Pub Date : 2024-10-16Epub Date: 2024-07-30DOI: 10.1097/WNR.0000000000002084
Chenyu Li, Zeyin Nie, Huachun Miao, Feng Wu, Xiuxiu Wang
Previous studies have shown that cerebral ischemia can cause white matter injury in the brain. This study aimed to investigate the potential mechanism of electroacupuncture (EA) at the Baihui (GV20) and Zusanli (ST36) acupoints in protecting white matter. Sprague-Dawley rats were used to establish permanent middle cerebral artery occlusion (pMCAO) rat models. Comprehensive motor functions were assessed using the mesh experiment. Morphological changes in the myelin sheath were assessed with Luxol fast blue staining. Morphological changes in oligodendrocytes and myelinated axons were evaluated using Nissl staining. The expressions of high-mobility group box 1 protein (HMGB1) and the receptor for advanced glycation end products (RAGE) in the corpus callosum were detected by immunohistochemical staining and Western blot analysis. pMCAO caused severe injury to the corpus callosum, evidenced by significant loss of white matter fibers and myelinated axons, and induced overexpression of HMGB1 and RAGE in the corpus callosum. EA treatment significantly improved comprehensive motor function alleviated white matter damage, and downregulated the expression of HMGB1 and RAGE. Its effects were comparable to those of FPS-ZM1, a RAGE receptor inhibitor. In conclusion, EA effectively improves comprehensive motor function in rats with cerebral infarction and alleviates corpus callosum injury. This effect may be related to the inhibition of HMGB1 and RAGE overexpression.
{"title":"Electroacupuncture reduces corpus callosum injury in rats with permanent cerebral ischemia by inhibiting the activation of high-mobility group box 1 protein and the receptor for advanced glycation end products.","authors":"Chenyu Li, Zeyin Nie, Huachun Miao, Feng Wu, Xiuxiu Wang","doi":"10.1097/WNR.0000000000002084","DOIUrl":"10.1097/WNR.0000000000002084","url":null,"abstract":"<p><p>Previous studies have shown that cerebral ischemia can cause white matter injury in the brain. This study aimed to investigate the potential mechanism of electroacupuncture (EA) at the Baihui (GV20) and Zusanli (ST36) acupoints in protecting white matter. Sprague-Dawley rats were used to establish permanent middle cerebral artery occlusion (pMCAO) rat models. Comprehensive motor functions were assessed using the mesh experiment. Morphological changes in the myelin sheath were assessed with Luxol fast blue staining. Morphological changes in oligodendrocytes and myelinated axons were evaluated using Nissl staining. The expressions of high-mobility group box 1 protein (HMGB1) and the receptor for advanced glycation end products (RAGE) in the corpus callosum were detected by immunohistochemical staining and Western blot analysis. pMCAO caused severe injury to the corpus callosum, evidenced by significant loss of white matter fibers and myelinated axons, and induced overexpression of HMGB1 and RAGE in the corpus callosum. EA treatment significantly improved comprehensive motor function alleviated white matter damage, and downregulated the expression of HMGB1 and RAGE. Its effects were comparable to those of FPS-ZM1, a RAGE receptor inhibitor. In conclusion, EA effectively improves comprehensive motor function in rats with cerebral infarction and alleviates corpus callosum injury. This effect may be related to the inhibition of HMGB1 and RAGE overexpression.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"963-971"},"PeriodicalIF":1.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02Epub Date: 2024-07-29DOI: 10.1097/WNR.0000000000002081
Maksim Markevich, Anna Rebreikina, Tatiana Logvinenko, Elena L Grigorenko, Olga Sysoeva
Numerous behavioral studies have demonstrated a rhythmic priming effect (RPE) on grammatical processing using grammaticality judgment tasks (GJT), where participants performed better following regular rhythmic sequences compared to baseline conditions or irregular rhythmic sequences (i.e. auditory rhythmic sequences with violated metrical structure). Only a few studies, however, have explored neurophysiological RPE in grammatical processing. Such neurophysiological investigations have been limited to GJT presented auditorily, have been primarily focused on the French- and German-speaking adult participants, and have rarely used baseline nonpriming conditions. The objective of the present study was to investigate neurophysiological correlates of the RPE in the GJT presented in visual modality. In the current study, we registered a 128-channel electroencephalogram while Russian-speaking adolescents performed a visual GJT, where each sentence was presented word by word in a self-paced manner. Before each experimental block, participants listened to regular rhythmic sequences, irregular rhythmic sequences, or silence. We observed that the late negativity in the event-related potential was larger for the ungrammatical condition compared to the grammatical condition only after the presentation of irregular rhythmic sequences. This effect, referred to as the N600 component in previous research, has been associated with increased cognitive complexity. In conclusion, results suggest that exposure to irregular rhythmic stimulation may lead to increased cognitive demand. This is attributed to the complexity associated with concurrently executing the GJT and managing rhythmic disruption, consequently increasing the strain on working memory resources.
