Pub Date : 2024-04-03Epub Date: 2024-02-29DOI: 10.1097/WNR.0000000000002016
Hongxue Tian, Yongsheng Yuan, Kezhong Zhang
This study investigated the sensory nerve function in people with different subtypes of Parkinson's disease (PD), which included the tremor-dominant (TD) group (n = 30), postural instability and gait disorder (PIGD) group (n = 33), and healthy-controls (HC) group (n = 33). Sural nerve's current perception threshold (CPT) and pain tolerance threshold (PTT) in both feet were measured at different frequencies. Results were evaluated using the mini-mental state examination (MMSE), Hoehn Yahr scale (H-Y) , and 3-meter timed-up-and-go-test (TUGT). The MMSE scores of the TD and HC groups were higher than those of the PIGD group (TD < HC). The 3-meter TUGT scores of the PIGD group were higher than theTD and HC groups (TD > HC). The PIGD patients experienced a significantly shorter disease duration and higher H-Y score than the TD patients ( P < 0.05). The values of 2 KHz CPT of left-side (CPTL), 2KHz CPT of right-side (CPTR), and 5 Hz CPTR in the PIGD group were significantly higher compared to the TD and HC groups ( P < 0.05, Bonferroni correction). Additionally, the values of 250 Hz CPTL, 5 Hz CPTL, 250 Hz CPTR, 2 kHz PTT of left-side (PTTL), 250 Hz PTTL, and 5 Hz PTTL in the PIGD group were significantly elevated relative to the TD group ( P < 0.05, Bonferroni correction). Distinctive current threshold perception and PTT of the sural nerve can be observed in patients with varying PD subtypes, and sensory nerve conduction threshold electrical diagnostic testing can detect these discrepancies in sensory nerve function.
{"title":"Application of sensory nerve quantitative tests to analyze the subtypes of motor disorders in Parkinson's disease.","authors":"Hongxue Tian, Yongsheng Yuan, Kezhong Zhang","doi":"10.1097/WNR.0000000000002016","DOIUrl":"10.1097/WNR.0000000000002016","url":null,"abstract":"<p><p>This study investigated the sensory nerve function in people with different subtypes of Parkinson's disease (PD), which included the tremor-dominant (TD) group (n = 30), postural instability and gait disorder (PIGD) group (n = 33), and healthy-controls (HC) group (n = 33). Sural nerve's current perception threshold (CPT) and pain tolerance threshold (PTT) in both feet were measured at different frequencies. Results were evaluated using the mini-mental state examination (MMSE), Hoehn Yahr scale (H-Y) , and 3-meter timed-up-and-go-test (TUGT). The MMSE scores of the TD and HC groups were higher than those of the PIGD group (TD < HC). The 3-meter TUGT scores of the PIGD group were higher than theTD and HC groups (TD > HC). The PIGD patients experienced a significantly shorter disease duration and higher H-Y score than the TD patients ( P < 0.05). The values of 2 KHz CPT of left-side (CPTL), 2KHz CPT of right-side (CPTR), and 5 Hz CPTR in the PIGD group were significantly higher compared to the TD and HC groups ( P < 0.05, Bonferroni correction). Additionally, the values of 250 Hz CPTL, 5 Hz CPTL, 250 Hz CPTR, 2 kHz PTT of left-side (PTTL), 250 Hz PTTL, and 5 Hz PTTL in the PIGD group were significantly elevated relative to the TD group ( P < 0.05, Bonferroni correction). Distinctive current threshold perception and PTT of the sural nerve can be observed in patients with varying PD subtypes, and sensory nerve conduction threshold electrical diagnostic testing can detect these discrepancies in sensory nerve function.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03Epub Date: 2024-03-07DOI: 10.1097/WNR.0000000000002023
Hongda Yi, Bin Zhu, Caihong Zheng, Zhenyang Ying, Mei Cheng
Chronic postsurgical pain (CPSP) with high incidence negatively impacts the quality of life. X-C motif chemokine 13 (CXCL13) has been associated with postsurgery inflammation and exacerbates neuropathic pain in patients with CPSP. This study was aimed to illustrate the relationship between CXCL13 and nod-like receptor protein-3 (NLRP3), which is also involved in CPSP. A CPSP model was constructed by skin/muscle incision and retraction (SMIR) in right medial thigh, and the rats were divided into three groups: Sham, SMIR, and SMIR + anti-CXCL13 (intrathecally injected with anti-CXCL13 antibody). Then, the paw withdrawal threshold (PWT) score of rats was recorded. Primary rat astrocytes were isolated and treated with recombinant protein CXCL13 with or without NLRP3 inhibitor INF39. The expressions of CXCL13, CXCR5, IL-1β, IL-18, GFAP, NLRP3, and Caspase-1 p20 were detected by real-time quantitative reverse transcription PCR, western blot, ELISA, immunocytochemistry, and immunofluorescence analyses. The anti-CXCL13 antibody alleviated SMIR-induced decreased PWT and increased expression of GFAP, CXCL13, CXCR5, NLRP3, and Caspase-1 p20 in spinal cord tissues. The production of IL-1β, IL-18, and expression of CXCL13, CXCR5, GFAP, NLRP3, and Caspase-1 p20 were increased in recombinant protein CXCL13-treated primary rat astrocytes in a dose-dependent manner. Treatment with NLRP3 inhibitor INF39 inhibited the function of recombinant protein CXCL13 in primary rat astrocytes. The CXCL13/CXCR5 signaling could promote neuropathic pain, astrocytes activation, and NLRP3 inflammasome activation in CPSP model rats by targeting NLRP3. NLRP3 may be a potential target for the management of CPSP.
