首页 > 最新文献

npj Clean Water最新文献

英文 中文
Point-of-use filtration units as drinking water distribution system sentinels 使用点过滤装置作为饮用水分配系统的哨兵
IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-07-02 DOI: 10.1038/s41545-024-00346-1
Weiliang Bai, Ruizhe Xu, Mircea Podar, Cynthia M. Swift, Navid B. Saleh, Frank E. Löffler, Pedro J. J. Alvarez, Manish Kumar
Municipal drinking water distribution systems (DWDSs) and associated premise plumbing (PP) systems are vulnerable to proliferation of opportunistic pathogens, even when chemical disinfection residuals are present, thus presenting a public health risk. Monitoring the structure of microbial communities of drinking water is challenging because of limited continuous access to faucets, pipes, and storage tanks. We propose a scalable household sampling method, which uses spent activated carbon and reverse osmosis (RO) membrane point-of-use (POU) filters to evaluate mid- to long-term occurrence of microorganisms in PP systems that are relevant to consumer exposure. As a proof of concept, POU filter microbiomes were collected from four different locations and analyzed with 16S rRNA gene amplicon sequencing. The analyses revealed distinct microbial communities, with occasional detection of potential pathogens. The findings highlight the importance of local, and if possible, continuous monitoring within and across distribution systems. The continuous operation of POU filters offers an advantage in capturing species that may be missed by instantaneous sampling methods. We suggest that water utilities, public institutions, and regulatory agencies take advantage of end-of-life POU filters for microbial monitoring. This approach can be easily implemented to ensure drinking water safety, especially from microbes of emerging concerns; e.g., pathogenic Legionella and Mycobacterium species.
市政饮用水输配系统 (DWDS) 和相关的场所管道系统 (PP) 很容易受到机会性病原体扩散的影响,即使在存在化学消毒残留物的情况下也是如此,从而带来了公共卫生风险。由于连续接触水龙头、管道和储水箱的机会有限,因此监测饮用水微生物群落结构具有挑战性。我们提出了一种可扩展的家庭采样方法,该方法使用废活性炭和反渗透膜使用点过滤器(POU)来评估与消费者接触有关的中长期水处理系统中微生物的发生情况。作为概念验证,从四个不同地点收集了 POU 过滤器微生物组,并用 16S rRNA 基因扩增子测序法进行了分析。分析结果显示了不同的微生物群落,偶尔还能检测到潜在的病原体。这些发现强调了在本地以及在可能的情况下对输水系统内部和整个输水系统进行连续监测的重要性。POU 过滤器的连续运行在捕捉瞬时采样方法可能遗漏的物种方面具有优势。我们建议供水公司、公共机构和监管机构利用报废的 POU 过滤器进行微生物监测。这种方法易于实施,可确保饮用水安全,尤其是新出现的微生物,如致病性军团菌和分枝杆菌。
{"title":"Point-of-use filtration units as drinking water distribution system sentinels","authors":"Weiliang Bai, Ruizhe Xu, Mircea Podar, Cynthia M. Swift, Navid B. Saleh, Frank E. Löffler, Pedro J. J. Alvarez, Manish Kumar","doi":"10.1038/s41545-024-00346-1","DOIUrl":"10.1038/s41545-024-00346-1","url":null,"abstract":"Municipal drinking water distribution systems (DWDSs) and associated premise plumbing (PP) systems are vulnerable to proliferation of opportunistic pathogens, even when chemical disinfection residuals are present, thus presenting a public health risk. Monitoring the structure of microbial communities of drinking water is challenging because of limited continuous access to faucets, pipes, and storage tanks. We propose a scalable household sampling method, which uses spent activated carbon and reverse osmosis (RO) membrane point-of-use (POU) filters to evaluate mid- to long-term occurrence of microorganisms in PP systems that are relevant to consumer exposure. As a proof of concept, POU filter microbiomes were collected from four different locations and analyzed with 16S rRNA gene amplicon sequencing. The analyses revealed distinct microbial communities, with occasional detection of potential pathogens. The findings highlight the importance of local, and if possible, continuous monitoring within and across distribution systems. The continuous operation of POU filters offers an advantage in capturing species that may be missed by instantaneous sampling methods. We suggest that water utilities, public institutions, and regulatory agencies take advantage of end-of-life POU filters for microbial monitoring. This approach can be easily implemented to ensure drinking water safety, especially from microbes of emerging concerns; e.g., pathogenic Legionella and Mycobacterium species.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00346-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilience of anodic biofilm in microbial fuel cell biosensor for BOD monitoring of urban wastewater 用于监测城市污水生化需氧量的微生物燃料电池生物传感器中阳极生物膜的复原力
IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-06-28 DOI: 10.1038/s41545-024-00350-5
Anna Salvian, Daniel Farkas, Marina Ramirez-Moreno, Daniela Torruella-Salas, Antonio Berná, Claudio Avignone-Rossa, John R. Varcoe, Abraham Esteve-Núñez, Siddharth Gadkari
