with the deceased. Human fMRI studies show hyperactivity in emotional pain and motivational centers of the brain when an individual is reminded of a deceased attachment figure, but the molecular underpinnings of these changes in activity are unknown. Prairie voles (Microtus ochrogaster), which establish lifelong social bonds between breeding pairs, also display distress and motivational shifts during periods of prolonged social loss, providing a model to investigate these behavioral and molecular changes at a mechanistic level. Here, a novel odor preference test was used to assess social vs non-social odor investigation, and a sucrose preference test was used to assess non-social, reward-driven motivation. Females that lost a male partner investigated partner- and food-associated cues significantly more than females that lost a female cagemate or remained intact with a male partner. However, females experiencing the loss of a male partner did not change investigation of stranger-associated cues. Western blotting revealed significant increases of dopamine receptor type 1 (DRD1) and oxytocin receptor protein content in specific brain regions in response to the loss of distinct social relationships. Such effects included an increase in DRD1 in the medial preoptic area of the hypothalamus (mPOA) in females experiencing loss of a male partner compared to all other conditions. Pharmacological antagonism of DRD1 in the mPOA blocked the loss-associated increase of investigation of the partner odor but did not affect investigation of food or stranger odors. This reveals a novel dopamine-mediated mechanism for partner-seeking behavior during periods of partner loss in female prairie voles.
{"title":"The effects of social loss and isolation on partner odor investigation and dopamine and oxytocin receptor expression in female prairie voles.","authors":"Adrianna Kirckof, Emma Kneller, Erika M Vitale, Michael A Johnson, Adam S Smith","doi":"10.1016/j.neuropharm.2025.110298","DOIUrl":"10.1016/j.neuropharm.2025.110298","url":null,"abstract":"<p><p>In humans, grief is characterized by intense sadness, intrusive thoughts of the deceased, and intense longing for reunion with the deceased. Human fMRI studies show hyperactivity in emotional pain and motivational centers of the brain when an individual is reminded of a deceased attachment figure, but the molecular underpinnings of these changes in activity are unknown. Prairie voles (Microtus ochrogaster), which establish lifelong social bonds between breeding pairs, also display distress and motivational shifts during periods of prolonged social loss, providing a model to investigate these behavioral and molecular changes at a mechanistic level. Here, a novel odor preference test was used to assess social vs non-social odor investigation, and a sucrose preference test was used to assess non-social, reward-driven motivation. Females that lost a male partner investigated partner- and food-associated cues significantly more than females that lost a female cagemate or remained intact with a male partner. However, females experiencing the loss of a male partner did not change investigation of stranger-associated cues. Western blotting revealed significant increases of dopamine receptor type 1 (DRD1) and oxytocin receptor protein content in specific brain regions in response to the loss of distinct social relationships. Such effects included an increase in DRD1 in the medial preoptic area of the hypothalamus (mPOA) in females experiencing loss of a male partner compared to all other conditions. Pharmacological antagonism of DRD1 in the mPOA blocked the loss-associated increase of investigation of the partner odor but did not affect investigation of food or stranger odors. This reveals a novel dopamine-mediated mechanism for partner-seeking behavior during periods of partner loss in female prairie voles.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":" ","pages":"110298"},"PeriodicalIF":4.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1016/j.neuropharm.2024.110285
Paul Denver, Colm Cunningham
Sepsis is characterised by dysregulated immune responses to infection, leading to multi-organ dysfunction and high rates of mortality. With increasing survival rates in recent years long-term neurological and psychiatric consequences have become more apparent in survivors. Many patients develop sepsis associated encephalopathy (SAE) which encompasses the profound but usually transient neuropsychiatric syndrome delirium but also new brain injury that emerges in the months and years post-sepsis. It now clear that systemic inflammatory signals reach the brain during sepsis and that very significant neuroinflammation ensues. The major brain resident immune cell population, the microglia, has been implicated in acute and chronic cognitive dysfunction in animal models of sepsis based on a growing number of studies using bacterial endotoxin and in polymicrobial sepsis models such as cecal ligation and puncture. The current review explores the effects of sepsis on the brain, focussing on how systemic insults translate to microglial activation and neuroinflammation and how this disrupts neuronal function and integrity. We examine what has been demonstrated specifically with respect to microglial activation, revealing robust evidence for a role for neuroinflammation in sepsis-induced brain sequelae but less clear information on the extent of the specific microglial contribution to this, arising from findings using global knockout mice, non-selective drugs and treatments that equally target peripheral and central compartments. There is, nonetheless, clear evidence that microglia do become activated and do contribute to brain consequences of sepsis thus arguing for improved understanding of these neuroinflammatory processes toward the prevention and treatment of sepsis-induced brain dysfunction.
