Pub Date : 2024-11-18DOI: 10.1038/s41541-024-01022-8
Mathieu D'Souza, Alexa Keeshan, Christopher A Gravel, Marc-André Langlois, Curtis L Cooper
Obesity is a recognized factor influencing immune function and infectious disease outcomes. Characterization of the influence of obesity on SARS-CoV-2 humoral vaccine immunogenicity is required to properly tailor vaccine type (mRNA, viral-vector, protein subunit vaccines) and dosing schedule. Data from a prospective cohort study collected over 34 months was used to evaluate the slope of antibody production and decay and neutralizing capacity following SARS-CoV-2 vaccination in individuals with and without obesity at baseline. Most participants were female (65.4%), white (92.4%), and received mRNA vaccines. 210 were obese and 697 non-obese. Sex and infection-acquired immunity were identified as effect modifiers for the relationship between obesity and COVID-19 vaccine humoral immunogenicity. No consistent influence of obesity on peak titres, titre retention, antibody isotype (IgG, IgM, IgA), or neutralization was identified when controlling for other key variables. It may not be necessary to consider this variable when developing SARS-CoV-2 vaccine dosing strategies.
{"title":"Obesity does not influence SARS-CoV-2 humoral vaccine immunogenicity.","authors":"Mathieu D'Souza, Alexa Keeshan, Christopher A Gravel, Marc-André Langlois, Curtis L Cooper","doi":"10.1038/s41541-024-01022-8","DOIUrl":"10.1038/s41541-024-01022-8","url":null,"abstract":"<p><p>Obesity is a recognized factor influencing immune function and infectious disease outcomes. Characterization of the influence of obesity on SARS-CoV-2 humoral vaccine immunogenicity is required to properly tailor vaccine type (mRNA, viral-vector, protein subunit vaccines) and dosing schedule. Data from a prospective cohort study collected over 34 months was used to evaluate the slope of antibody production and decay and neutralizing capacity following SARS-CoV-2 vaccination in individuals with and without obesity at baseline. Most participants were female (65.4%), white (92.4%), and received mRNA vaccines. 210 were obese and 697 non-obese. Sex and infection-acquired immunity were identified as effect modifiers for the relationship between obesity and COVID-19 vaccine humoral immunogenicity. No consistent influence of obesity on peak titres, titre retention, antibody isotype (IgG, IgM, IgA), or neutralization was identified when controlling for other key variables. It may not be necessary to consider this variable when developing SARS-CoV-2 vaccine dosing strategies.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"226"},"PeriodicalIF":6.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1038/s41541-024-01006-8
Pascal S Krenger, Magali Roques, Anne-Cathrine S Vogt, Alessandro Pardini, Dominik A Rothen, Ina Balke, Sophie T Schnider, Mona O Mohsen, Volker T Heussler, Andris Zeltins, Martin F Bachmann
RTS,S and R21 are the only vaccines recommended by the WHO to protect children from Plasmodium falciparum (Pf) clinical malaria. Both vaccines target the Pf sporozoite surface protein circumsporozoite protein (CSP). Recent studies showed that human antibodies neutralize Pf sporozoites most efficiently when simultaneously binding to the PfCSP NANP repeat and the NPDP junction domain. However, neither RTS,S nor R21 targets this junction domain. To test the potential of the NPDP junction domain and other sites of PfCSP as innovative vaccine targets, we developed multiple vaccine candidates based on cucumber mosaic virus-like particles (CuMVTT-VLPs). These candidates vary in several aspects: the number of targeted NANP repeats, the presence or absence of the junction domain, the cleavage site, and up to three NVDP repeats within the target sequence. Immunogenicity and efficacy studies were conducted in BALB/c mice, utilizing chimeric Plasmodium berghei (Pb) sporozoites, in which the endogenous CSP has been replaced by PfCSP (Pb/PfCSP). We observed a positive association between the number of targeted NANP repeats and the induction of specific IgM/IgG antibodies. Elevated humoral responses led to enhanced protection against parasitemia after Pb/PfCSP sporozoite challenge. Especially high-avidity/affinity antibody formation and vaccine protection were NANP repeat-dependent. Intriguingly, vaccine efficacy was not enhanced by targeting sites on PfCSP other than the NANP repeats. Our data emphasize the dominant role of the NANP repeat region for induction of protective antibodies. Furthermore, we present here novel malaria vaccine candidates with an excellent immunogenic profile that confer sterile protection in mice, even in absence of adjuvants.