{"title":"How does musical rhythm influence grammatical processing at the neurophysiological level?","authors":"Maksim Markevich, Anna Rebreikina, Tatiana Logvinenko, Elena L Grigorenko, Olga Sysoeva","doi":"10.1097/WNR.0000000000002081","DOIUrl":"10.1097/WNR.0000000000002081","url":null,"abstract":"<p><p>Numerous behavioral studies have demonstrated a rhythmic priming effect (RPE) on grammatical processing using grammaticality judgment tasks (GJT), where participants performed better following regular rhythmic sequences compared to baseline conditions or irregular rhythmic sequences (i.e. auditory rhythmic sequences with violated metrical structure). Only a few studies, however, have explored neurophysiological RPE in grammatical processing. Such neurophysiological investigations have been limited to GJT presented auditorily, have been primarily focused on the French- and German-speaking adult participants, and have rarely used baseline nonpriming conditions. The objective of the present study was to investigate neurophysiological correlates of the RPE in the GJT presented in visual modality. In the current study, we registered a 128-channel electroencephalogram while Russian-speaking adolescents performed a visual GJT, where each sentence was presented word by word in a self-paced manner. Before each experimental block, participants listened to regular rhythmic sequences, irregular rhythmic sequences, or silence. We observed that the late negativity in the event-related potential was larger for the ungrammatical condition compared to the grammatical condition only after the presentation of irregular rhythmic sequences. This effect, referred to as the N600 component in previous research, has been associated with increased cognitive complexity. In conclusion, results suggest that exposure to irregular rhythmic stimulation may lead to increased cognitive demand. This is attributed to the complexity associated with concurrently executing the GJT and managing rhythmic disruption, consequently increasing the strain on working memory resources.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"915-920"},"PeriodicalIF":1.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02Epub Date: 2024-07-24DOI: 10.1097/WNR.0000000000002080
Xiaoyin He, Zhenzhen Wang, Qingbo Ge, Shuyu Sun, Ruru Li, Baoping Wang
Ischemic stroke remains a major cause of disability and mortality. Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy is involved in cerebral ischemic injury. Additionally, lactylation regulates the progression of ischemia injury. This study aimed to investigate the impact of NCOA4 on ferritinophagy and glycolysis of hippocampal neuron cells and its lactylation modification. Middle cerebral artery occlusion (MCAO) mouse and oxygen-glucose deprivation (OGD)-treated HT22 cell models were generated. Ferritinophagy was evaluated via detecting ferrous iron (Fe 2+ ), glutathione, malondialdehyde, and protein levels. Glycolysis was assessed by examining the glucose consumption, lactate production, and extracellular acidification rate. The lactylation was evaluated using immunoprecipitation and immunoblotting. Brain injury in vivo was analyzed by measuring brain infarct and neurological function. The results showed that NCOA4 expression was increased in the blood of patients with acute ischemia stroke, the peri-infarct region of the brain in MCAO mice (increased percentage: 142.11%) and OGD-treated cells (increased percentage: 114.70%). Knockdown of NCOA4 inhibited ferritinophagy and glycolysis of HT22 cells induced by OGD. Moreover, OGD promoted the lactylation of NCOA4 at lysine (K)450 sites, which enhanced NCOA4 protein stability. Additionally, interfering with NCOA4 attenuated brain infarction and neurological dysfunction in MCAO mice. Lactylation of NCOA4 at K450 sites promotes ferritinophagy and glycolysis of hippocampal neuron cells, thereby accelerating cerebral ischemic injury. These findings suggest a novel pathogenesis of ischemic stroke.