{"title":"Microglial activation and neuroinflammation in acute and chronic cognitive deficits in sepsis.","authors":"Paul Denver, Colm Cunningham","doi":"10.1016/j.neuropharm.2024.110285","DOIUrl":"10.1016/j.neuropharm.2024.110285","url":null,"abstract":"<p><p>Sepsis is characterised by dysregulated immune responses to infection, leading to multi-organ dysfunction and high rates of mortality. With increasing survival rates in recent years long-term neurological and psychiatric consequences have become more apparent in survivors. Many patients develop sepsis associated encephalopathy (SAE) which encompasses the profound but usually transient neuropsychiatric syndrome delirium but also new brain injury that emerges in the months and years post-sepsis. It now clear that systemic inflammatory signals reach the brain during sepsis and that very significant neuroinflammation ensues. The major brain resident immune cell population, the microglia, has been implicated in acute and chronic cognitive dysfunction in animal models of sepsis based on a growing number of studies using bacterial endotoxin and in polymicrobial sepsis models such as cecal ligation and puncture. The current review explores the effects of sepsis on the brain, focussing on how systemic insults translate to microglial activation and neuroinflammation and how this disrupts neuronal function and integrity. We examine what has been demonstrated specifically with respect to microglial activation, revealing robust evidence for a role for neuroinflammation in sepsis-induced brain sequelae but less clear information on the extent of the specific microglial contribution to this, arising from findings using global knockout mice, non-selective drugs and treatments that equally target peripheral and central compartments. There is, nonetheless, clear evidence that microglia do become activated and do contribute to brain consequences of sepsis thus arguing for improved understanding of these neuroinflammatory processes toward the prevention and treatment of sepsis-induced brain dysfunction.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":" ","pages":"110285"},"PeriodicalIF":4.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24DOI: 10.1016/j.neuropharm.2024.110282
Lilith Fischer, Bjarne Paschke, Franziska Gareis, Michael Schumacher, Philippe Liere, Andreas Hiergeist, André Gessner, Rainer Rupprecht, Inga D Neumann, Oliver J Bosch
The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO). We tested the TSPO ligand etifoxine (ETX) in a rat model of hyper-anxiety and depression-like behavior, i.e., in female and male HAB (high anxiety-related behavior) rats, as well as in respective low anxiety (LAB) and non-selected control (NAB) rats for behavioral, molecular, cellular, and physiological parameters. Daily acute i.p. treatment with ETX or vehicle over 5 or 9 days revealed that ETX was most effective in female HAB rats; it reduced anxiety levels (5 days) and OXT-R binding brain site-specifically (5 and 9 days), and increased spine density (5 days). The behavioral ETX effect exclusively found in female HABs was accompanied by increased 3β5α-THDOC levels, without any effect in female LABs and NABs and on other neurosteroids. In males of all breeding lines, ETX changed a total of 10 out of 23 brain steroids. Passive stress-coping during 10-min forced swimming was not affected by 9-day treatment with ETX, the resulting stress-induced plasma corticosterone levels were higher in ETX-treated NAB rats of both sexes compared with their VEH-treated groups. The fecal bacterial composition was similar but beta diversity differed between HABs and LABs and from NABs independent of sex; ETX treatment had no effect. Therefore, we propose considering the aspect of sex in treatment strategies for anxiety disorders. This is particularly important to establish better treatment regimens for women.