{"title":"Probing novel epitopes on the Plasmodium falciparum circumsporozoite protein for vaccine development.","authors":"Pascal S Krenger, Magali Roques, Anne-Cathrine S Vogt, Alessandro Pardini, Dominik A Rothen, Ina Balke, Sophie T Schnider, Mona O Mohsen, Volker T Heussler, Andris Zeltins, Martin F Bachmann","doi":"10.1038/s41541-024-01006-8","DOIUrl":"10.1038/s41541-024-01006-8","url":null,"abstract":"<p><p>RTS,S and R21 are the only vaccines recommended by the WHO to protect children from Plasmodium falciparum (Pf) clinical malaria. Both vaccines target the Pf sporozoite surface protein circumsporozoite protein (CSP). Recent studies showed that human antibodies neutralize Pf sporozoites most efficiently when simultaneously binding to the PfCSP NANP repeat and the NPDP junction domain. However, neither RTS,S nor R21 targets this junction domain. To test the potential of the NPDP junction domain and other sites of PfCSP as innovative vaccine targets, we developed multiple vaccine candidates based on cucumber mosaic virus-like particles (CuMV<sub>TT</sub>-VLPs). These candidates vary in several aspects: the number of targeted NANP repeats, the presence or absence of the junction domain, the cleavage site, and up to three NVDP repeats within the target sequence. Immunogenicity and efficacy studies were conducted in BALB/c mice, utilizing chimeric Plasmodium berghei (Pb) sporozoites, in which the endogenous CSP has been replaced by PfCSP (Pb/PfCSP). We observed a positive association between the number of targeted NANP repeats and the induction of specific IgM/IgG antibodies. Elevated humoral responses led to enhanced protection against parasitemia after Pb/PfCSP sporozoite challenge. Especially high-avidity/affinity antibody formation and vaccine protection were NANP repeat-dependent. Intriguingly, vaccine efficacy was not enhanced by targeting sites on PfCSP other than the NANP repeats. Our data emphasize the dominant role of the NANP repeat region for induction of protective antibodies. Furthermore, we present here novel malaria vaccine candidates with an excellent immunogenic profile that confer sterile protection in mice, even in absence of adjuvants.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"225"},"PeriodicalIF":6.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1038/s41541-024-01018-4
Yih-Ling Tzeng, Soma Sannigrahi, David S Stephens
The 4CMenB (BexseroR) vaccine contains detergent-extracted outer membrane vesicles (OMVs) from a Neisseria meningitidis (Nm) group B strain NZ98/254 and three recombinant Nm protein antigens: Neisseria adhesin A (NadA), Factor H binding protein (FHbp, as the C-terminal protein in the GNA2091-FHbp fusion), and Neisserial Heparin Binding Antigen (NHBA, as the N-terminal protein in the NHBA-GNA1030 fusion). Previous work has shown that 4CMenB generates serum antibodies to Nm and Neisseria gonorrhoeae (Ng) OMV proteins and lipooligosaccharide (LOS). Mounting evidence indicates 4CMenB can partially protect against mucosal infections with Ng. The immunologic basis for Ng cross protection remains to be fully elucidated. Ten paired human sera obtained pre- and post-immunization with 4CMenB (1 month after a third vaccine dose) were used in ELISAs and in Western blots to determine IgG and IgA serum responses to OMVs from Nm strain NZ98/254 (OMVNm) and two Ng strains, 1291 and CNG20 (OMVNg), and gonococcal recombinant NHBA (rNHBANg) proteins. Post 4CMenB sera, but not pre-sera, showed strong IgG and variable IgA responses to the OMVNm but lower (2-11-fold difference in signal intensity) recognition of OMVNg. All post (not pre) 4CMenB sera showed strong IgG, but variable IgA, recognition of rNHBANg by ELISAs and Western blots. Three post 4CMenB sera at 10% (v/v) concentration had serum bactericidal activity (SBA) against Ng strains 1291 and CNG20 (~30-40% killing), not seen in paired pre-sera. These data confirmed 4CMenB-induced cross-reactive functional antibody responses to Ng. In competitive SBA assays, in which sera were pre-incubated with rNHBA, minimal SBA against Nm strain NZ98/254 was titrated away. However, most of the SBA against Ng strains 1291 and CNG20 required NHBA-specific antibodies, and the Δnhba mutants were resistant to killing by post 4CMenB sera. Removing NHBA-specific and LOS-specific OMV antibodies simultaneously decreased SBA significantly more than the sum of removing individual antibodies alone, suggesting synergy between anti-NHBA and anti-OMV antibodies. Anti- NHBANm antibodies induced by 4CMenB vaccination cross react with NHBANg and substantially contribute to the bactericidal response toward Ng induced by the vaccine.