{"title":"Lactylation of nuclear receptor coactivator 4 promotes ferritinophagy and glycolysis of neuronal cells after cerebral ischemic injury.","authors":"Xiaoyin He, Zhenzhen Wang, Qingbo Ge, Shuyu Sun, Ruru Li, Baoping Wang","doi":"10.1097/WNR.0000000000002080","DOIUrl":"10.1097/WNR.0000000000002080","url":null,"abstract":"<p><p>Ischemic stroke remains a major cause of disability and mortality. Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy is involved in cerebral ischemic injury. Additionally, lactylation regulates the progression of ischemia injury. This study aimed to investigate the impact of NCOA4 on ferritinophagy and glycolysis of hippocampal neuron cells and its lactylation modification. Middle cerebral artery occlusion (MCAO) mouse and oxygen-glucose deprivation (OGD)-treated HT22 cell models were generated. Ferritinophagy was evaluated via detecting ferrous iron (Fe 2+ ), glutathione, malondialdehyde, and protein levels. Glycolysis was assessed by examining the glucose consumption, lactate production, and extracellular acidification rate. The lactylation was evaluated using immunoprecipitation and immunoblotting. Brain injury in vivo was analyzed by measuring brain infarct and neurological function. The results showed that NCOA4 expression was increased in the blood of patients with acute ischemia stroke, the peri-infarct region of the brain in MCAO mice (increased percentage: 142.11%) and OGD-treated cells (increased percentage: 114.70%). Knockdown of NCOA4 inhibited ferritinophagy and glycolysis of HT22 cells induced by OGD. Moreover, OGD promoted the lactylation of NCOA4 at lysine (K)450 sites, which enhanced NCOA4 protein stability. Additionally, interfering with NCOA4 attenuated brain infarction and neurological dysfunction in MCAO mice. Lactylation of NCOA4 at K450 sites promotes ferritinophagy and glycolysis of hippocampal neuron cells, thereby accelerating cerebral ischemic injury. These findings suggest a novel pathogenesis of ischemic stroke.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"895-903"},"PeriodicalIF":1.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02Epub Date: 2024-07-22DOI: 10.1097/WNR.0000000000002078
Rani S Richardson, Juan L Gomez, Leandro F Vendruscolo, Lorenzo Leggio, Andrey E Ryabinin
Alcohol use disorder (AUD) is a highly prevalent public health problem. The ghrelin system has been identified as a potential target for therapeutic intervention for AUD. Previous work showed that systemic administration of the growth hormone secretagogue receptor (GHSR) antagonist DLys reduced alcohol intake and preference in male mice. Yet, it is unclear whether central or peripheral GHSRs mediated these effects. We hypothesized that alcohol consumption is driven by central GHSRs and addressed this hypothesis by testing the effects of central administration of DLys. Male C57BL/6J mice consumed alcohol in a two-bottle choice procedure (10% ethanol versus water). DLys (2 nmol) was administered intracerebroventricularly for 7 days to examine alcohol intake and preference. DLys decreased alcohol intake and preference but had no effect on food intake. The effects on alcohol intake and preference persisted after several administrations, indicating lack of tolerance to DLys' effects. These results suggest that central administration of DLys is sufficient to reduce alcohol drinking and that DLys remains effective after several administrations when given intracerebroventricularly. Moreover, this work suggests that the effects of intracerebroventricularly administered DLys are specific to alcohol and do not generalize to other calorie-driven behaviors.