{"title":"The translocator protein 18 kDa (TSPO) ligand etifoxine in an animal model of anxiety: Line- and sex-dependent effects on emotionality, stress reactivity, spine density, oxytocin receptors, steroids, and microbiome composition.","authors":"Lilith Fischer, Bjarne Paschke, Franziska Gareis, Michael Schumacher, Philippe Liere, Andreas Hiergeist, André Gessner, Rainer Rupprecht, Inga D Neumann, Oliver J Bosch","doi":"10.1016/j.neuropharm.2024.110282","DOIUrl":"10.1016/j.neuropharm.2024.110282","url":null,"abstract":"<p><p>The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO). We tested the TSPO ligand etifoxine (ETX) in a rat model of hyper-anxiety and depression-like behavior, i.e., in female and male HAB (high anxiety-related behavior) rats, as well as in respective low anxiety (LAB) and non-selected control (NAB) rats for behavioral, molecular, cellular, and physiological parameters. Daily acute i.p. treatment with ETX or vehicle over 5 or 9 days revealed that ETX was most effective in female HAB rats; it reduced anxiety levels (5 days) and OXT-R binding brain site-specifically (5 and 9 days), and increased spine density (5 days). The behavioral ETX effect exclusively found in female HABs was accompanied by increased 3β5α-THDOC levels, without any effect in female LABs and NABs and on other neurosteroids. In males of all breeding lines, ETX changed a total of 10 out of 23 brain steroids. Passive stress-coping during 10-min forced swimming was not affected by 9-day treatment with ETX, the resulting stress-induced plasma corticosterone levels were higher in ETX-treated NAB rats of both sexes compared with their VEH-treated groups. The fecal bacterial composition was similar but beta diversity differed between HABs and LABs and from NABs independent of sex; ETX treatment had no effect. Therefore, we propose considering the aspect of sex in treatment strategies for anxiety disorders. This is particularly important to establish better treatment regimens for women.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":" ","pages":"110282"},"PeriodicalIF":4.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.neuropharm.2024.110239
Ahmed Hasan , Alberto Repici , Anna Paola Capra , Deborah Mannino , Valentina Bova , Antonio Catalfamo , Michela Campolo , Irene Paterniti , Emanuela Esposito , Alessio Ardizzone
Spinal cord injury (SCI) leads to severe and lasting impairments in motor and sensory functions. The intense inflammatory response following SCI is a significant challenge, and autophagy has emerged as a key factor in the recovery process. The C-C chemokine receptor type 1 (CCR1), a G-protein coupled receptor, plays a crucial role in managing the chemokine response under stress. BX471, a selective and potent CCR1 antagonist, has been explored in various disease contexts for its therapeutic potential. In this study, we assessed the effects of BX471 in a mouse model of SCI. The treatment was administered at doses of 3 and 10 mg/kg, 1 h and 6 h after the injury occurred. Results showed that BX471 significantly improved tissue structure by positively influencing autophagy and reducing inflammation. Inflammatory markers, including CCR1 ligands RANTES, MIP-1α, TNF-α, and IL-1β, were measured using Western blot analysis. Additionally, histological evaluations revealed that BX471 effectively decreased infiltration and reduced astrocyte and microglial activation, supporting the idea that enhancing autophagy through CCR1 inhibition could promote neuronal survival. The highest efficacy was observed at the 10 mg/kg dose, leading to optimal out-comes across the assessments. These findings suggest that CCR1 blockade with BX471 may offer a promising therapeutic strategy for SCI, addressing a critical gap in the current pharmacological treatment options.