4CMenB(BexseroR)疫苗含有从脑膜炎奈瑟菌(Nm)B群菌株NZ98/254中提取的去污剂外膜囊泡和三种重组Nm蛋白抗原:奈瑟氏粘附素 A(NadA)、因子 H 结合蛋白(FHbp,作为 GNA2091-FHbp 融合体中的 C 端蛋白)和奈瑟氏肝素结合抗原(NHBA,作为 NHBA-GNA1030 融合体中的 N 端蛋白)。先前的研究表明,4CMenB 会产生针对淋病奈瑟菌(Ng)OMV 蛋白和脂寡糖(LOS)的血清抗体。越来越多的证据表明,4CMenB 可部分防止 Ng 粘膜感染。Ng交叉保护的免疫学基础仍有待全面阐明。在 ELISAs 和 Western 印迹中使用了 10 份在 4CMenB 免疫前后(第三剂疫苗接种后 1 个月)获得的配对人类血清,以确定 IgG 和 IgA 血清对来自 Nm 株 NZ98/254(OMVNm)和两种 Ng 株 1291 和 CNG20(OMVNg)的 OMV 以及淋球菌重组 NHBA(rNHBANg)蛋白的反应。4CMenB 后血清(而非 4CMenB 前血清)对 OMVNm 表现出强烈的 IgG 反应和不同的 IgA 反应,但对 OMVNg 的识别率较低(信号强度相差 2-11 倍)。通过 ELISA 和 Western 印迹,所有 4CMenB 后血清(非 4CMenB 前血清)对 rNHBANg 都显示出较强的 IgG 识别能力,但 IgA 识别能力不一。三种浓度为 10%(v/v)的 4CMenB 后血清对伍氏菌株 1291 和 CNG20 具有血清杀菌活性(SBA)(约 30-40% 的杀灭率),这在配对的前血清中是看不到的。这些数据证实了 4CMenB 诱导的针对 Ng 的交叉反应功能性抗体反应。在竞争性 SBA 试验中,血清预先与 rNHBA 培养,针对 Nm 株 NZ98/254 的最小 SBA 被滴定掉。然而,针对Ng菌株1291和CNG20的大多数SBA需要NHBA特异性抗体,而且Δnhba突变体对4CMenB后血清的杀灭具有抵抗力。同时去除 NHBA 特异性抗体和 LOS 特异性 OMV 抗体对 SBA 的抑制作用明显高于单独去除两种抗体的总和,这表明抗 NHBA 和抗 OMV 抗体之间存在协同作用。接种 4CMenB 疫苗后诱导的抗 NHBANm 抗体会与 NHBANg 发生交叉反应,从而极大地促进了疫苗诱导的对 Ng 的杀菌反应。
{"title":"NHBA antibodies elicited by 4CMenB vaccination are key for serum bactericidal activity against Neisseria gonorrhoeae.","authors":"Yih-Ling Tzeng, Soma Sannigrahi, David S Stephens","doi":"10.1038/s41541-024-01018-4","DOIUrl":"10.1038/s41541-024-01018-4","url":null,"abstract":"<p><p>The 4CMenB (Bexsero<sup>R</sup>) vaccine contains detergent-extracted outer membrane vesicles (OMVs) from a Neisseria meningitidis (Nm) group B strain NZ98/254 and three recombinant Nm protein antigens: Neisseria adhesin A (NadA), Factor H binding protein (FHbp, as the C-terminal protein in the GNA2091-FHbp fusion), and Neisserial Heparin Binding Antigen (NHBA, as the N-terminal protein in the NHBA-GNA1030 fusion). Previous work has shown that 4CMenB generates serum antibodies to Nm and Neisseria gonorrhoeae (Ng) OMV proteins and lipooligosaccharide (LOS). Mounting evidence indicates 4CMenB can partially protect against mucosal infections with Ng. The immunologic basis for Ng cross protection remains to be fully elucidated. Ten paired human sera obtained pre- and post-immunization with 4CMenB (1 month after a third vaccine dose) were used in ELISAs and in Western blots to determine IgG and IgA serum responses to OMVs from Nm strain NZ98/254 (OMV<sub>Nm</sub>) and two Ng strains, 1291 and CNG20 (OMV<sub>Ng</sub>), and gonococcal recombinant NHBA (rNHBA<sub>Ng</sub>) proteins. Post 4CMenB sera, but not pre-sera, showed strong IgG and variable IgA responses to the OMV<sub>Nm</sub> but lower (2-11-fold difference in signal intensity) recognition of OMV<sub>Ng</sub>. All post (not pre) 4CMenB sera showed strong IgG, but variable IgA, recognition of rNHBA<sub>Ng</sub> by ELISAs and Western blots. Three post 4CMenB sera at 10% (v/v) concentration had serum bactericidal activity (SBA) against Ng strains 1291 and CNG20 (~30-40% killing), not seen in paired pre-sera. These data confirmed 4CMenB-induced cross-reactive functional antibody responses to Ng. In competitive SBA assays, in which sera were pre-incubated with rNHBA, minimal SBA against Nm strain NZ98/254 was titrated away. However, most of the SBA against Ng strains 1291 and CNG20 required NHBA-specific antibodies, and the Δnhba mutants were resistant to killing by post 4CMenB sera. Removing NHBA-specific and LOS-specific OMV antibodies simultaneously decreased SBA significantly more than the sum of removing individual antibodies alone, suggesting synergy between anti-NHBA and anti-OMV antibodies. Anti- NHBA<sub>Nm</sub> antibodies induced by 4CMenB vaccination cross react with NHBA<sub>Ng</sub> and substantially contribute to the bactericidal response toward Ng induced by the vaccine.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"223"},"PeriodicalIF":6.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1038/s41541-024-00998-7
Jay W Hooper, Steven A Kwilas, Matthew Josleyn, Sarah Norris, Jack N Hutter, Melinda Hamer, Jeffrey Livezey, Kristopher Paolino, Patrick Twomey, Michael Koren, Paul Keiser, James E Moon, Ugo Nwaeze, Jason Koontz, Carmen Ledesma-Feliciano, Nathalie Landry, Trevor Wellington