{"title":"CXCL13/CXCR5 promote chronic postsurgical pain and astrocyte activation in rats by targeting NLRP3.","authors":"Hongda Yi, Bin Zhu, Caihong Zheng, Zhenyang Ying, Mei Cheng","doi":"10.1097/WNR.0000000000002023","DOIUrl":"10.1097/WNR.0000000000002023","url":null,"abstract":"<p><p>Chronic postsurgical pain (CPSP) with high incidence negatively impacts the quality of life. X-C motif chemokine 13 (CXCL13) has been associated with postsurgery inflammation and exacerbates neuropathic pain in patients with CPSP. This study was aimed to illustrate the relationship between CXCL13 and nod-like receptor protein-3 (NLRP3), which is also involved in CPSP. A CPSP model was constructed by skin/muscle incision and retraction (SMIR) in right medial thigh, and the rats were divided into three groups: Sham, SMIR, and SMIR + anti-CXCL13 (intrathecally injected with anti-CXCL13 antibody). Then, the paw withdrawal threshold (PWT) score of rats was recorded. Primary rat astrocytes were isolated and treated with recombinant protein CXCL13 with or without NLRP3 inhibitor INF39. The expressions of CXCL13, CXCR5, IL-1β, IL-18, GFAP, NLRP3, and Caspase-1 p20 were detected by real-time quantitative reverse transcription PCR, western blot, ELISA, immunocytochemistry, and immunofluorescence analyses. The anti-CXCL13 antibody alleviated SMIR-induced decreased PWT and increased expression of GFAP, CXCL13, CXCR5, NLRP3, and Caspase-1 p20 in spinal cord tissues. The production of IL-1β, IL-18, and expression of CXCL13, CXCR5, GFAP, NLRP3, and Caspase-1 p20 were increased in recombinant protein CXCL13-treated primary rat astrocytes in a dose-dependent manner. Treatment with NLRP3 inhibitor INF39 inhibited the function of recombinant protein CXCL13 in primary rat astrocytes. The CXCL13/CXCR5 signaling could promote neuropathic pain, astrocytes activation, and NLRP3 inflammasome activation in CPSP model rats by targeting NLRP3. NLRP3 may be a potential target for the management of CPSP.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to investigate the functional connectivity (FC) changes of the habenula (Hb) among patients with major depressive disorder (MDD) after 12 weeks of duloxetine treatment (MDD12). Patients who were diagnosed with MDD for the first time and were drug-naïve were recruited at baseline as cases. Healthy controls (HCs) matched for sex, age, and education level were also recruited at the same time. At baseline, all participants underwent resting-state functional MRI. FC analyses were performed using the Hb seed region of interest, and three groups including HCs, MDD group and MDD12 group were compared using whole-brain voxel-wise comparisons. Compared to the HCs, the MDD group had decreased FC between the Hb and the right anterior cingulate cortex at baseline. Compared to the HCs, the FC between the Hb and the left medial superior frontal gyrus decreased in the MDD12 group. Additionally, the FC between the left precuneus, bilateral cuneus and Hb increased in the MDD12 group than that in the MDD group. No significant correlation was found between HDRS-17 and the FC between the Hb, bilateral cuneus, and the left precuneus in the MDD12 group. Our study suggests that the FC between the post-default mode network and Hb may be the treatment mechanism of duloxetine and the treatment mechanisms and the pathogenesis of depression may be independent of each other.