{"title":"CCR1 antagonist as a potential modulator of inflammatory, autophagic, and apoptotic markers in spinal cord injury","authors":"Ahmed Hasan , Alberto Repici , Anna Paola Capra , Deborah Mannino , Valentina Bova , Antonio Catalfamo , Michela Campolo , Irene Paterniti , Emanuela Esposito , Alessio Ardizzone","doi":"10.1016/j.neuropharm.2024.110239","DOIUrl":"10.1016/j.neuropharm.2024.110239","url":null,"abstract":"<div><div>Spinal cord injury (SCI) leads to severe and lasting impairments in motor and sensory functions. The intense inflammatory response following SCI is a significant challenge, and autophagy has emerged as a key factor in the recovery process. The C-C chemokine receptor type 1 (CCR1), a G-protein coupled receptor, plays a crucial role in managing the chemokine response under stress. BX471, a selective and potent CCR1 antagonist, has been explored in various disease contexts for its therapeutic potential. In this study, we assessed the effects of BX471 in a mouse model of SCI. The treatment was administered at doses of 3 and 10 mg/kg, 1 h and 6 h after the injury occurred. Results showed that BX471 significantly improved tissue structure by positively influencing autophagy and reducing inflammation. Inflammatory markers, including CCR1 ligands RANTES, MIP-1α, TNF-α, and IL-1β, were measured using Western blot analysis. Additionally, histological evaluations revealed that BX471 effectively decreased infiltration and reduced astrocyte and microglial activation, supporting the idea that enhancing autophagy through CCR1 inhibition could promote neuronal survival. The highest efficacy was observed at the 10 mg/kg dose, leading to optimal out-comes across the assessments. These findings suggest that CCR1 blockade with BX471 may offer a promising therapeutic strategy for SCI, addressing a critical gap in the current pharmacological treatment options.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"264 ","pages":"Article 110239"},"PeriodicalIF":4.6,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142743145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1016/j.neuropharm.2024.110237
Jingping Sun , Qidong Zhang , Ying Li , Yunhe Zhu , Nengwei Hu , Junmin Wang , Jian Mao , Wu Fan , Qingzhao Shi , Guobi Chai , Jianping Xie
Research on nicotine's neurobiological effects has rarely focused on aerosols, despite their primary role in tobacco product consumption. Here, we utilized in vivo electrophysiology to examine brain activity in mice exposed to nicotine aerosols, both alone and with flavor additives (citric acid and menthol). Local field potential (LFP) recordings from the nucleus accumbens (NAc), basolateral amygdala (BLA), ventral tegmental area (VTA), and ventral posteromedial nucleus (VPM) were analyzed under saline, nicotine, nicotine with citric acid(CA + NIC), and nicotine with menthol(MENT + NIC) conditions. Nicotine exposure significantly reduced power spectral density (PSD) in the NAc-Alpha, NAc-Beta, and BLA-Beta bands, unaffected by flavor additives. Coherence between key brain regions (e.g., VPM-VTA in Beta, VPM-BLA in Alpha) also decreased with nicotine but was restored with citric acid or menthol, suggesting their role in mitigating nicotine's disruptive effects on neural synchronization. Our findings show that LFPs can effectively capture nicotine's neural effects and highlight the modulatory role of flavor additives, offering new insights into nicotine exposure management and tobacco product design.