{"title":"Centrally administered growth hormone secretagogue receptor antagonist DLys decreases alcohol intake and preference in male mice.","authors":"Rani S Richardson, Juan L Gomez, Leandro F Vendruscolo, Lorenzo Leggio, Andrey E Ryabinin","doi":"10.1097/WNR.0000000000002078","DOIUrl":"10.1097/WNR.0000000000002078","url":null,"abstract":"<p><p>Alcohol use disorder (AUD) is a highly prevalent public health problem. The ghrelin system has been identified as a potential target for therapeutic intervention for AUD. Previous work showed that systemic administration of the growth hormone secretagogue receptor (GHSR) antagonist DLys reduced alcohol intake and preference in male mice. Yet, it is unclear whether central or peripheral GHSRs mediated these effects. We hypothesized that alcohol consumption is driven by central GHSRs and addressed this hypothesis by testing the effects of central administration of DLys. Male C57BL/6J mice consumed alcohol in a two-bottle choice procedure (10% ethanol versus water). DLys (2 nmol) was administered intracerebroventricularly for 7 days to examine alcohol intake and preference. DLys decreased alcohol intake and preference but had no effect on food intake. The effects on alcohol intake and preference persisted after several administrations, indicating lack of tolerance to DLys' effects. These results suggest that central administration of DLys is sufficient to reduce alcohol drinking and that DLys remains effective after several administrations when given intracerebroventricularly. Moreover, this work suggests that the effects of intracerebroventricularly administered DLys are specific to alcohol and do not generalize to other calorie-driven behaviors.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"909-914"},"PeriodicalIF":1.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02Epub Date: 2024-07-30DOI: 10.1097/WNR.0000000000002083
Yao Huang, Dianping Yang, Sijing Liao, Xilin Guan, Feiran Zhou, Yan Liu, Yong Wang, Ying Zhang
In this study, the postoperative cognitive dysfunction (POCD) mouse model was established to observe the changes in inflammation, blood-brain barrier permeability, and myelin sheath, and we explore the effect of ginsenoside Rg1 pretreatment on improving POCD syndrome. The POCD model of 15- to 18-month-old mice was carried out with internal fixation of tibial fractures under isoflurane anesthesia. Pretreatment was performed by continuous intraperitoneal injection of ginsenoside Rg1(40 mg/kg/day) for 14 days before surgery. The cognitive function was detected by the Morris water maze. The contents of interleukin-1β and tumor necrosis factor-α in the hippocampus, cortex, and serum were detected by ELISA. The permeability of blood-brain barrier was observed by Evans blue. The mRNA levels and protein expression levels of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), myelin basic protein (MBP), beta-catenin, and cyclin D1 in the hippocampus were analyzed by quantitative PCR and western blotting. The protein expression levels of ZO-1 and Wnt1 in the hippocampus were analyzed by western blotting. Finally, the localizations of CNPase and MBP in the hippocampus were detected by immunofluorescence. Ginsenoside Rg1 can prevent POCD, peripheral and central inflammation, and blood-brain barrier leakage, and reverse the downregulation of ZO-1, CNPase, MBP, and Wnt pathway-related molecules in aged mice. Preclinical studies suggest that ginsenoside Rg1 improves postoperative cognitive function in aged mice by protecting the blood-brain barrier and myelin sheath, and its specific mechanism may be related to the Wnt/β-catenin pathway.
{"title":"Ginsenoside Rg1 protects the blood-brain barrier and myelin sheath to prevent postoperative cognitive dysfunction in aged mice.","authors":"Yao Huang, Dianping Yang, Sijing Liao, Xilin Guan, Feiran Zhou, Yan Liu, Yong Wang, Ying Zhang","doi":"10.1097/WNR.0000000000002083","DOIUrl":"10.1097/WNR.0000000000002083","url":null,"abstract":"<p><p>In this study, the postoperative cognitive dysfunction (POCD) mouse model was established to observe the changes in inflammation, blood-brain barrier permeability, and myelin sheath, and we explore the effect of ginsenoside Rg1 pretreatment on improving POCD syndrome. The POCD model of 15- to 18-month-old mice was carried out with internal fixation of tibial fractures under isoflurane anesthesia. Pretreatment was performed by continuous intraperitoneal injection of ginsenoside Rg1(40 mg/kg/day) for 14 days before surgery. The cognitive function was detected by the Morris water maze. The contents of interleukin-1β and tumor necrosis factor-α in the hippocampus, cortex, and serum were detected by ELISA. The permeability of blood-brain barrier was observed by Evans blue. The mRNA levels and protein expression levels of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), myelin basic protein (MBP), beta-catenin, and cyclin D1 in the hippocampus were analyzed by quantitative PCR and western blotting. The protein expression levels of ZO-1 and Wnt1 in the hippocampus were analyzed by western blotting. Finally, the localizations of CNPase and MBP in the hippocampus were detected by immunofluorescence. Ginsenoside Rg1 can prevent POCD, peripheral and central inflammation, and blood-brain barrier leakage, and reverse the downregulation of ZO-1, CNPase, MBP, and Wnt pathway-related molecules in aged mice. Preclinical studies suggest that ginsenoside Rg1 improves postoperative cognitive function in aged mice by protecting the blood-brain barrier and myelin sheath, and its specific mechanism may be related to the Wnt/β-catenin pathway.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"925-935"},"PeriodicalIF":1.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02Epub Date: 2024-07-26DOI: 10.1097/WNR.0000000000002082
Michael B Pritz
The objective is to determine the distribution of glutamic acid decarboxylase (GAD) in the olfactory bulb of a crocodilian, Caiman crocodilus . Avidin-biotin immunohistochemical methodology using a polyclonal antibody to GAD raised in sheep was employed. The following controls were used: substitution of the primary antibody with preimmune sheep serum at concentrations equal to that of the primary antibody; omission of the primary antibody; and omission of the primary antibody and biotinylated rabbit antisheep immunoglobulin. No GAD (+) cells were observed in the control sections. Based on cell and fiber staining, the layering and neuronal organization of the olfactory bulb in Caiman were similar to other vertebrates, including other reptiles. The following elements were GAD (+): granule cells, certain neurons in the outer plexiform layer, periglomerular neurons, and the glomeruli themselves. GAD (+) puncta were present throughout the olfactory bulb. In conclusion, these results in Caiman were similar, in part, to comparable studies in mammals and birds. Taken together, these data indicate that crocodiles not only have a similar pattern of layers that other amniotes possess but also that the immunocytochemical signatures of certain elements of the olfactory bulb are likewise shared.