本研究旨在探讨重度抑郁障碍(MDD)患者在接受 12 周度洛西汀治疗(MDD12)后,哈伯脑(Hb)的功能连接性(FC)变化。研究招募了首次被诊断为重度抑郁障碍(MDD)且未接受过药物治疗的患者作为基线病例。同时还招募了性别、年龄和教育程度相匹配的健康对照组(HCs)。基线时,所有参与者都接受了静息态功能磁共振成像检查。使用 Hb 种子感兴趣区进行 FC 分析,并使用全脑体素比较法对包括 HCs、MDD 组和 MDD12 组在内的三组进行比较。与 HCs 相比,MDD 组在基线时 Hb 与右前扣带回皮层之间的 FC 值降低。与普通人群相比,MDD12 组的 Hb 与左侧内侧额上回之间的 FC 有所下降。此外,与 MDD 组相比,MDD12 组患者左侧楔前叶、双侧楔叶和 Hb 之间的 FC 增加。在 MDD12 组中,HDRS-17 与 Hb、双侧楔丘和左侧楔前丘之间的 FC 之间没有发现明显的相关性。我们的研究表明,后默认模式网络与Hb之间的FC可能是度洛西汀的治疗机制,而治疗机制与抑郁症的发病机制可能是相互独立的。
{"title":"Functional connectivity between the habenula and posterior default mode network contributes to the response of the duloxetine effect in major depressive disorder.","authors":"Yanru Wu, Zhaosong Chu, Xianyu Chen, Yun Zhu, Xiufeng Xu, Zonglin Shen","doi":"10.1097/WNR.0000000000002019","DOIUrl":"10.1097/WNR.0000000000002019","url":null,"abstract":"<p><p>This study aims to investigate the functional connectivity (FC) changes of the habenula (Hb) among patients with major depressive disorder (MDD) after 12 weeks of duloxetine treatment (MDD12). Patients who were diagnosed with MDD for the first time and were drug-naïve were recruited at baseline as cases. Healthy controls (HCs) matched for sex, age, and education level were also recruited at the same time. At baseline, all participants underwent resting-state functional MRI. FC analyses were performed using the Hb seed region of interest, and three groups including HCs, MDD group and MDD12 group were compared using whole-brain voxel-wise comparisons. Compared to the HCs, the MDD group had decreased FC between the Hb and the right anterior cingulate cortex at baseline. Compared to the HCs, the FC between the Hb and the left medial superior frontal gyrus decreased in the MDD12 group. Additionally, the FC between the left precuneus, bilateral cuneus and Hb increased in the MDD12 group than that in the MDD group. No significant correlation was found between HDRS-17 and the FC between the Hb, bilateral cuneus, and the left precuneus in the MDD12 group. Our study suggests that the FC between the post-default mode network and Hb may be the treatment mechanism of duloxetine and the treatment mechanisms and the pathogenesis of depression may be independent of each other.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03Epub Date: 2024-03-01DOI: 10.1097/WNR.0000000000002021
Zhongpei Zhang
In tonal languages, tone perception involves the processing of both acoustic and phonological information conveyed by tonal signals. In Mandarin, in addition to four canonical full tones, there exists a group of weak syllables known as neutral tones. This study aims to investigate the impact of lexical frequency effects and prosodic information associated with neutral tones on the auditory representation of Mandarin compounds. We initially selected disyllabic compounds as targets, manipulating their lexical frequencies and prosodic structures. Subsequently, these target compounds were embedded into selected sentences and auditorily presented to native speakers. During the experiments, participants engaged in lexical decision tasks while their event-related potentials were recorded. The results showed that the auditory lexical representation of disyllabic compounds was modulated by lexical frequency effects. Rare compounds and compounds with rare first constituents elicited larger N400 effects compared to frequent compounds. Furthermore, neutral tones were found to play a role in the processing, resulting in larger N400 effects. Our findings showed significantly increased amplitudes of the N400 component, suggesting that the processing of rare compounds and compounds with neutral tones may require more cognitive resources. Additionally, we observed an interaction effect between lexical frequency and neutral tones, indicating that they could serve as determining cues in the auditory processing of disyllabic compounds.