Hantaan virus (HTNV) and Puumala virus (PUUV) are pathogenic zoonoses found in Asia and Europe, respectively. We conducted a randomized Phase 1 clinical trial of individual HTNV and PUUV DNA vaccines targeting the envelope glycoproteins (GnGc), as well as a combined HTNV/PUUV DNA vaccine delivered at varying doses using the PharmaJet Stratis® needle-free injection system (NCT02776761). Cohort 1 and 2 vaccines consisted of 2 mg/vaccination of HTNV or PUUV plasmid, respectively. Cohort 3 vaccine consisted of 2 mg/vaccination of 1:1 mixture of HTNV and PUUV vaccines. Vaccinations were administered on Days 0, 28, 56, and 168. The vaccines were safe and well tolerated. Neutralizing antibody responses were elicited in 7/7 (100%) subjects who received the HTNV DNA (Cohort 1) and 6/6 (100%) subjects who received the PUUV DNA (Cohort 2) vaccines alone. The combination vaccine resulted in 4/9 (44%) seroconversion against both viruses. After the first two vaccinations, the seroconversion rates for the HTNV and PUUV vaccines were >80%.
{"title":"Phase 1 clinical trial of Hantaan and Puumala virus DNA vaccines delivered by needle-free injection.","authors":"Jay W Hooper, Steven A Kwilas, Matthew Josleyn, Sarah Norris, Jack N Hutter, Melinda Hamer, Jeffrey Livezey, Kristopher Paolino, Patrick Twomey, Michael Koren, Paul Keiser, James E Moon, Ugo Nwaeze, Jason Koontz, Carmen Ledesma-Feliciano, Nathalie Landry, Trevor Wellington","doi":"10.1038/s41541-024-00998-7","DOIUrl":"10.1038/s41541-024-00998-7","url":null,"abstract":"<p><p>Hantaan virus (HTNV) and Puumala virus (PUUV) are pathogenic zoonoses found in Asia and Europe, respectively. We conducted a randomized Phase 1 clinical trial of individual HTNV and PUUV DNA vaccines targeting the envelope glycoproteins (GnGc), as well as a combined HTNV/PUUV DNA vaccine delivered at varying doses using the PharmaJet Stratis® needle-free injection system (NCT02776761). Cohort 1 and 2 vaccines consisted of 2 mg/vaccination of HTNV or PUUV plasmid, respectively. Cohort 3 vaccine consisted of 2 mg/vaccination of 1:1 mixture of HTNV and PUUV vaccines. Vaccinations were administered on Days 0, 28, 56, and 168. The vaccines were safe and well tolerated. Neutralizing antibody responses were elicited in 7/7 (100%) subjects who received the HTNV DNA (Cohort 1) and 6/6 (100%) subjects who received the PUUV DNA (Cohort 2) vaccines alone. The combination vaccine resulted in 4/9 (44%) seroconversion against both viruses. After the first two vaccinations, the seroconversion rates for the HTNV and PUUV vaccines were >80%.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"221"},"PeriodicalIF":6.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1038/s41541-024-01012-w
Brian D Carey, Shuiqing Yu, Jillian Geiger, Chengjin Ye, Louis M Huzella, Rebecca J Reeder, Monika Mehta, Shawn Hirsch, Rebecca Bernbaum, Beatrice Cubitt, Bapi Pahar, Scott M Anthony, Anthony Marketon, John G Bernbaum, Julie P Tran, Ian Crozier, Luis Martínez-Sobrido, Gabriella Worwa, Juan Carlos de la Torre, Jens H Kuhn
Lassa virus (LASV) is a rodent-borne mammarenavirus that causes tens to hundreds of thousands of human infections annually in Western Africa. Approximately 20% of these infections progress to Lassa fever (LF), an acute disease with case-fatality rates from ≈20-70%. Currently, there are no approved vaccines or specific therapeutics to prevent or treat LF. The LASV genome consists of a small (S) segment that has two genes, GP and NP, and a large (L) segment that has two genes, L and Z. In both segments, the two genes are separated by non-coding intergenic regions (IGRs). Recombinant LASVs (rLASVs), in which the L segment IGR was replaced with the S segment IGR or in which the GP gene was codon-deoptimized, lost fitness in vitro, were highly attenuated in vivo, and, when used as vaccines, protected domesticated guinea pigs from otherwise lethal LASV exposure. Here, we report the generation of rLASV/IGR-CD, which includes both determinants of attenuation and further enhances the safety of the vaccine compared with its predecessors. rLASV/IGR-CD grew to high titers in Vero cells, which are approved for human vaccine production, but did not cause signs of disease or pathology in guinea pigs. Importantly, guinea pigs vaccinated with rLASV/IGR-CD were completely protected from disease and death after a typically lethal exposure to wild-type LASV. Our data support the development of rLASV/IGR-CD as a live-attenuated LF vaccine with stringent safety features.