Efficient wastewater treatment monitoring is vital for addressing water scarcity. Microbial fuel cells (MFCs) have emerged as real-time biosensors for biochemical oxygen demand (BOD) in urban wastewater. Discrepancies in signal generation may arise due to changes in the composition and metabolism of mixed-culture electroactive biofilms stemming from different wastewater compositions. In this study, 3D-printed MFC-based biosensors were employed to assess the BOD of sterile complex artificial wastewater and untreated urban wastewater. Alterations in the microbial composition of the anode were evaluated using 16S rRNA sequencing and metagenomics analysis. Results show that MFC-based biosensors can be effectively recalibrated for diverse types of wastewater, maintaining consistent sensitivity (0.64 ± 0.10 mA L mg−1 m−2 with synthetic wastewater and 0.78 ± 0.13 mA L mg−1 m−2 with urban wastewater) and limit of detection (49 ± 8 mg L−1 for synthetic wastewater and 44 ± 7 mg L−1 for urban wastewater). Crucially, pre-sterilization, conductivity adjustments, and nitrogen purging of wastewater are not required before its introduction into the biosensor. However, the presence of native aerobic microorganisms in the wastewater might affect the current output. Metagenomics and taxonomic analyses revealed that the alterations in biofilm composition are predominantly in response to the varied chemical and microbiological compositions of different substrates. Despite variations in anodic biofilm composition, the MFC-based biosensor maintains a relative error comparable to the standard BOD test. This highlights the resilience and flexibility of the biosensor when directly used with a variety of wastewater types before full biofilm adjustment.
高效的废水处理监测对于解决水资源短缺问题至关重要。微生物燃料电池(MFC)已成为城市污水生化需氧量(BOD)的实时生物传感器。由于废水成分不同,混合培养的电活性生物膜的组成和新陈代谢可能会发生变化,从而导致信号产生的差异。本研究采用基于三维打印 MFC 的生物传感器来评估无菌复合人工废水和未经处理的城市污水的生化需氧量。使用 16S rRNA 测序和元基因组学分析评估了阳极微生物组成的变化。结果表明,基于 MFC 的生物传感器可针对不同类型的废水进行有效的重新校准,并保持一致的灵敏度(合成废水为 0.64 ± 0.10 mA L mg-1 m-2,城市污水为 0.78 ± 0.13 mA L mg-1 m-2)和检测限(合成废水为 49 ± 8 mg L-1,城市污水为 44 ± 7 mg L-1)。最重要的是,在将废水引入生物传感器之前,无需对废水进行预灭菌、电导率调整和氮气净化。不过,废水中存在的原生好氧微生物可能会影响电流输出。元基因组学和分类学分析表明,生物膜组成的变化主要是对不同基质的不同化学和微生物组成的反应。尽管阳极生物膜的组成发生了变化,但基于 MFC 的生物传感器仍能保持与标准 BOD 测试相当的相对误差。这突出表明,在生物膜完全调整之前,生物传感器可直接用于各种废水类型,具有很强的适应性和灵活性。
{"title":"Resilience of anodic biofilm in microbial fuel cell biosensor for BOD monitoring of urban wastewater","authors":"Anna Salvian, Daniel Farkas, Marina Ramirez-Moreno, Daniela Torruella-Salas, Antonio Berná, Claudio Avignone-Rossa, John R. Varcoe, Abraham Esteve-Núñez, Siddharth Gadkari","doi":"10.1038/s41545-024-00350-5","DOIUrl":"10.1038/s41545-024-00350-5","url":null,"abstract":"Efficient wastewater treatment monitoring is vital for addressing water scarcity. Microbial fuel cells (MFCs) have emerged as real-time biosensors for biochemical oxygen demand (BOD) in urban wastewater. Discrepancies in signal generation may arise due to changes in the composition and metabolism of mixed-culture electroactive biofilms stemming from different wastewater compositions. In this study, 3D-printed MFC-based biosensors were employed to assess the BOD of sterile complex artificial wastewater and untreated urban wastewater. Alterations in the microbial composition of the anode were evaluated using 16S rRNA sequencing and metagenomics analysis. Results show that MFC-based biosensors can be effectively recalibrated for diverse types of wastewater, maintaining consistent sensitivity (0.64 ± 0.10 mA L mg−1 m−2 with synthetic wastewater and 0.78 ± 0.13 mA L mg−1 m−2 with urban wastewater) and limit of detection (49 ± 8 mg L−1 for synthetic wastewater and 44 ± 7 mg L−1 for urban wastewater). Crucially, pre-sterilization, conductivity adjustments, and nitrogen purging of wastewater are not required before its introduction into the biosensor. However, the presence of native aerobic microorganisms in the wastewater might affect the current output. Metagenomics and taxonomic analyses revealed that the alterations in biofilm composition are predominantly in response to the varied chemical and microbiological compositions of different substrates. Despite variations in anodic biofilm composition, the MFC-based biosensor maintains a relative error comparable to the standard BOD test. This highlights the resilience and flexibility of the biosensor when directly used with a variety of wastewater types before full biofilm adjustment.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00350-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial strategies driving low concentration substrate degradation for sustainable remediation solutions 微生物策略推动低浓度底物降解,实现可持续修复解决方案
IF 10.4 1区 工程技术 Q1 Environmental Science Pub Date : 2024-06-25 DOI: 10.1038/s41545-024-00348-z
Qidong Yin, Kai He, Gavin Collins, Jo De Vrieze, Guangxue Wu