{"title":"Neural modulation by nicotine aerosols and the role of flavor additives: insights from local field potentials in mice","authors":"Jingping Sun , Qidong Zhang , Ying Li , Yunhe Zhu , Nengwei Hu , Junmin Wang , Jian Mao , Wu Fan , Qingzhao Shi , Guobi Chai , Jianping Xie","doi":"10.1016/j.neuropharm.2024.110237","DOIUrl":"10.1016/j.neuropharm.2024.110237","url":null,"abstract":"<div><div>Research on nicotine's neurobiological effects has rarely focused on aerosols, despite their primary role in tobacco product consumption. Here, we utilized in vivo electrophysiology to examine brain activity in mice exposed to nicotine aerosols, both alone and with flavor additives (citric acid and menthol). Local field potential (LFP) recordings from the nucleus accumbens (NAc), basolateral amygdala (BLA), ventral tegmental area (VTA), and ventral posteromedial nucleus (VPM) were analyzed under saline, nicotine, nicotine with citric acid(CA + NIC), and nicotine with menthol(MENT + NIC) conditions. Nicotine exposure significantly reduced power spectral density (PSD) in the NAc-Alpha, NAc-Beta, and BLA-Beta bands, unaffected by flavor additives. Coherence between key brain regions (e.g., VPM-VTA in Beta, VPM-BLA in Alpha) also decreased with nicotine but was restored with citric acid or menthol, suggesting their role in mitigating nicotine's disruptive effects on neural synchronization. Our findings show that LFPs can effectively capture nicotine's neural effects and highlight the modulatory role of flavor additives, offering new insights into nicotine exposure management and tobacco product design.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"264 ","pages":"Article 110237"},"PeriodicalIF":4.6,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Codeine is a natural opiate extracted from opium poppy (Papaver somniferum) and used to alleviate mild to moderate pain. The analgesic effect of this molecule results from its metabolism into morphine which is an agonist of the mu opioid receptor. Morphine's major metabolite morphine-3-glucuronide induces both thermal and mechanical hypersensitivies while codeine-6-glucuronide has been proposed to be antinociceptive. However, sex differences in codeine antinociceptive effect and pharmacokinetics were barely studied. To this purpose, we injected male and female mice with codeine (2.5, 5, 10, 20 and 40 mg/kg) and thermal hypersensitivity was assessed 30 min after injection using the Tail Immersion Test. Moreover, both peripheral and central metabolism of codeine were evaluated respectively in the blood or pain-related brain structures in the central nervous system. The amounts of codeine and its metabolites were quantified using the isotopic dilution method by liquid chromatography coupled to a mass spectrometer. Our results show that codeine induces a greater antinociceptive effect in males than females mice independently of the estrous cycle. Moreover, major sex differences were found in the peripheral metabolism of this molecule, with higher amounts of pronociceptive morphine-3-glucuronide and less antinociceptive codeine-6-glucuronide in females than in males. Concerning the central metabolism of codeine, we did not find significant sex differences in pain-related brain structures. Collectively, these findings support a greater codeine antinociceptive effect in males than females in mice. These sex differences could be influenced by a higher peripheral metabolism of this molecule in female mice rather than central metabolism.
{"title":"Sex differences in the antinociceptive effect of codeine and its peripheral but not central metabolism in adult mice","authors":"Volodya Hovhannisyan , Abdel-Karim Berkati , Marine Simonneaux , Florian Gabel , Virginie Andry , Yannick Goumon","doi":"10.1016/j.neuropharm.2024.110228","DOIUrl":"10.1016/j.neuropharm.2024.110228","url":null,"abstract":"<div><div>Codeine is a natural opiate extracted from opium poppy (<em>Papaver somniferum</em>) and used to alleviate mild to moderate pain. The analgesic effect of this molecule results from its metabolism into morphine which is an agonist of the mu opioid receptor. Morphine's major metabolite morphine-3-glucuronide induces both thermal and mechanical hypersensitivies while codeine-6-glucuronide has been proposed to be antinociceptive. However, sex differences in codeine antinociceptive effect and pharmacokinetics were barely studied. To this purpose, we injected male and female mice with codeine (2.5, 5, 10, 20 and 40 mg/kg) and thermal hypersensitivity was assessed 30 min after injection using the Tail Immersion Test. Moreover, both peripheral and central metabolism of codeine were evaluated respectively in the blood or pain-related brain structures in the central nervous system. The amounts of codeine and its metabolites were quantified using the isotopic dilution method by liquid chromatography coupled to a mass spectrometer. Our results show that codeine induces a greater antinociceptive effect in males than females mice independently of the estrous cycle. Moreover, major sex differences were found in the peripheral metabolism of this molecule, with higher amounts of pronociceptive morphine-3-glucuronide and less antinociceptive codeine-6-glucuronide in females than in males. Concerning the central metabolism of codeine, we did not find significant sex differences in pain-related brain structures. Collectively, these findings support a greater codeine antinociceptive effect in males than females in mice. These sex differences could be influenced by a higher peripheral metabolism of this molecule in female mice rather than central metabolism.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"264 ","pages":"Article 110228"},"PeriodicalIF":4.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.neuropharm.2024.110225