{"title":"Frequency effects can modulate the neural correlates of prosodic processing in Mandarin.","authors":"Zhongpei Zhang","doi":"10.1097/WNR.0000000000002021","DOIUrl":"10.1097/WNR.0000000000002021","url":null,"abstract":"<p><p>In tonal languages, tone perception involves the processing of both acoustic and phonological information conveyed by tonal signals. In Mandarin, in addition to four canonical full tones, there exists a group of weak syllables known as neutral tones. This study aims to investigate the impact of lexical frequency effects and prosodic information associated with neutral tones on the auditory representation of Mandarin compounds. We initially selected disyllabic compounds as targets, manipulating their lexical frequencies and prosodic structures. Subsequently, these target compounds were embedded into selected sentences and auditorily presented to native speakers. During the experiments, participants engaged in lexical decision tasks while their event-related potentials were recorded. The results showed that the auditory lexical representation of disyllabic compounds was modulated by lexical frequency effects. Rare compounds and compounds with rare first constituents elicited larger N400 effects compared to frequent compounds. Furthermore, neutral tones were found to play a role in the processing, resulting in larger N400 effects. Our findings showed significantly increased amplitudes of the N400 component, suggesting that the processing of rare compounds and compounds with neutral tones may require more cognitive resources. Additionally, we observed an interaction effect between lexical frequency and neutral tones, indicating that they could serve as determining cues in the auditory processing of disyllabic compounds.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03Epub Date: 2024-03-07DOI: 10.1097/WNR.0000000000002027
Jianing Shen, Junhua Xie, Liyuan Ye, Jian Mao, Shihao Sun, Weiwei Chen, Sijia Wei, Sisi Ruan, Linhai Wang, Hangcui Hu, Jingjing Wei, Yao Zheng, Zhouyan Xi, Ke Wang, Yan Xu
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The main bioactive component of green tea polyphenols (-)-epigallocatechin-3-gallate (EGCG) exerts protective effects against diseases such as neurodegenerative diseases and cancer. Therefore, this study investigated the effect of EGCG on the amelioration of neural damage in a chronic PD mouse model induced by α-synuclein preformed fibrils (α-syn-PFFs). A total of 20 C57BL/6J female mice were randomly divided into 3 groups: control group (saline, n = 6), model group (PFFs, n = 7), and prevention group (EGCG+PFFs, n = 7). A chronic PD mouse model was obtained by the administration of α-syn-PFFs by stereotaxic localization in the striatum. Behavioral tests were performed to evaluate PD-related anxiety-like behavior and motor impairments in the long-term PD progression. Tyrosine hydroxylase (TH) immuno-positive neurons and Ser129-phosphorylated α-syn (p-α-syn) were identified by immunohistochemistry. Pro-inflammatory and anti-inflammatory cytokines were measured by real-time quantitative PCR. EGCG pretreatment reduced anxiety-like behavior and motor impairments as revealed by the long-term behavioral test (2 weeks, 1 month, 3 months, and 6 months) on PD mice. EGCG also ameliorated PFF-induced degeneration of TH immuno-positive neurons and accumulation of p-α-syn in the SN and striatum at 6 months. Additionally, EGCG reduced the expression of pro-inflammatory cytokines while promoting the release of anti-inflammatory cytokines. EGCG exerts a neuroprotective effect on long-term progression of the PD model.
{"title":"Neuroprotective effect of green tea extract (-)-epigallocatechin-3-gallate in a preformed fibril-induced mouse model of Parkinson's disease.","authors":"Jianing Shen, Junhua Xie, Liyuan Ye, Jian Mao, Shihao Sun, Weiwei Chen, Sijia Wei, Sisi Ruan, Linhai Wang, Hangcui Hu, Jingjing Wei, Yao Zheng, Zhouyan Xi, Ke Wang, Yan Xu","doi":"10.1097/WNR.0000000000002027","DOIUrl":"10.1097/WNR.0000000000002027","url":null,"abstract":"<p><p>Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The main bioactive component of green tea polyphenols (-)-epigallocatechin-3-gallate (EGCG) exerts protective effects against diseases such as neurodegenerative diseases and cancer. Therefore, this study investigated the effect of EGCG on the amelioration of neural damage in a chronic PD mouse model induced by α-synuclein preformed fibrils (α-syn-PFFs). A total of 20 C57BL/6J female mice were randomly divided into 3 groups: control group (saline, n = 6), model group (PFFs, n = 7), and prevention group (EGCG+PFFs, n = 7). A chronic PD mouse model was obtained by the administration of α-syn-PFFs by stereotaxic localization in the striatum. Behavioral tests were performed to evaluate PD-related anxiety-like behavior and motor impairments in the long-term PD progression. Tyrosine hydroxylase (TH) immuno-positive neurons and Ser129-phosphorylated α-syn (p-α-syn) were identified by immunohistochemistry. Pro-inflammatory and anti-inflammatory cytokines were measured by real-time quantitative PCR. EGCG pretreatment reduced anxiety-like behavior and motor impairments as revealed by the long-term behavioral test (2 weeks, 1 month, 3 months, and 6 months) on PD mice. EGCG also ameliorated PFF-induced degeneration of TH immuno-positive neurons and accumulation of p-α-syn in the SN and striatum at 6 months. Additionally, EGCG reduced the expression of pro-inflammatory cytokines while promoting the release of anti-inflammatory cytokines. EGCG exerts a neuroprotective effect on long-term progression of the PD model.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11060057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lethal giant larvae 1 (LGL1) is originally recognized as a tumor suppressor, implicated in maintaining cell polarity in Drosophila and mammalian cells. Cell polarity plays a crucial role in tumorigenesis. We previously established Pax2-LGL1 -/- conditional knockout mice but did not focus on the tumorigenesis in cerebellar primordium. HE staining was used to detect the morphological structure of the cerebellar primordium during early embryonic development in Pax2-LGL1 -/- mice. Immunofluorescence assays were used to detect the expression of polar molecules. TUNEL staining assessed tissue apoptosis. Our findings reveal that deletion of LGL1 leads to the emergence of neuroblastoma-like tissues within the cerebellum primordium during early embryogenesis. This outcome can be attributed to alterations in expression patterns of polar molecules Cdc42 and β-catenin following early deletion of LGL1, resulting in loss of cell polarity among neuroepithelial cells and subsequent formation of tumor-like tissues. However, further histological examination demonstrated that these tumor-like tissues disappear from embryonic day 15.5 onwards within the cerebellar primordium of Pax2-LGL1 -/- mice due to apoptosis-mediated cellular compensation. Our data emphasize the importance of LGL1 in maintaining neuroepithelial cell polarity and reveal a novel role for LGL1 in regulating tumorigenesis and ablation in the cerebellar primordium.