Microbial metabolism upholds a fundamental role in the sustainability of water ecosystems. However, how microorganisms surviving in low-concentration substrate water environments, including the existence of emerging compounds of interest, remains unclear. In this review, microbial strategies for concentrating, utilizing, and metabolizing of low concentration substrates were summarized. Microorganisms develop substrate-concentrating strategies at both the cell and aggregate levels in substrate-limited settings. Following, microbial uptake and transport of low-concentration substrates are facilitated by adjusting physiological characteristics and shifting substrate affinities. Finally, metabolic pathways, such as mixed-substrate utilization, syntrophic metabolism, dynamic response to nutrient variation, and population density-based mechanisms allow microorganisms to efficiently utilize low-concentration substrates and to adapt to challenging oligotrophic environments. All these microbial strategies will underpin devising new approaches to tackle environmental challenges and drive the sustainability of water ecosystems, particularly in managing low-concentration contaminants (i.e., micropollutants).
微生物新陈代谢在水生态系统的可持续发展中发挥着重要作用。然而,微生物如何在低浓度底物的水环境中生存,包括新出现的相关化合物的存在,仍不清楚。本综述总结了微生物浓缩、利用和代谢低浓度底物的策略。在底物受限的环境中,微生物在细胞和聚集体两个层面都发展出了底物浓缩策略。随后,微生物通过调整生理特性和改变底物亲和力来促进低浓度底物的吸收和运输。最后,新陈代谢途径,如混合底物利用、合成代谢、对营养物质变化的动态响应以及基于种群密度的机制,使微生物能够有效利用低浓度底物,并适应具有挑战性的寡营养环境。所有这些微生物策略都将支持设计新的方法来应对环境挑战,推动水生态系统的可持续发展,特别是在管理低浓度污染物(即微污染物)方面。
{"title":"Microbial strategies driving low concentration substrate degradation for sustainable remediation solutions","authors":"Qidong Yin, Kai He, Gavin Collins, Jo De Vrieze, Guangxue Wu","doi":"10.1038/s41545-024-00348-z","DOIUrl":"10.1038/s41545-024-00348-z","url":null,"abstract":"Microbial metabolism upholds a fundamental role in the sustainability of water ecosystems. However, how microorganisms surviving in low-concentration substrate water environments, including the existence of emerging compounds of interest, remains unclear. In this review, microbial strategies for concentrating, utilizing, and metabolizing of low concentration substrates were summarized. Microorganisms develop substrate-concentrating strategies at both the cell and aggregate levels in substrate-limited settings. Following, microbial uptake and transport of low-concentration substrates are facilitated by adjusting physiological characteristics and shifting substrate affinities. Finally, metabolic pathways, such as mixed-substrate utilization, syntrophic metabolism, dynamic response to nutrient variation, and population density-based mechanisms allow microorganisms to efficiently utilize low-concentration substrates and to adapt to challenging oligotrophic environments. All these microbial strategies will underpin devising new approaches to tackle environmental challenges and drive the sustainability of water ecosystems, particularly in managing low-concentration contaminants (i.e., micropollutants).","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00348-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of polysulfone-based nanofiber Janus membrane for membrane distillation containing organic pollutants 制备用于含有机污染物膜蒸馏的聚砜基纳米纤维 Janus 膜
IF 10.4 1区 工程技术 Q1 Environmental Science Pub Date : 2024-06-24 DOI: 10.1038/s41545-024-00342-5
Zhuobin Wu, Ke Zheng, Guichang Zhang, Longwei Huang, Shaoqi Zhou
Membrane distillation is an emerging wastewater treatment technology that harnesses low-grade heat as an energy source and exhibits potential for complete desalination. Nonetheless, two notable challenges hinder the practical application of this technology: membrane wetting and fouling. To counter these challenges, an innovative anti-fouling Janus membrane with asymmetric wettability was developed through electrospinning. The hydrophobic layer was formed using tetraethyl orthosilicate/polysulfone (PSF), and the superhydrophilic layer was created using polyvinylpyrrolidone (PVP)/PSF. A sensitive adhesion probe was used to assess the anti-fouling performance of the Janus membrane against oil. Molecular dynamics simulation suggested that PVP reduced the adsorption tendency of the membrane for humic acid (HA). Under experimental conditions involving saline water with HA and a saline oil–water emulsion, the non-Janus membrane suffered severe fouling, resulting in rapid water permeate flux decline. However, the Janus membrane demonstrated consistent permeate flux (26.84 LMH and 24.92 LMH) and an impressive salt rejection rate (> 99.99%). This study suggests that the Janus membrane, with its high permeate fluxes and remarkable resistance to fouling and wetting, could be an effective solution for wastewater treatment, with considerable potential for future application.