Kate M. Witt, David N. Harper, Bart A. Ellenbroek
Social play is a highly rewarding activity seen across mammalian species that is vital for neurobehavioural development. Dysfunctions in social play are seen across psychiatric and neurodevelopmental disorders positing the importance of understanding the neurobiological mechanisms underlying social play. A multitude of neurotransmitter systems have been implicated in social play, with the present study focused on the role of dopamine, specifically the dopamine D1 receptor. Pharmacological manipulations of dopamine and the D1 receptor reveal mixed findings. Given the limited selectivity of pharmacological tools, we explored the role of the dopamine D1 receptor in social play using dopamine D1 mutant (DAD1−/−) rats which have a genetic reduction in functional D1 receptors. Aligning with the rewarding properties of social play, the present study also examined anticipatory behaviour for the opportunity to engage in social play. Contrary to our predictions, DAD1−/− mutants initiated and engaged in social play similarly to wildtype controls with only subtle differences in specific elements of play behaviour. Subjects did not differ in 50 kHz vocalisations emitted during play, suggesting similar levels of consummatory pleasure. Although subjects initiated and engaged in play similarly, as predicted, DAD1−/− mutants displayed deficits in anticipatory behaviour and pleasure for the opportunity to engage in social play. These findings support a prominent role of the D1 receptor in anticipatory behaviour, with further research needed to elucidate its role in social play.
{"title":"The role of the dopamine D1 receptor in anticipatory pleasure and social play","authors":"Kate M. Witt, David N. Harper, Bart A. Ellenbroek","doi":"10.1016/j.neuropharm.2024.110225","DOIUrl":"10.1016/j.neuropharm.2024.110225","url":null,"abstract":"<div><div>Social play is a highly rewarding activity seen across mammalian species that is vital for neurobehavioural development. Dysfunctions in social play are seen across psychiatric and neurodevelopmental disorders positing the importance of understanding the neurobiological mechanisms underlying social play. A multitude of neurotransmitter systems have been implicated in social play, with the present study focused on the role of dopamine, specifically the dopamine D1 receptor. Pharmacological manipulations of dopamine and the D1 receptor reveal mixed findings. Given the limited selectivity of pharmacological tools, we explored the role of the dopamine D1 receptor in social play using dopamine D1 mutant (DAD1<sup>−/−</sup>) rats which have a genetic reduction in functional D1 receptors. Aligning with the rewarding properties of social play, the present study also examined anticipatory behaviour for the opportunity to engage in social play. Contrary to our predictions, DAD1<sup>−/−</sup> mutants initiated and engaged in social play similarly to wildtype controls with only subtle differences in specific elements of play behaviour. Subjects did not differ in 50 kHz vocalisations emitted during play, suggesting similar levels of consummatory pleasure. Although subjects initiated and engaged in play similarly, as predicted, DAD1<sup>−/−</sup> mutants displayed deficits in anticipatory behaviour and pleasure for the opportunity to engage in social play. These findings support a prominent role of the D1 receptor in anticipatory behaviour, with further research needed to elucidate its role in social play.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"264 ","pages":"Article 110225"},"PeriodicalIF":4.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.neuropharm.2024.110216
Antonio Matt Reck , David P. Siderovski , Steven G. Kinsey
Pruritus (i.e., the experience that evokes a desire to scratch) is an adaptive process that can become maladaptive, leading to a persistent scratch-itch cycle that potentiates pruritus and increases the risk of infection. Cannabinoid drugs have been reported to decrease pruritus, but often at doses that also decrease locomotor activity, which confounds assessments of utility. To determine the utility of cannabinoids in treating pruritus without undesirable adverse effects, the current preclinical study investigated a range of doses of the synthetic cannabinoid agonist, WIN 55,212-2, and two minor Cannabis phytoconstituents, Δ8-tetrahydrocannabinol and β-caryophyllene, in experimentally induced pruritus in male and female C57BL/6J adult mice. WIN 55,212-2 reduced compound 48/80-induced scratching, and this antipruritic effect was prevented by either chemically blocking (via SR144528 antagonism) or genetically deleting the CB2 cannabinoid receptor. The CB2 receptor selective agonist, JWH-133, also attenuated compound 48/80-induced scratching, while the CB1 positive allosteric modulator, ZCZ011, had no effect. Similarly, the minor phytocannabinoid Δ8-tetrahydrocannabinol reduced scratching at doses that did not affect locomotor activity. In contrast, the sesquiterpene cannabis constituent β-caryophyllene induced scratching, acting as a pruritogen. These preclinical data support the continuing investigation of cannabinoid receptor modulation as a potential therapeutic strategy for pruritus.