{"title":"Role of LGL1 in cerebellar primordium of embryonic mice.","authors":"Congzhe Hou, Aizhen Zhang, Yecheng Jin, Chao Ye, Runze Li, Zhenhua Liu, Jiangang Gao","doi":"10.1097/WNR.0000000000002018","DOIUrl":"10.1097/WNR.0000000000002018","url":null,"abstract":"<p><p>Lethal giant larvae 1 (LGL1) is originally recognized as a tumor suppressor, implicated in maintaining cell polarity in Drosophila and mammalian cells. Cell polarity plays a crucial role in tumorigenesis. We previously established Pax2-LGL1 -/- conditional knockout mice but did not focus on the tumorigenesis in cerebellar primordium. HE staining was used to detect the morphological structure of the cerebellar primordium during early embryonic development in Pax2-LGL1 -/- mice. Immunofluorescence assays were used to detect the expression of polar molecules. TUNEL staining assessed tissue apoptosis. Our findings reveal that deletion of LGL1 leads to the emergence of neuroblastoma-like tissues within the cerebellum primordium during early embryogenesis. This outcome can be attributed to alterations in expression patterns of polar molecules Cdc42 and β-catenin following early deletion of LGL1, resulting in loss of cell polarity among neuroepithelial cells and subsequent formation of tumor-like tissues. However, further histological examination demonstrated that these tumor-like tissues disappear from embryonic day 15.5 onwards within the cerebellar primordium of Pax2-LGL1 -/- mice due to apoptosis-mediated cellular compensation. Our data emphasize the importance of LGL1 in maintaining neuroepithelial cell polarity and reveal a novel role for LGL1 in regulating tumorigenesis and ablation in the cerebellar primordium.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03Epub Date: 2024-03-09DOI: 10.1097/WNR.0000000000002015
Hang Liu, Yuke Zhong, Guohui Liu, Huahua Su, Zhihui Liu, Jiahao Wei, Lijuan Mo, Changhong Tan, Xi Liu, Lifen Chen
Language dysfunction is common in Parkinson's disease (PD) patients, among which, the decline of semantic fluency is usually observed. This study aims to explore the relationship between white matter (WM) alterations and semantic fluency changes in PD patients. 127 PD patients from the Parkinson's Progression Markers Initiative cohort who received diffusion tensor imaging scanning, clinical assessment and semantic fluency test (SFT) were included. Tract-based special statistics, automated fiber quantification, graph-theoretical and network-based analyses were performed to analyze the correlation between WM structural changes, brain network features and semantic fluency in PD patients. Fractional anisotropy of corpus callosum, anterior thalamic radiation, inferior front-occipital fasciculus, and uncinate fasciculus, were positively correlated with SFT scores, while a negative correlation was identified between radial diffusion of the corpus callosum, inferior longitudinal fasciculus, and SFT scores. Automatic fiber quantification identified similar alterations with more details in these WM tracts. Brain network analysis positively correlated SFT scores with nodal efficiency of cerebellar lobule VIII, and nodal local efficiency of cerebellar lobule X. WM integrity and myelin integrity in the corpus callosum and several other language-related WM tracts may influence the semantic function in PD patients. Damage to the cerebellum lobule VIII and lobule X may also be involved in semantic dysfunction in PD patients.