膜蒸馏是一种新兴的废水处理技术,可利用低品位热量作为能源,并具有完全脱盐的潜力。然而,膜湿润和结垢这两个显著挑战阻碍了该技术的实际应用。为了应对这些挑战,我们通过电纺丝技术开发出了一种具有非对称润湿性的创新型防污 Janus 膜。疏水层由正硅酸四乙酯/聚砜(PSF)形成,超亲水层由聚乙烯吡咯烷酮(PVP)/聚砜(PSF)形成。使用灵敏的粘附探针来评估 Janus 膜的防油污性能。分子动力学模拟表明,聚乙烯吡咯烷酮降低了膜对腐植酸(HA)的吸附倾向。在含 HA 的盐水和含盐油水乳液的实验条件下,非 Janus 膜遭受了严重的污垢,导致水渗透通量迅速下降。然而,獐子岛膜表现出稳定的渗透通量(26.84 LMH 和 24.92 LMH)和令人印象深刻的盐排斥率(99.99%)。这项研究表明,獐子岛膜具有高渗透通量和显著的抗污垢和抗潮湿能力,可以成为废水处理的有效解决方案,在未来的应用中具有相当大的潜力。
{"title":"Preparation of polysulfone-based nanofiber Janus membrane for membrane distillation containing organic pollutants","authors":"Zhuobin Wu, Ke Zheng, Guichang Zhang, Longwei Huang, Shaoqi Zhou","doi":"10.1038/s41545-024-00342-5","DOIUrl":"10.1038/s41545-024-00342-5","url":null,"abstract":"Membrane distillation is an emerging wastewater treatment technology that harnesses low-grade heat as an energy source and exhibits potential for complete desalination. Nonetheless, two notable challenges hinder the practical application of this technology: membrane wetting and fouling. To counter these challenges, an innovative anti-fouling Janus membrane with asymmetric wettability was developed through electrospinning. The hydrophobic layer was formed using tetraethyl orthosilicate/polysulfone (PSF), and the superhydrophilic layer was created using polyvinylpyrrolidone (PVP)/PSF. A sensitive adhesion probe was used to assess the anti-fouling performance of the Janus membrane against oil. Molecular dynamics simulation suggested that PVP reduced the adsorption tendency of the membrane for humic acid (HA). Under experimental conditions involving saline water with HA and a saline oil–water emulsion, the non-Janus membrane suffered severe fouling, resulting in rapid water permeate flux decline. However, the Janus membrane demonstrated consistent permeate flux (26.84 LMH and 24.92 LMH) and an impressive salt rejection rate (> 99.99%). This study suggests that the Janus membrane, with its high permeate fluxes and remarkable resistance to fouling and wetting, could be an effective solution for wastewater treatment, with considerable potential for future application.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00342-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A super-efficient gel adsorbent with over 1000 times the adsorption capacity of activated carbon 超高效凝胶吸附剂,吸附能力是活性炭的 1000 多倍
IF 11.4 1区 工程技术 Q1 Environmental Science Pub Date : 2024-06-18 DOI: 10.1038/s41545-024-00347-0
Menghan Hu, Na Xie, Yujia Huang, Yikai Yu
It was observed that a super-efficient gel adsorbent system (RRQG@CDC) could be obtained when a matrix material of polyquaternium gel with a flat distribution (RRQG) was loaded onto a skeleton material of cyclodextrin carbide (CDC). The results showed that the adsorption capacity of RRQG@CDC towards dyes was 1250 times higher than that of commonly used activated carbon, enabling highly efficient purification of dyeing wastewater through superior adsorption. In addition, RRQG@CDC demonstrated adaptability to a range of different pH values and salinity conditions, showing super-efficient adsorption abilities towards various types of dyes. Moreover, simulated scale-up tests confirmed the feasibility of this super-efficient adsorbent for practical engineering applications. An enhanced quasi-planar electrostatic adsorption mechanism model was established, which has changed the traditional understanding of adsorption mechanisms. Furthermore, the waste residues of RRQG@CDC, after dye adsorption, can be directly utilized as high-calorific fuels, showcasing the resourcefulness of these residues while eliminating the risk of secondary pollution. In conclusion, this study achieved a remarkably efficient and resource-based purification of dyeing wastewater by developing a highly effective adsorbent system.