{"title":"The synthetic cannabinoid agonist WIN 55,212-2 reduces experimental pruritus via CB2 receptor activation","authors":"Antonio Matt Reck , David P. Siderovski , Steven G. Kinsey","doi":"10.1016/j.neuropharm.2024.110216","DOIUrl":"10.1016/j.neuropharm.2024.110216","url":null,"abstract":"<div><div>Pruritus (<em>i.e.</em>, the experience that evokes a desire to scratch) is an adaptive process that can become maladaptive, leading to a persistent scratch-itch cycle that potentiates pruritus and increases the risk of infection. Cannabinoid drugs have been reported to decrease pruritus, but often at doses that also decrease locomotor activity, which confounds assessments of utility. To determine the utility of cannabinoids in treating pruritus without undesirable adverse effects, the current preclinical study investigated a range of doses of the synthetic cannabinoid agonist, WIN 55,212-2, and two minor <em>Cannabis</em> phytoconstituents, Δ<sup>8</sup>-tetrahydrocannabinol and β-caryophyllene, in experimentally induced pruritus in male and female C57BL/6J adult mice. WIN 55,212-2 reduced compound 48/80-induced scratching, and this antipruritic effect was prevented by either chemically blocking (via SR144528 antagonism) or genetically deleting the CB<sub>2</sub> cannabinoid receptor. The CB<sub>2</sub> receptor selective agonist, JWH-133, also attenuated compound 48/80-induced scratching, while the CB<sub>1</sub> positive allosteric modulator, ZCZ011, had no effect. Similarly, the minor phytocannabinoid Δ<sup>8</sup>-tetrahydrocannabinol reduced scratching at doses that did not affect locomotor activity. In contrast, the sesquiterpene <em>cannabis</em> constituent β-caryophyllene induced scratching, acting as a pruritogen. These preclinical data support the continuing investigation of cannabinoid receptor modulation as a potential therapeutic strategy for pruritus.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"264 ","pages":"Article 110216"},"PeriodicalIF":4.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.neuropharm.2024.110226
Daiju Tao , Fajing Li , Xiaochao Zhang , Hui Guo , Renhua Yang , Yuan Yang , Li Zhang , Zhiqiang Shen , Jia Teng , Peng Chen , Bo He
Objective
This study aimed to investigate the effect of 20(R)-ginsenoside Rg3 on autophagy induced by cerebral ischemia‒reperfusion injury (CIRI) in rats and explore its regulation of the PI3K/Akt signaling pathway.
Methods
Middle cerebral artery occlusion/reperfusion (MCAO/R) in male rats was injected intraperitoneally with 20(R)-ginsenoside Rg3 (5, 10, 20 mg/kg) 12 h before modeling, 2 h after ischemia and 12 h after reperfusion. Neurobehavioral and neuronal morphological changes were detected 24 h after brain I/R. In vitro, the OGD/R-induced injury model is replicated in PC12 cells and different concentrations of 20(R)-ginsenoside Rg3 are administered to observe its effects on cell viability and autophagy and PI3K/Akt/mTOR-related protein expression.