{"title":"Corpus callosum and cerebellum participate in semantic dysfunction of Parkinson's disease: a diffusion tensor imaging-based cross-sectional study.","authors":"Hang Liu, Yuke Zhong, Guohui Liu, Huahua Su, Zhihui Liu, Jiahao Wei, Lijuan Mo, Changhong Tan, Xi Liu, Lifen Chen","doi":"10.1097/WNR.0000000000002015","DOIUrl":"10.1097/WNR.0000000000002015","url":null,"abstract":"<p><p>Language dysfunction is common in Parkinson's disease (PD) patients, among which, the decline of semantic fluency is usually observed. This study aims to explore the relationship between white matter (WM) alterations and semantic fluency changes in PD patients. 127 PD patients from the Parkinson's Progression Markers Initiative cohort who received diffusion tensor imaging scanning, clinical assessment and semantic fluency test (SFT) were included. Tract-based special statistics, automated fiber quantification, graph-theoretical and network-based analyses were performed to analyze the correlation between WM structural changes, brain network features and semantic fluency in PD patients. Fractional anisotropy of corpus callosum, anterior thalamic radiation, inferior front-occipital fasciculus, and uncinate fasciculus, were positively correlated with SFT scores, while a negative correlation was identified between radial diffusion of the corpus callosum, inferior longitudinal fasciculus, and SFT scores. Automatic fiber quantification identified similar alterations with more details in these WM tracts. Brain network analysis positively correlated SFT scores with nodal efficiency of cerebellar lobule VIII, and nodal local efficiency of cerebellar lobule X. WM integrity and myelin integrity in the corpus callosum and several other language-related WM tracts may influence the semantic function in PD patients. Damage to the cerebellum lobule VIII and lobule X may also be involved in semantic dysfunction in PD patients.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1097/wnr.0000000000002022
Zhilan Tu, Pengpeng Jin, Qinghua Wang, Yanlin Feng, Xinjuan Chu, Lin Fu, Shuangxing Hou, Weiwei Li
We aimed to clarify the correlation between dynamic change of blood HSP70 and the prognosis of thrombolysis in human and rats, so as to explain the neuroprotection and early warning role of HSP70 in cerebral ischemia-reperfusion. Forty-two patients with acute ischemic stroke were divided into two groups according to the time from onset to thrombolytic therapy: 0 h-3 h (27 patients) and 3-4.5 h group (15 patients). The level of HSP70 in serum before and after thrombolysis was detected by ELISA. Furthermore, a rat model was also used to mimic the ischemic stroke and reperfusion. Peripheral blood of rat samples was collected to detect the level of HSP70 using Elisa. Several signal proteins from MAPK signaling pathway including JNK, p38, ERK (p42/44) were detected at different time points by Western blot of brain tissue. Patients who underwent thrombolytic therapy within 0-3 h had the highest HSP70 level at 1 h after thrombolysis. The higher HSP70 after thrombolysis, the better the patient prognosis. NIHSS scores showed HSP70 was positively correlated with cerebral ischemia. The levels of ERK family (p42/44 MAPK) and p-JNK were decreased gradually along with the time suffering cerebral ischemia. P-ERK, JNK, p-p38 had dynamic changes with increased ischemic time in the middle cerebral artery occlusion model. Dynamic change of HSP70 level in blood may be a biological index that reflects the functional condition of cell survival for cerebral ischemia and estimating the prognostic conditions. Importantly, HSP70 levels in blood were positively correlated with the p38 MAPK pathway in brain tissue.
{"title":"Dynamically changed HSP70 after reperfusion following cerebral infarction in human and rats: correlation with p38 MAPK.","authors":"Zhilan Tu, Pengpeng Jin, Qinghua Wang, Yanlin Feng, Xinjuan Chu, Lin Fu, Shuangxing Hou, Weiwei Li","doi":"10.1097/wnr.0000000000002022","DOIUrl":"https://doi.org/10.1097/wnr.0000000000002022","url":null,"abstract":"We aimed to clarify the correlation between dynamic change of blood HSP70 and the prognosis of thrombolysis in human and rats, so as to explain the neuroprotection and early warning role of HSP70 in cerebral ischemia-reperfusion. Forty-two patients with acute ischemic stroke were divided into two groups according to the time from onset to thrombolytic therapy: 0 h-3 h (27 patients) and 3-4.5 h group (15 patients). The level of HSP70 in serum before and after thrombolysis was detected by ELISA. Furthermore, a rat model was also used to mimic the ischemic stroke and reperfusion. Peripheral blood of rat samples was collected to detect the level of HSP70 using Elisa. Several signal proteins from MAPK signaling pathway including JNK, p38, ERK (p42/44) were detected at different time points by Western blot of brain tissue. Patients who underwent thrombolytic therapy within 0-3 h had the highest HSP70 level at 1 h after thrombolysis. The higher HSP70 after thrombolysis, the better the patient prognosis. NIHSS scores showed HSP70 was positively correlated with cerebral ischemia. The levels of ERK family (p42/44 MAPK) and p-JNK were decreased gradually along with the time suffering cerebral ischemia. P-ERK, JNK, p-p38 had dynamic changes with increased ischemic time in the middle cerebral artery occlusion model. Dynamic change of HSP70 level in blood may be a biological index that reflects the functional condition of cell survival for cerebral ischemia and estimating the prognostic conditions. Importantly, HSP70 levels in blood were positively correlated with the p38 MAPK pathway in brain tissue.","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-20Epub Date: 2024-02-18DOI: 10.1097/WNR.0000000000002011
Adnan A S Alahmadi
Objective: This study aimed to comprehensively investigate the functional connectivity of key brain regions involved in motor and sensory functions, namely the precentral gyrus, postcentral gyrus and supplementary motor area (SMA). Using advanced MRI, the objective was to understand the neurophysiological integrative characterizations of these regions by examining their connectivity with eight distinct functional brain networks. The goal was to uncover their roles beyond conventional motor and sensory functions, contributing to a more holistic understanding of brain functioning.
