This research focuses on the description and modeling of a one-dimensional molten salt reactor (MSR), in the presence of thermal feedback. Following the example of previous works, a simple one-dimensional system is proposed, describing a molten salt reactor with a main neutron-multiplying zone called core and a recirculation loop where the salt cools down. Specific attention is paid to the precursors’ drift by modifying the neutron balance equation. Liquid nuclear fuels are characterized by a high volumetric expansion coefficient in comparison to customary solid fuels. Therefore, a strong coupling between neutronics and thermal-hydraulics is expected. As a consequence, a highly negative density coefficient characterizes the thermal feedback on the neutron reactivity. The precursor equation is here inverted analytically and combined with the neutron balance equation to obtain a generalized eigenvalue problem with the neutron flux distribution as the unknown. The balance equations are derived by finite volume integration over a discretized mesh, and the coupling between the two physical models is treated by Picard iterations. The numerical solution is finally extended to time-dependent calculations and compared to an analytical work for a one-dimensional circulating fuel reactor already existing in the literature.