{"title":"Glutamic acid decarboxylase immunoreactivity in the olfactory bulb of a reptile.","authors":"Michael B Pritz","doi":"10.1097/WNR.0000000000002082","DOIUrl":"10.1097/WNR.0000000000002082","url":null,"abstract":"<p><p>The objective is to determine the distribution of glutamic acid decarboxylase (GAD) in the olfactory bulb of a crocodilian, Caiman crocodilus . Avidin-biotin immunohistochemical methodology using a polyclonal antibody to GAD raised in sheep was employed. The following controls were used: substitution of the primary antibody with preimmune sheep serum at concentrations equal to that of the primary antibody; omission of the primary antibody; and omission of the primary antibody and biotinylated rabbit antisheep immunoglobulin. No GAD (+) cells were observed in the control sections. Based on cell and fiber staining, the layering and neuronal organization of the olfactory bulb in Caiman were similar to other vertebrates, including other reptiles. The following elements were GAD (+): granule cells, certain neurons in the outer plexiform layer, periglomerular neurons, and the glomeruli themselves. GAD (+) puncta were present throughout the olfactory bulb. In conclusion, these results in Caiman were similar, in part, to comparable studies in mammals and birds. Taken together, these data indicate that crocodiles not only have a similar pattern of layers that other amniotes possess but also that the immunocytochemical signatures of certain elements of the olfactory bulb are likewise shared.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"921-924"},"PeriodicalIF":1.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02Epub Date: 2024-08-28DOI: 10.1097/WNR.0000000000002088
Ming Li, Fang Yang, Xiaoling Zhang, Hong Yang, Xingjin He, Zhongnan Mao, Liya Mao
The aim of this study was to investigate the impact and underlying molecular mechanisms of electroacupuncture on mice with poststroke depression (PSD). Mice were randomly allocated into sham, PSD, and electroacupuncture groups. Mice in the PSD and electroacupuncture groups underwent middle cerebral artery occlusion (MCAO) surgery following with sedentary behavior. Electroacupuncture targeting Zusanli (ST36) acupoint was performed 24 h after MCAO for 4 weeks in electroacupuncture group. The sucrose preference test, forced swimming test, open field test, tail suspension test, elevated plus maze, Catwalk analysis, RNA sequencing, Nissl staining, Golgi staining, TUNEL staining, Edu labeling, and doublecortin staining were performed. Lymphocyte subsets in peripheral blood and the levels of IL-1β, IL-6, TNF-α, and expression of Iba1/CD86, Iba1/NLRP3, TLR4/p38/NF-κB/NLRP3 pathways in the hippocampus were detected. Electroacupuncture effectively protected against the development of depression-like symptoms. The number of granulosa cells and doublecortin-positive cells in the dentate gyrus (DG) were significantly decreased in PSD group, which were significantly upregulated ( P < 0.01) by electroacupuncture. Electroacupuncture also significantly reduced ( P < 0.05) TUNEL-positive cells in the DG and CA1. RNA-seq revealed that electroacupuncture may exert antidepressant effect by regulating the inflammation mediated by TLR4/NF-κB/NLRP3 pathway in hippocampus. Electroacupuncture remarkably elevated ( P < 0.01) the ratio of CD4+ to CD8+ T cells and percentage of CD3-CD49b+ cells in CD45+CD49b+ cells in the peripheral blood. Electroacupuncture significantly reduced ( P < 0.05) the high levels of IL-1β, IL-6, TNF-α, iba1, TLR4, p-p38, p-NF-κB, and NLRP3 and sedentary behavior. Electroacupuncture was observed to mitigate depression symptoms and increase hippocampal neurogenesis in mice with PSD, possibly by inhibiting TLR4/p38/NF-κB/NLRP3 pathways and improving the microglia-mediated inflammatory microenvironment in the hippocampus.