研究发现,在环糊精碳化物(CDC)骨架材料上负载扁平分布的聚季铵盐凝胶(RRQG)基质材料,可获得超高效凝胶吸附剂系统(RRQG@CDC)。结果表明,RRQG@CDC 对染料的吸附能力是常用活性炭的 1250 倍,通过优异的吸附性能实现了对印染废水的高效净化。此外,RRQG@CDC 还能适应一系列不同的 pH 值和盐度条件,显示出对各种染料的超强吸附能力。此外,模拟放大试验证实了这种超高效吸附剂在实际工程应用中的可行性。建立的增强型准平面静电吸附机理模型改变了人们对吸附机理的传统认识。此外,RRQG@CDC吸附染料后的废渣可直接用作高热量燃料,体现了废渣的资源化,同时消除了二次污染的风险。总之,本研究通过开发一种高效的吸附剂系统,实现了染色废水的高效和资源化净化。
{"title":"A super-efficient gel adsorbent with over 1000 times the adsorption capacity of activated carbon","authors":"Menghan Hu, Na Xie, Yujia Huang, Yikai Yu","doi":"10.1038/s41545-024-00347-0","DOIUrl":"10.1038/s41545-024-00347-0","url":null,"abstract":"It was observed that a super-efficient gel adsorbent system (RRQG@CDC) could be obtained when a matrix material of polyquaternium gel with a flat distribution (RRQG) was loaded onto a skeleton material of cyclodextrin carbide (CDC). The results showed that the adsorption capacity of RRQG@CDC towards dyes was 1250 times higher than that of commonly used activated carbon, enabling highly efficient purification of dyeing wastewater through superior adsorption. In addition, RRQG@CDC demonstrated adaptability to a range of different pH values and salinity conditions, showing super-efficient adsorption abilities towards various types of dyes. Moreover, simulated scale-up tests confirmed the feasibility of this super-efficient adsorbent for practical engineering applications. An enhanced quasi-planar electrostatic adsorption mechanism model was established, which has changed the traditional understanding of adsorption mechanisms. Furthermore, the waste residues of RRQG@CDC, after dye adsorption, can be directly utilized as high-calorific fuels, showcasing the resourcefulness of these residues while eliminating the risk of secondary pollution. In conclusion, this study achieved a remarkably efficient and resource-based purification of dyeing wastewater by developing a highly effective adsorbent system.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00347-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-originated mesosilicate SBA-15: synthesis, characterization, and application for heavy metal removal 源于生物的介硅酸盐 SBA-15:合成、表征及在重金属去除方面的应用
IF 11.4 1区 工程技术 Q1 Environmental Science Pub Date : 2024-06-15 DOI: 10.1038/s41545-024-00340-7
Wensheng Yang, Saeed Shirazian, Roozbeh Soltani, Masoud Habibi Zare
In the path of walking on the road of sustainable and eco-friendly production methods for manufacturing nanomaterials and utilizing them in environmental applications, this article deals with the prosperous synthesis of a biogenic cyclam-functionalized homologous SBA-15 (BCFH-SBA-15). For this purpose, the agricultural waste of the extensively consumed sorghum was used as a rich source of silica in the preparation of BCFH-SBA-15 with a bimodal micro-mesoporous architecture and a substantial surface area of 325 m2 g–1 through a simple one-pot environmentally friendly approach. The material was structurally characterized through the use of different instrumental analyses such as XRD, FTIR, FESEM, TEM, and nitrogen adsorption/desorption isotherms. BCFH-SBA-15 proved to be highly efficient in adsorbing Ni(II) in aqueous solutions, as confirmed by the most reliable classical models utilized for determining isotherm, thermodynamic, and kinetic adsorption parameters. The Langmuir isotherm model provided the most accurate representation of the experimental results, and it was used to calculate the maximum adsorption capacity of BCFH-SBA-15 under optimal conditions (pH = 6.0, adsorbent dose = 3.00 mg, contact time = 20 min). The maximum adsorption capacity at four temperatures of 298, 303, 308, and 313 K was estimated to be 243.36, 253.87, 260.95, and 266.28 mg g–1, respectively; surpassing most previously reported adsorbents for Ni(II) adsorption. The thermodynamic data of Ni(II) adsorption on the BCFH-SBA-15 indicated a strong chemisorption ( $${triangle H}_{{rm{ads}}.}^{circ }$$  = +122.61 kJ mol–1) and spontaneous process ( $${triangle G}_{{rm{ads}}.}^{circ }$$ .= −29.161 to −36.801 kJ mol–1) with a low degree of randomness ( $${triangle S}_{{rm{ads}}.}^{circ }$$ . = 0.5093 kJ mol–1 K–1).