拉沙病毒(LASV)是一种啮齿类动物传播的哺乳动物病毒,每年在西非造成数万至数十万人感染。其中约 20% 的感染会发展成拉沙热(LF),这是一种急性疾病,病死率≈20-70%。目前,还没有获得批准的疫苗或特效疗法来预防或治疗拉沙热。LASV 基因组由一个小(S)区段和一个大(L)区段组成,小(S)区段有两个基因,即 GP 和 NP,大(L)区段有两个基因,即 L 和 Z。用 S 段 IGR 替代 L 段 IGR 或对 GP 基因进行密码子优化的重组 LASV(rLASV)在体外丧失了适应性,在体内高度减毒,而且在用作疫苗时能保护驯化的豚鼠免于接触致命的 LASV。在这里,我们报告了 rLASV/IGR-CD 的产生情况,它包含了两种减毒决定因子,与前代疫苗相比,进一步提高了疫苗的安全性。rLASV/IGR-CD 在 Vero 细胞中生长到高滴度,这已被批准用于人类疫苗的生产,但不会导致豚鼠出现疾病或病理症状。重要的是,接种了 rLASV/IGR-CD 疫苗的豚鼠在暴露于野生型 LASV 的典型致死性接触后完全不会发病和死亡。我们的数据支持将 rLASV/IGR-CD 开发成具有严格安全性的 LF 减毒活疫苗。
{"title":"A Lassa virus live attenuated vaccine candidate that is safe and efficacious in guinea pigs.","authors":"Brian D Carey, Shuiqing Yu, Jillian Geiger, Chengjin Ye, Louis M Huzella, Rebecca J Reeder, Monika Mehta, Shawn Hirsch, Rebecca Bernbaum, Beatrice Cubitt, Bapi Pahar, Scott M Anthony, Anthony Marketon, John G Bernbaum, Julie P Tran, Ian Crozier, Luis Martínez-Sobrido, Gabriella Worwa, Juan Carlos de la Torre, Jens H Kuhn","doi":"10.1038/s41541-024-01012-w","DOIUrl":"10.1038/s41541-024-01012-w","url":null,"abstract":"<p><p>Lassa virus (LASV) is a rodent-borne mammarenavirus that causes tens to hundreds of thousands of human infections annually in Western Africa. Approximately 20% of these infections progress to Lassa fever (LF), an acute disease with case-fatality rates from ≈20-70%. Currently, there are no approved vaccines or specific therapeutics to prevent or treat LF. The LASV genome consists of a small (S) segment that has two genes, GP and NP, and a large (L) segment that has two genes, L and Z. In both segments, the two genes are separated by non-coding intergenic regions (IGRs). Recombinant LASVs (rLASVs), in which the L segment IGR was replaced with the S segment IGR or in which the GP gene was codon-deoptimized, lost fitness in vitro, were highly attenuated in vivo, and, when used as vaccines, protected domesticated guinea pigs from otherwise lethal LASV exposure. Here, we report the generation of rLASV/IGR-CD, which includes both determinants of attenuation and further enhances the safety of the vaccine compared with its predecessors. rLASV/IGR-CD grew to high titers in Vero cells, which are approved for human vaccine production, but did not cause signs of disease or pathology in guinea pigs. Importantly, guinea pigs vaccinated with rLASV/IGR-CD were completely protected from disease and death after a typically lethal exposure to wild-type LASV. Our data support the development of rLASV/IGR-CD as a live-attenuated LF vaccine with stringent safety features.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"220"},"PeriodicalIF":6.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1038/s41541-024-01014-8
Irene González-Domínguez, Eduard Puente-Massaguer, Adam Abdeljawad, Tsoi Ying Lai, Yonghong Liu, Madhumathi Loganathan, Benjamin Francis, Nicholas Lemus, Victoria Dolange, Marta Boza, Stefan Slamanig, Jose Luis Martínez-Guevara, Florian Krammer, Peter Palese, Weina Sun
We have developed a new universal influenza B vaccination strategy based on inactivated influenza B viruses displaying mosaic hemagglutinins (mHAs). Recombinant mHA viruses were constructed by replacing the four major antigenic sites of influenza B virus HAs, with those from exotic avian influenza A virus HAs. Sequential vaccination of naïve mice with mHA-based vaccines elicited higher immune responses towards the immuno-subdominant conserved epitopes of the HA than vaccination with wildtype viruses. Among the different preparations tested, mHA split vaccines were less immunogenic than their whole inactivated