Methods: The study involved 198 healthy volunteers, with the primary methodology being functional connectivity analysis using advanced MRI techniques. The bilateral precentral gyrus, postcentral gyrus and SMA served as seed regions, and their connectivity with eight distinct brain regional functional networks was investigated. This approach allowed for the exploration of synchronized activity between these critical brain areas, shedding light on their integrated functioning and relationships with other brain networks.
Results: The study revealed a nuanced landscape of functional connectivity for the precentral gyrus, postcentral gyrus and SMA with the main functional brain networks. Despite their high functional connectedness, these regions displayed diverse functional integrations with other networks, particularly in the salience, visual, cerebellar and language networks. Specific data and statistical significance were not provided in the abstract, but the results suggested unique and distinct roles for each brain area in sophisticated cognitive tasks beyond their conventional motor and sensory functions.
Conclusion: The study emphasized the multifaceted roles of the precentral gyrus, postcentral gyrus and SMA. Beyond their crucial involvement in motor and sensory functions, these regions exhibited varied functional integrations with different brain networks. The observed disparities, especially in the salience, visual, cerebellar and language networks, indicated a nuanced and specialized involvement of these regions in diverse cognitive functions. The study underscores the importance of considering the broader neurophysiological landscape to comprehend the intricate roles of these brain areas, contributing to ongoing efforts in unraveling the complexities of brain function.
研究目的本研究旨在全面研究涉及运动和感觉功能的关键脑区(即中央前回、中央后回和辅助运动区(SMA))的功能连接性。使用先进的核磁共振成像技术,目的是通过研究这些区域与八个不同的大脑功能网络的连接,了解它们的神经生理学综合特征。目的是揭示它们在传统运动和感觉功能之外的作用,从而有助于更全面地了解大脑功能:研究涉及 198 名健康志愿者,主要方法是利用先进的核磁共振成像技术进行功能连接分析。以双侧中央前回、中央后回和SMA为种子区域,研究它们与八个不同大脑区域功能网络的连接性。这种方法可以探索这些关键脑区之间的同步活动,揭示它们的综合功能以及与其他脑网络的关系:研究揭示了前中央回、后中央回和 SMA 与主要大脑功能网络之间微妙的功能连接。尽管这些区域的功能连接度很高,但它们与其他网络的功能整合却多种多样,尤其是在显著性、视觉、小脑和语言网络中。摘要中没有提供具体数据和统计意义,但研究结果表明,除了传统的运动和感觉功能外,每个脑区在复杂的认知任务中都扮演着独特和不同的角色:研究强调了中央前回、中央后回和 SMA 的多方面作用。除了对运动和感觉功能的重要参与外,这些区域还与不同的大脑网络表现出不同的功能整合。观察到的差异,尤其是在显著性、视觉、小脑和语言网络中的差异,表明这些区域在不同认知功能中有着细微和专门的参与。这项研究强调了从更广阔的神经生理学角度来理解这些脑区的复杂作用的重要性,有助于不断揭示大脑功能的复杂性。
{"title":"Beyond boundaries: investigating shared and divergent connectivity in the pre-/postcentral gyri and supplementary motor area.","authors":"Adnan A S Alahmadi","doi":"10.1097/WNR.0000000000002011","DOIUrl":"10.1097/WNR.0000000000002011","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to comprehensively investigate the functional connectivity of key brain regions involved in motor and sensory functions, namely the precentral gyrus, postcentral gyrus and supplementary motor area (SMA). Using advanced MRI, the objective was to understand the neurophysiological integrative characterizations of these regions by examining their connectivity with eight distinct functional brain networks. The goal was to uncover their roles beyond conventional motor and sensory functions, contributing to a more holistic understanding of brain functioning.</p><p><strong>Methods: </strong>The study involved 198 healthy volunteers, with the primary methodology being functional connectivity analysis using advanced MRI techniques. The bilateral precentral gyrus, postcentral gyrus and SMA served as seed regions, and their connectivity with eight distinct brain regional functional networks was investigated. This approach allowed for the exploration of synchronized activity between these critical brain areas, shedding light on their integrated functioning and relationships with other brain networks.</p><p><strong>Results: </strong>The study revealed a nuanced landscape of functional connectivity for the precentral gyrus, postcentral gyrus and SMA with the main functional brain networks. Despite their high functional connectedness, these regions displayed diverse functional integrations with other networks, particularly in the salience, visual, cerebellar and language networks. Specific data and statistical significance were not provided in the abstract, but the results suggested unique and distinct roles for each brain area in sophisticated cognitive tasks beyond their conventional motor and sensory functions.