在以可持续和生态友好的生产方法制造纳米材料并将其用于环境应用的道路上,本文论述了一种生物源环己烷功能化同源 SBA-15 (BCFH-SBA-15)的成功合成。为此,本文采用简单的一锅式环保方法,将大量食用的高粱农业废弃物作为丰富的二氧化硅来源,制备出具有双峰微多孔结构和 325 平方米 g-1 大表面积的 BCFH-SBA-15。通过不同的仪器分析,如 XRD、FTIR、FESEM、TEM 和氮吸附/解吸等温线,对该材料进行了结构表征。事实证明,BCFH-SBA-15 能高效吸附水溶液中的镍(II),这一点已被用于确定等温线、热力学和动力学吸附参数的最可靠的经典模型所证实。Langmuir 等温线模型最精确地反映了实验结果,并用于计算 BCFH-SBA-15 在最佳条件下(pH = 6.0、吸附剂剂量 = 3.00 毫克、接触时间 = 20 分钟)的最大吸附容量。在 298、303、308 和 313 K 四种温度下的最大吸附容量分别为 243.36、253.87、260.95 和 266.28 mg g-1,超过了之前报道的大多数镍(II)吸附剂。镍(II)在 BCFH-SBA-15 上吸附的热力学数据表明,该吸附过程具有很强的化学吸附性($${triangle H}_{rm{ads}}.}^{circ }$$ = +122.61 kJ mol-1)和自发过程($${triangle G}_{rm{ads}}.}^{circ }$ .= -29.161 至 -36.801 kJ mol-1),随机性较低($${triangle S}_{{rm{ads}}.}^{circ }$ . = 0.5093 kJ mol-1 K-1)。
{"title":"Bio-originated mesosilicate SBA-15: synthesis, characterization, and application for heavy metal removal","authors":"Wensheng Yang, Saeed Shirazian, Roozbeh Soltani, Masoud Habibi Zare","doi":"10.1038/s41545-024-00340-7","DOIUrl":"10.1038/s41545-024-00340-7","url":null,"abstract":"In the path of walking on the road of sustainable and eco-friendly production methods for manufacturing nanomaterials and utilizing them in environmental applications, this article deals with the prosperous synthesis of a biogenic cyclam-functionalized homologous SBA-15 (BCFH-SBA-15). For this purpose, the agricultural waste of the extensively consumed sorghum was used as a rich source of silica in the preparation of BCFH-SBA-15 with a bimodal micro-mesoporous architecture and a substantial surface area of 325 m2 g–1 through a simple one-pot environmentally friendly approach. The material was structurally characterized through the use of different instrumental analyses such as XRD, FTIR, FESEM, TEM, and nitrogen adsorption/desorption isotherms. BCFH-SBA-15 proved to be highly efficient in adsorbing Ni(II) in aqueous solutions, as confirmed by the most reliable classical models utilized for determining isotherm, thermodynamic, and kinetic adsorption parameters. The Langmuir isotherm model provided the most accurate representation of the experimental results, and it was used to calculate the maximum adsorption capacity of BCFH-SBA-15 under optimal conditions (pH = 6.0, adsorbent dose = 3.00 mg, contact time = 20 min). The maximum adsorption capacity at four temperatures of 298, 303, 308, and 313 K was estimated to be 243.36, 253.87, 260.95, and 266.28 mg g–1, respectively; surpassing most previously reported adsorbents for Ni(II) adsorption. The thermodynamic data of Ni(II) adsorption on the BCFH-SBA-15 indicated a strong chemisorption ( $${triangle H}_{{rm{ads}}.}^{circ }$$  = +122.61 kJ mol–1) and spontaneous process ( $${triangle G}_{{rm{ads}}.}^{circ }$$ .= −29.161 to −36.801 kJ mol–1) with a low degree of randomness ( $${triangle S}_{{rm{ads}}.}^{circ }$$ . = 0.5093 kJ mol–1 K–1).","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00340-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141329459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Economic nanobubbles by RFB and promoted PEF with yolk@double-shell structural photocatalyst for degradation of pharmaceutical pollutants 利用 RFB 和卵黄@双壳结构光催化剂促进 PEF 生成经济型纳米气泡,用于降解制药污染物
IF 11.4 1区 工程技术 Q1 Environmental Science Pub Date : 2024-06-14 DOI: 10.1038/s41545-024-00345-2
Saeed Shirazian, Sameer Alshehri, Mohammad A. Khasawneh, Masoud Habibi Zare, Arjomand Mehrabani-Zeinabad