{"title":"Electroacupuncture attenuates depressive-like behaviors in poststroke depression mice through promoting hippocampal neurogenesis and inhibiting TLR4/NF-κB/NLRP3 signaling pathway.","authors":"Ming Li, Fang Yang, Xiaoling Zhang, Hong Yang, Xingjin He, Zhongnan Mao, Liya Mao","doi":"10.1097/WNR.0000000000002088","DOIUrl":"10.1097/WNR.0000000000002088","url":null,"abstract":"<p><p>The aim of this study was to investigate the impact and underlying molecular mechanisms of electroacupuncture on mice with poststroke depression (PSD). Mice were randomly allocated into sham, PSD, and electroacupuncture groups. Mice in the PSD and electroacupuncture groups underwent middle cerebral artery occlusion (MCAO) surgery following with sedentary behavior. Electroacupuncture targeting Zusanli (ST36) acupoint was performed 24 h after MCAO for 4 weeks in electroacupuncture group. The sucrose preference test, forced swimming test, open field test, tail suspension test, elevated plus maze, Catwalk analysis, RNA sequencing, Nissl staining, Golgi staining, TUNEL staining, Edu labeling, and doublecortin staining were performed. Lymphocyte subsets in peripheral blood and the levels of IL-1β, IL-6, TNF-α, and expression of Iba1/CD86, Iba1/NLRP3, TLR4/p38/NF-κB/NLRP3 pathways in the hippocampus were detected. Electroacupuncture effectively protected against the development of depression-like symptoms. The number of granulosa cells and doublecortin-positive cells in the dentate gyrus (DG) were significantly decreased in PSD group, which were significantly upregulated ( P < 0.01) by electroacupuncture. Electroacupuncture also significantly reduced ( P < 0.05) TUNEL-positive cells in the DG and CA1. RNA-seq revealed that electroacupuncture may exert antidepressant effect by regulating the inflammation mediated by TLR4/NF-κB/NLRP3 pathway in hippocampus. Electroacupuncture remarkably elevated ( P < 0.01) the ratio of CD4+ to CD8+ T cells and percentage of CD3-CD49b+ cells in CD45+CD49b+ cells in the peripheral blood. Electroacupuncture significantly reduced ( P < 0.05) the high levels of IL-1β, IL-6, TNF-α, iba1, TLR4, p-p38, p-NF-κB, and NLRP3 and sedentary behavior. Electroacupuncture was observed to mitigate depression symptoms and increase hippocampal neurogenesis in mice with PSD, possibly by inhibiting TLR4/p38/NF-κB/NLRP3 pathways and improving the microglia-mediated inflammatory microenvironment in the hippocampus.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"947-960"},"PeriodicalIF":1.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emotional information can be seen everywhere in daily life. Research on emotional words often employs lexical decision tasks to judge the veracity of words, involving only superficial processing and not the deep processing of emotional significance. Therefore, the purpose of this study is to explore the effect of types of emotional words on the processing of emotional pictures. Participants were publicly recruited for a button-press experiment to discuss the impact of emotional words on the processing of emotional pictures from both behavioral and physiological mechanisms. The results of experiment 1 show: (a) in terms of reaction time, the processing speed for negative emotional words was slower, with longer reaction times; (b) In terms of accuracy, positive emotional words had a higher correct rate than negative emotional words. The results of experiment 2 found: (a) a significant main effect of emotional word type in the late processing stage; (b) a significant interaction between emotional word type and congruency. Previously presented emotional words affect the processing of subsequently presented emotional pictures, with differences in the processing of the four types of words, indicating a significant role of language in emotional processing.