virus counterparts. This lower immunogenicity was overcome by the combination with adjuvants. mHA split vaccines adjuvanted with a Toll-like receptor-9 agonist (CpG 1018) increased Th1 immunity and in vivo cross-protection, whereas adjuvanting with an MF59-like oil-in-water nano-emulsion (AddaVax) enhanced and broadened humoral immune responses and antibody-mediated cross-protection. The mHA vaccines with or without adjuvant were subsequently evaluated in mice that were previously immunized to closely mimic human pre-existing immunity to influenza B viruses and the contribution of innate and cellular immunity was evaluated in this model. We believe these preclinical studies using the mHA strategy represent a major step toward the evaluation of a universal influenza B virus vaccine in clinical trials.
我们开发了一种新的通用乙型流感疫苗接种策略,该策略以显示马赛克血凝素(mHA)的灭活乙型流感病毒为基础。重组 mHA 病毒是用外来禽流感甲型流感病毒 HA 的四个主要抗原位点取代乙型流感病毒 HA 的四个主要抗原位点而构建的。与接种野生型病毒相比,用基于 mHA 的疫苗连续接种天真小鼠可对 HA 的免疫亚优势保守表位产生更高的免疫反应。在测试的不同制剂中,mHA 分体疫苗的免疫原性低于全灭活病毒疫苗。使用 Toll 样受体-9 激动剂(CpG 1018)佐剂的 mHA 分裂疫苗增强了 Th1 免疫和体内交叉保护,而使用 MF59 样水包油纳米乳剂(AddaVax)佐剂则增强并扩大了体液免疫反应和抗体介导的交叉保护。随后,我们在先前免疫过的小鼠身上评估了含佐剂或不含佐剂的 mHA 疫苗,以近似模拟人类对乙型流感病毒的原有免疫力,并在此模型中评估了先天免疫和细胞免疫的贡献。我们相信,这些采用 mHA 策略的临床前研究是朝着在临床试验中评估通用乙型流感病毒疫苗迈出的重要一步。
{"title":"Preclinical evaluation of a universal inactivated influenza B vaccine based on the mosaic hemagglutinin-approach.","authors":"Irene González-Domínguez, Eduard Puente-Massaguer, Adam Abdeljawad, Tsoi Ying Lai, Yonghong Liu, Madhumathi Loganathan, Benjamin Francis, Nicholas Lemus, Victoria Dolange, Marta Boza, Stefan Slamanig, Jose Luis Martínez-Guevara, Florian Krammer, Peter Palese, Weina Sun","doi":"10.1038/s41541-024-01014-8","DOIUrl":"10.1038/s41541-024-01014-8","url":null,"abstract":"<p><p>We have developed a new universal influenza B vaccination strategy based on inactivated influenza B viruses displaying mosaic hemagglutinins (mHAs). Recombinant mHA viruses were constructed by replacing the four major antigenic sites of influenza B virus HAs, with those from exotic avian influenza A virus HAs. Sequential vaccination of naïve mice with mHA-based vaccines elicited higher immune responses towards the immuno-subdominant conserved epitopes of the HA than vaccination with wildtype viruses. Among the different preparations tested, mHA split vaccines were less immunogenic than their whole inactivated virus counterparts. This lower immunogenicity was overcome by the combination with adjuvants. mHA split vaccines adjuvanted with a Toll-like receptor-9 agonist (CpG 1018) increased Th1 immunity and in vivo cross-protection, whereas adjuvanting with an MF59-like oil-in-water nano-emulsion (AddaVax) enhanced and broadened humoral immune responses and antibody-mediated cross-protection. The mHA vaccines with or without adjuvant were subsequently evaluated in mice that were previously immunized to closely mimic human pre-existing immunity to influenza B viruses and the contribution of innate and cellular immunity was evaluated in this model. We believe these preclinical studies using the mHA strategy represent a major step toward the evaluation of a universal influenza B virus vaccine in clinical trials.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"222"},"PeriodicalIF":6.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1038/s41541-024-01010-y
Ian G Barr, Kanta Subbarao
{"title":"Implications of the apparent extinction of B/Yamagata-lineage human influenza viruses.","authors":"Ian G Barr, Kanta Subbarao","doi":"10.1038/s41541-024-01010-y","DOIUrl":"10.1038/s41541-024-01010-y","url":null,"abstract":"","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"219"},"PeriodicalIF":6.9,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development and rollout of mRNA vaccines during COVID-19 marked a significant advancement in vaccinology, yet public hesitation to vaccination was prevalent, indicating the potential risk that future mRNA-based medical innovations will fail to be adopted. Utilizing a combined approach of large language models with manual