In this research, the generation of nanobubbles was carried out using a structure of vortex pump based on the relative blockage of flow (without the use of venturi and orifices, which consume a lot of energy to generate nanobubbles), which has made this process economical and commercial. In addition, the use of advanced synthesized nanoreactors with the Yolk@Shell structure, which forms a photoanode by coating the anode electrode and can operate in the visible light range, has highlighted this research work. An in-depth study of the synergistic effect of advanced photoelectrofenton oxidation methods in addition to the hydrodynamic reactor has shown that the intelligent selection of these three types of advanced oxidation methods together has improved the performance of each other and solved their negative aspects, including the use of hydrogen peroxide, divalent iron ion, and the removal of sludge generated by the electrofenton method. The use of hollow cylindrical electrodes allowed adequate loading of the advanced synthesized nanoreactors with Yolk@Shell structure. The investigation of the effects of micro (advanced synthesized nanoreactors with Yolk@Shell structure) and macro (vortex structure based on relative blockage of the flow) processes on the degradation of pharmaceutical pollutants, both separately and in combination, is a focus of this work. At the end, the energy consumption for each of these processes and this system in general was studied, which showed that the operating cost of this combined system according to the energy consumption requirements for the almost complete removal of the pollutant naproxen and the 90% reduction of its chemical oxygen demand is 6530 Rials/L.h (or 0.15525 USD/L.h), which presents this system as an economical method with industrialization capability. The degradability index (DI) of the introduced system under optimal operating conditions was 3.38, which shows that the development of the system based on the combination of advanced oxidation methods is a suitable method used in this research work due to its environmental friendliness, absence of side effluent production, efficiency and high degradation performance, ability to recover the nanocatalyst and consequently economic efficiency.
在这项研究中,纳米气泡的生成是利用基于相对阻塞流的涡旋泵结构(不使用文丘里管和孔口,因为产生纳米气泡需要消耗大量能量),这使得该工艺具有经济性和商业性。此外,采用先进的合成纳米反应器 Yolk@Shell 结构,通过在阳极电极上镀膜形成光阳极,可在可见光范围内工作,也是这项研究工作的亮点。对水动力反应器之外的高级光电-电芬顿氧化方法的协同效应的深入研究表明,智能地选择这三种高级氧化方法一起使用,提高了彼此的性能,解决了它们的负面问题,包括过氧化氢、二价铁离子的使用,以及电芬顿方法产生的污泥的去除。空心圆柱电极的使用使得具有 Yolk@Shell 结构的先进合成纳米反应器能够充分负载。研究微观(具有 Yolk@Shell 结构的先进合成纳米反应器)和宏观(基于流动相对阻塞的漩涡结构)过程对医药污染物降解的影响是这项工作的重点,既可以单独进行,也可以结合进行。最后,研究了每个过程和整个系统的能耗,结果表明,根据几乎完全去除污染物萘普生并将其化学需氧量降低 90% 的能耗要求,该组合系统的运行成本为 6530 里亚尔/升.小时(或 0.15525 美元/升.小时),这表明该系统是一种具有工业化能力的经济方法。在最佳操作条件下,引入系统的降解指数(DI)为 3.38,这表明基于高级氧化方法组合开发的系统是本研究工作中使用的一种合适方法,因为它对环境友好、无副污水产生、高效和高降解性能、能够回收纳米催化剂,因而具有经济效益。
{"title":"Economic nanobubbles by RFB and promoted PEF with yolk@double-shell structural photocatalyst for degradation of pharmaceutical pollutants","authors":"Saeed Shirazian, Sameer Alshehri, Mohammad A. Khasawneh, Masoud Habibi Zare, Arjomand Mehrabani-Zeinabad","doi":"10.1038/s41545-024-00345-2","DOIUrl":"10.1038/s41545-024-00345-2","url":null,"abstract":"In this research, the generation of nanobubbles was carried out using a structure of vortex pump based on the relative blockage of flow (without the use of venturi and orifices, which consume a lot of energy to generate nanobubbles), which has made this process economical and commercial. In addition, the use of advanced synthesized nanoreactors with the Yolk@Shell structure, which forms a photoanode by coating the anode electrode and can operate in the visible light range, has highlighted this research work. An in-depth study of the synergistic effect of advanced photoelectrofenton oxidation methods in addition to the hydrodynamic reactor has shown that the intelligent selection of these three types of advanced oxidation methods together has improved the performance of each other and solved their negative aspects, including the use of hydrogen peroxide, divalent iron ion, and the removal of sludge generated by the electrofenton method. The use of hollow cylindrical electrodes allowed adequate