</p><p><strong>Conclusion: </strong>The study emphasized the multifaceted roles of the precentral gyrus, postcentral gyrus and SMA. Beyond their crucial involvement in motor and sensory functions, these regions exhibited varied functional integrations with different brain networks. The observed disparities, especially in the salience, visual, cerebellar and language networks, indicated a nuanced and specialized involvement of these regions in diverse cognitive functions. The study underscores the importance of considering the broader neurophysiological landscape to comprehend the intricate roles of these brain areas, contributing to ongoing efforts in unraveling the complexities of brain function.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-20Epub Date: 2024-02-18DOI: 10.1097/WNR.0000000000001999
Yanyan Wu, Chenhang Yao, Lan Zhang, Guoqing Wu
Active ingredient of Sophora flavescens is reported to promote non-rapid eye movement (NREM) sleep. However, the role of Sophora flavescens alcohol extract in insomnia is elusive, which is addressed in this study, together with the exploration on its potential mechanism. An insomnia model of rats was established by para-chlorophenylalanine induction and further treated with SFAE or Zaoren Anshen capsule (ZRAS; positive control drug). Sleep quality and sleep architecture of rats were evaluated by the sleep test, electroencephalogram and electromyogram. The levels of monoamine neurotransmitters in rat hypothalamus were determined using ELISA, and the transduction of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/brain-derived neurotrophic factor (BDNF) signaling in the brain tissues of rats was examined by Western blot. SFAE and ZRAS increased the sleeping time and decreased the sleep latency of insomnia rats. SFAE reduced waking time and increased NREM and REM time, while changing power density of wakefulness, NREM sleep, and REM sleep in insomnia rats. SFAE and ZRAS upregulated levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, and downregulated those of norepinephrine and dopamine in insomnia rats. Besides, SFAE and ZRAS elevated BDNF expression as well as the ratios of phosphorylated (p)-PI3K/PI3K and p-AKT/AKT. The role of SFAE in insomnia model rats was similar with that of ZRAS. SFAE reduces insomnia and enhances the PI3K/AKT/BDNF signaling transduction in insomnia model rats, which can function as a drug candidate for insomnia.
{"title":"Sophora flavescens alcohol extract ameliorates insomnia and promotes PI3K/AKT/BDNF signaling transduction in insomnia model rats.","authors":"Yanyan Wu, Chenhang Yao, Lan Zhang, Guoqing Wu","doi":"10.1097/WNR.0000000000001999","DOIUrl":"10.1097/WNR.0000000000001999","url":null,"abstract":"<p><p>Active ingredient of Sophora flavescens is reported to promote non-rapid eye movement (NREM) sleep. However, the role of Sophora flavescens alcohol extract in insomnia is elusive, which is addressed in this study, together with the exploration on its potential mechanism. An insomnia model of rats was established by para-chlorophenylalanine induction and further treated with SFAE or Zaoren Anshen capsule (ZRAS; positive control drug). Sleep quality and sleep architecture of rats were evaluated by the sleep test, electroencephalogram and electromyogram. The levels of monoamine neurotransmitters in rat hypothalamus were determined using ELISA, and the transduction of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/brain-derived neurotrophic factor (BDNF) signaling in the brain tissues of rats was examined by Western blot. SFAE and ZRAS increased the sleeping time and decreased the sleep latency of insomnia rats. SFAE reduced waking time and increased NREM and REM time, while changing power density of wakefulness, NREM sleep, and REM sleep in insomnia rats. SFAE and ZRAS upregulated levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, and downregulated those of norepinephrine and dopamine in insomnia rats. Besides, SFAE and ZRAS elevated BDNF expression as well as the ratios of phosphorylated (p)-PI3K/PI3K and p-AKT/AKT. The role of SFAE in insomnia model rats was similar with that of ZRAS. SFAE reduces insomnia and enhances the PI3K/AKT/BDNF signaling transduction in insomnia model rats, which can function as a drug candidate for insomnia.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}