Results
Our findings suggest that treatment with 20 mg/kg 20(R)-ginsenoside Rg3 significantly attenuated the neuronal injury, as evidenced by a decreased number of damaged neurons, reduced dissolution of Nissl corpuscles, a fewer autophagosomes, and downregulated expression of Beclin1 and LC3-II/I compared with the MCAO/R group. Furthermore, 20(R)-ginsenoside Rg3 treatment significantly upregulated the expression of p62, p-PI3K, p-AKT, and p-mTOR. In vitro, 20(R)-ginsenoside Rg3 significantly improved the survival rate of cells following OGD/R and markedly attenuated the LY294002 and OGD/R-induced upregulation of Beclin1 and LC3 gene expression. Moreover, 20(R)-ginsenoside Rg3 could rescued the LY294002 and OGD/R-induced downregulation of p62, p-PI3K, p-AKT, and p-mTOR expression.
Conclusions
20(R)-ginsenoside Rg3 attenuates neuronal injury and motor dysfunction following ischemia-reperfusion by inhibiting the activation of autophagy, and its mechanism is related to the upregulation of the PI3K/Akt/mTOR signaling pathway.
{"title":"20(R)-ginsenoside Rg3 protects against focal cerebral ischemia‒reperfusion injury by suppressing autophagy via PI3K/Akt/mTOR signaling pathway","authors":"Daiju Tao , Fajing Li , Xiaochao Zhang , Hui Guo , Renhua Yang , Yuan Yang , Li Zhang , Zhiqiang Shen , Jia Teng , Peng Chen , Bo He","doi":"10.1016/j.neuropharm.2024.110226","DOIUrl":"10.1016/j.neuropharm.2024.110226","url":null,"abstract":"<div><h3>Objective</h3><div>This study aimed to investigate the effect of 20(<em>R</em>)-ginsenoside Rg3 on autophagy induced by cerebral ischemia‒reperfusion injury (CIRI) in rats and explore its regulation of the PI3K/Akt signaling pathway.</div></div><div><h3>Methods</h3><div>Middle cerebral artery occlusion/reperfusion (MCAO/R) in male rats was injected intraperitoneally with 20(R)-ginsenoside Rg3 (5, 10, 20 mg/kg) 12 h before modeling, 2 h after ischemia and 12 h after reperfusion. Neurobehavioral and neuronal morphological changes were detected 24 h after brain I/R. <em>In vitro</em>, the OGD/R-induced injury model is replicated in PC12 cells and different concentrations of 20(R)-ginsenoside Rg3 are administered to observe its effects on cell viability and autophagy and PI3K/Akt/mTOR-related protein expression.</div></div><div><h3>Results</h3><div>Our findings suggest that treatment with 20 mg/kg 20(<em>R</em>)-ginsenoside Rg3 significantly attenuated the neuronal injury, as evidenced by a decreased number of damaged neurons, reduced dissolution of Nissl corpuscles, a fewer autophagosomes, and downregulated expression of Beclin1 and LC3-II/I compared with the MCAO/R group. Furthermore, 20(<em>R</em>)-ginsenoside Rg3 treatment significantly upregulated the expression of p62, p-PI3K, p-AKT, and p-mTOR. <em>In vitro</em>, 20(<em>R</em>)-ginsenoside Rg3 significantly improved the survival rate of cells following OGD/R and markedly attenuated the LY294002 and OGD/R-induced upregulation of Beclin1 and LC3 gene expression. Moreover, 20(<em>R</em>)-ginsenoside Rg3 could rescued the LY294002 and OGD/R-induced downregulation of p62, p-PI3K, p-AKT, and p-mTOR expression.</div></div><div><h3>Conclusions</h3><div>20(<em>R</em>)-ginsenoside Rg3 attenuates neuronal injury and motor dysfunction following ischemia-reperfusion by inhibiting the activation of autophagy, and its mechanism is related to the upregulation of the PI3K/Akt/mTOR signaling pathway.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"263 ","pages":"Article 110226"},"PeriodicalIF":4.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}