validation and unsupervised machine learning, we conducted a social listening analysis to assess attitudes towards mRNA vaccines and therapeutics on Twitter from June 2022 to May 2023, contrasting online perspectives with data from the Vaccine Adverse Event Reporting System. Our findings reveal widespread negative sentiment and a global lack of confidence in the safety, effectiveness, and trustworthiness of mRNA vaccines and therapeutics, with frequent discussions of severe vaccine side effects, rumors, and misinformation. This underscores the need for targeted communication strategies to foster acceptance of medical treatments and strengthen public trust in order to enhance societal resilience to future health challenges.
{"title":"Mapping global public perspectives on mRNA vaccines and therapeutics.","authors":"Jiaxiang Xu, Zhengdong Wu, Lily Wass, Heidi J Larson, Leesa Lin","doi":"10.1038/s41541-024-01019-3","DOIUrl":"10.1038/s41541-024-01019-3","url":null,"abstract":"<p><p>The development and rollout of mRNA vaccines during COVID-19 marked a significant advancement in vaccinology, yet public hesitation to vaccination was prevalent, indicating the potential risk that future mRNA-based medical innovations will fail to be adopted. Utilizing a combined approach of large language models with manual validation and unsupervised machine learning, we conducted a social listening analysis to assess attitudes towards mRNA vaccines and therapeutics on Twitter from June 2022 to May 2023, contrasting online perspectives with data from the Vaccine Adverse Event Reporting System. Our findings reveal widespread negative sentiment and a global lack of confidence in the safety, effectiveness, and trustworthiness of mRNA vaccines and therapeutics, with frequent discussions of severe vaccine side effects, rumors, and misinformation. This underscores the need for targeted communication strategies to foster acceptance of medical treatments and strengthen public trust in order to enhance societal resilience to future health challenges.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"218"},"PeriodicalIF":6.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1038/s41541-024-00995-w
Gregory J Tobin, John K Tobin, Taralyn J Wiggins, Ruth V Bushnell, Arina V Kozar, Matthew F Maale, David A MacLeod, Heather N Meeks, Michael J Daly, Stephen J Dollery
Despite their efficacy, the currently available polio vaccines, oral polio vaccine (OPV) and inactivated polio vaccine (IPV), possess inherent flaws posing significant challenges in the global eradication of polio. OPV, which uses live Sabin attenuated strains, carries the risk of reversion to pathogenic forms and causing vaccine-associated paralytic poliomyelitis (VAPP) and vaccine-derived polio disease (VDPD) in incompletely vaccinated or immune-compromised individuals. Conventional IPVs, which are non-replicative, are more expensive to manufacture and introduce biohazard and biosecurity risks due to the use of neuropathogenic strains in production. These types of limitations have led to a call by the Global Polio Eradication Initiative and others for the development of updated polio vaccines. We are developing a novel Ultraviolet-C radiation (UVC) inactivation method that preserves immunogenicity and is compatible with attenuated strains of polio. The method incorporates an antioxidant complex, manganese-decapeptide-phosphate (MDP), derived from the radioresistant bacterium Deinococcus radiodurans. The inclusion of MDP protects the immunogenic neutralizing epitopes from damage during UVC inactivation. The novel vaccine candidate, ultraIPVTM, produced using these methods demonstrates three crucial attributes: complete inactivation, which precludes the risk of vaccine-associated disease; use of non-pathogenic strains to reduce production risks; and significantly enhanced yield of doses per milligram of input virus, which could increase vaccine supply while reducing costs. Additionally, ultraIPVTM retains antigenicity post-freeze-thaw cycles, a testament to its robustness.