{"title":"The effects of different types of emotion words on emotion picture processing - evidence from event-related potential.","authors":"Songhan Liu, Shuyi Liu, Yaru Li, Liyuan Liu, Yue Shen","doi":"10.1097/WNR.0000000000002060","DOIUrl":"10.1097/WNR.0000000000002060","url":null,"abstract":"<p><p>Emotional information can be seen everywhere in daily life. Research on emotional words often employs lexical decision tasks to judge the veracity of words, involving only superficial processing and not the deep processing of emotional significance. Therefore, the purpose of this study is to explore the effect of types of emotional words on the processing of emotional pictures. Participants were publicly recruited for a button-press experiment to discuss the impact of emotional words on the processing of emotional pictures from both behavioral and physiological mechanisms. The results of experiment 1 show: (a) in terms of reaction time, the processing speed for negative emotional words was slower, with longer reaction times; (b) In terms of accuracy, positive emotional words had a higher correct rate than negative emotional words. The results of experiment 2 found: (a) a significant main effect of emotional word type in the late processing stage; (b) a significant interaction between emotional word type and congruency. Previously presented emotional words affect the processing of subsequently presented emotional pictures, with differences in the processing of the four types of words, indicating a significant role of language in emotional processing.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"875-882"},"PeriodicalIF":1.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02Epub Date: 2024-08-01DOI: 10.1097/WNR.0000000000002085
Ye-Jin Kim, Jae-Won Jung, Kyung-A Lee, Young-A Lee
This study aimed to elucidate the effects of sucrose (SUC) consumption on neurodevelopmental processes through behavioral changes in rodents and determine whether these effects could be because of sweet taste, energy supply, or both. Mice were divided into five groups based on the time of SUC or sucralose (SUR, a noncaloric sweetener) administration: for 6 days from gestation day (GTD) 7, to birth from GTD13 and for 15 days from postnatal day (PND) 21, PND38, and PND56. SUC and SUR administration did not impact body weight. However, food intake in the PND56 group and water intake in the GTD13 and PND56 groups were increased by SUC and SUR administration. Amphetamine (0.5, 1, 2, and 3 mg/kg), a dopamine reuptake inhibitor, administration to assess alterations in the dopaminergic system induced increases in distance traveled after SUC administration in the GTD13 and PND21 groups compared with that in the control (vehicle administration) group. In contrast, the SUR group showed a decrease in the distance traveled in the PND56 group. Although there were no differences in locomotor activity and foraging behavior, SUC preference increased in the SUC group regarding the GTD13 and PND38 groups. The correlations between SUC preference and foraging behavior and between SUC preference and amphetamine response varied in both groups according to the developmental stage. Excessive SUC consumption might affect neural function at different developmental stages, as it could affect brain function through complex mechanisms involving sweet taste and energy supply and influence the dopaminergic system.
{"title":"Impact of excessive sucrose intake on mouse behavior across different developmental stages.","authors":"Ye-Jin Kim, Jae-Won Jung, Kyung-A Lee, Young-A Lee","doi":"10.1097/WNR.0000000000002085","DOIUrl":"10.1097/WNR.0000000000002085","url":null,"abstract":"<p><p>This study aimed to elucidate the effects of sucrose (SUC) consumption on neurodevelopmental processes through behavioral changes in rodents and determine whether these effects could be because of sweet taste, energy supply, or both. Mice were divided into five groups based on the time of SUC or sucralose (SUR, a noncaloric sweetener) administration: for 6 days from gestation day (GTD) 7, to birth from GTD13 and for 15 days from postnatal day (PND) 21, PND38, and PND56. SUC and SUR administration did not impact body weight. However, food intake in the PND56 group and water intake in the GTD13 and PND56 groups were increased by SUC and SUR administration. Amphetamine (0.5, 1, 2, and 3 mg/kg), a dopamine reuptake inhibitor, administration to assess alterations in the dopaminergic system induced increases in distance traveled after SUC administration in the GTD13 and PND21 groups compared with that in the control (vehicle administration) group. In contrast, the SUR group showed a decrease in the distance traveled in the PND56 group. Although there were no differences in locomotor activity and foraging behavior, SUC preference increased in the SUC group regarding the GTD13 and PND38 groups. The correlations between SUC preference and foraging behavior and between SUC preference and amphetamine response varied in both groups according to the developmental stage. Excessive SUC consumption might affect neural function at different developmental stages, as it could affect brain function through complex mechanisms involving sweet taste and energy supply and influence the dopaminergic system.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"936-946"},"PeriodicalIF":1.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}