{"title":"A highly immunogenic UVC inactivated Sabin based polio vaccine.","authors":"Gregory J Tobin, John K Tobin, Taralyn J Wiggins, Ruth V Bushnell, Arina V Kozar, Matthew F Maale, David A MacLeod, Heather N Meeks, Michael J Daly, Stephen J Dollery","doi":"10.1038/s41541-024-00995-w","DOIUrl":"10.1038/s41541-024-00995-w","url":null,"abstract":"<p><p>Despite their efficacy, the currently available polio vaccines, oral polio vaccine (OPV) and inactivated polio vaccine (IPV), possess inherent flaws posing significant challenges in the global eradication of polio. OPV, which uses live Sabin attenuated strains, carries the risk of reversion to pathogenic forms and causing vaccine-associated paralytic poliomyelitis (VAPP) and vaccine-derived polio disease (VDPD) in incompletely vaccinated or immune-compromised individuals. Conventional IPVs, which are non-replicative, are more expensive to manufacture and introduce biohazard and biosecurity risks due to the use of neuropathogenic strains in production. These types of limitations have led to a call by the Global Polio Eradication Initiative and others for the development of updated polio vaccines. We are developing a novel Ultraviolet-C radiation (UVC) inactivation method that preserves immunogenicity and is compatible with attenuated strains of polio. The method incorporates an antioxidant complex, manganese-decapeptide-phosphate (MDP), derived from the radioresistant bacterium Deinococcus radiodurans. The inclusion of MDP protects the immunogenic neutralizing epitopes from damage during UVC inactivation. The novel vaccine candidate, ultraIPV<sup>TM</sup>, produced using these methods demonstrates three crucial attributes: complete inactivation, which precludes the risk of vaccine-associated disease; use of non-pathogenic strains to reduce production risks; and significantly enhanced yield of doses per milligram of input virus, which could increase vaccine supply while reducing costs. Additionally, ultraIPV<sup>TM</sup> retains antigenicity post-freeze-thaw cycles, a testament to its robustness.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"217"},"PeriodicalIF":6.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564903/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Streptococcus suis infection represents a major challenge in pig farming and public health due to its zoonotic potential and diverse serotypes, while existing vaccines lack effective cross-protection. This study employed reverse vaccinology and immunoinformatics to identify 8 conserved proteins across 11 prevalent serotypes of S. suis. 16 candidate epitopes were selected to design three multi-epitope antigens against S. suis (designated as MEASs), which fused with a dendritic cell-targeting peptide to improve antigen presentation in host. Purified MEASs displayed favorable cross-reactogenicity against 29 serotype-specific antiserums. Robust humoral and cellular immune responses can be induced by MEAS 1 and MEAS 3 in a mouse model, which provided substantial protection against virulent strains from two different serotypes. In particular, their immune serums exhibited positive opsonization effects within bloodstream and macrophage phagocytosis. Taken together, we identified two promising MEASs with excellent cross-protection, offering potential in preventing S. suis infections in a mouse model.
{"title":"A multi-epitope subunit vaccine providing broad cross-protection against diverse serotypes of Streptococcus suis.","authors":"Jianan Liu, Zhen Zhang, Wanxia Pu, Xinming Pan, Pei Li, Qiankun Bai, Song Liang, Caiying Li, Yong Yu, Huochun Yao, Jiale Ma","doi":"10.1038/s41541-024-01015-7","DOIUrl":"10.1038/s41541-024-01015-7","url":null,"abstract":"<p><p>Streptococcus suis infection represents a major challenge in pig farming and public health due to its zoonotic potential and diverse serotypes, while existing vaccines lack effective cross-protection. This study employed reverse vaccinology and immunoinformatics to identify 8 conserved proteins across 11 prevalent serotypes of S. suis. 16 candidate epitopes were selected to design three multi-epitope antigens against S. suis (designated as MEASs), which fused with a dendritic cell-targeting peptide to improve antigen presentation in host. Purified MEASs displayed favorable cross-reactogenicity against 29 serotype-specific antiserums. Robust humoral and cellular immune responses can be induced by MEAS 1 and MEAS 3 in a mouse model, which provided substantial protection against virulent strains from two different serotypes. In particular, their immune serums exhibited positive opsonization effects within bloodstream and macrophage phagocytosis. Taken together, we identified two promising MEASs with excellent cross-protection, offering potential in preventing S. suis infections in a mouse model.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"216"},"PeriodicalIF":6.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}