loading of the advanced synthesized nanoreactors with Yolk@Shell structure. The investigation of the effects of micro (advanced synthesized nanoreactors with Yolk@Shell structure) and macro (vortex structure based on relative blockage of the flow) processes on the degradation of pharmaceutical pollutants, both separately and in combination, is a focus of this work. At the end, the energy consumption for each of these processes and this system in general was studied, which showed that the operating cost of this combined system according to the energy consumption requirements for the almost complete removal of the pollutant naproxen and the 90% reduction of its chemical oxygen demand is 6530 Rials/L.h (or 0.15525 USD/L.h), which presents this system as an economical method with industrialization capability. The degradability index (DI) of the introduced system under optimal operating conditions was 3.38, which shows that the development of the system based on the combination of advanced oxidation methods is a suitable method used in this research work due to its environmental friendliness, absence of side effluent production, efficiency and high degradation performance, ability to recover the nanocatalyst and consequently economic efficiency.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00345-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141326811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificially regulated humification in creating humic-like biostimulators 人工调节腐殖化,创造类腐殖质生物刺激物
IF 11.4 1区 工程技术 Q1 Environmental Science Pub Date : 2024-06-10 DOI: 10.1038/s41545-024-00344-3
Kai Sun, Ziyan Niu, Shenghua Xiao, Xuemin Qi, Shunyao Li, Meihua Chen, Lingzhi Dai, Youbin Si
Humic substances (HSs), as the “black gold” of global agriculture, have a crucial environmental significance in cleaning harmful compounds, maintaining carbon mass balance, and increasing crop productivity. Unfortunately, the resources of HSs extracted from nature are insufficient, causing the supply, demand, and budget of the humus market to gradually increase. Given the analogous architectures of lignin and HSs, artificially regulated humification (ARH) has a great potential for directionally controlling the oxidative cleavage of lignin and/or the radical copolymerization of lignin precursors, to produce reassembled oligomers and/or polymers that can compare favorably with the function and efficacy of HSs. Herein, different ARH strategies are innovatively proposed to tackle hazardous chemicals and create humic-like biostimulators (H-LBs). We briefly describe the characteristics and functionalities of natural HSs, and summarize the latest approaches and mechanisms of lignin and its precursor-based ARH. In particular, the ARH routes of bio-composting, laccase catalysis, white-rot fungal degradation, Fenton-based advanced oxidation, and hydrothermal humification are comparatively highlighted to govern harmful substrates, enhance carbon sequestration, generate H-LBs, and practice sustainable agriculture. Furthermore, the mechanisms for promoting crop growth of H-LBs are also illustrated. Advances in modulating humification pathways may solve the technological bottlenecks of ARH in-situ and ex-situ by well-stocked lignin and its small derivatives, which are important for decontaminating contaminants, reducing CO2 emissions, and enriching H-LBs in agroecosystems.
腐殖质(HSs)作为全球农业的 "黑金",在清除有害化合物、维持碳质量平衡和提高作物产量方面具有重要的环境意义。遗憾的是,从自然界中提取的腐殖质资源不足,导致腐殖质市场的供需和预算逐渐增加。鉴于木质素和HS具有相似的结构,人工调节腐殖化(ARH)在定向控制木质素的氧化裂解和/或木质素前体的自由基共聚方面具有很大的潜力,从而产生重新组装的低聚物和/或聚合物,其功能和功效可与HS媲美。在此,我们创新性地提出了不同的 ARH 策略,以解决危险化学品问题并创造类腐殖质生物刺激剂(H-LBs)。我们简要介绍了天然HS的特点和功能,并总结了基于木质素及其前体的ARH的最新方法和机制。其中,比较重点介绍了生物堆肥、漆酶催化、白腐真菌降解、基于芬顿的高级氧化和水热腐殖化等 ARH 途径,以治理有害底物、加强碳固存、生成 H-LBs 和实践可持续农业。此外,还说明了 H-LBs 促进作物生长的机制。在调节腐殖化途径方面取得的进展可解决原位和非原位 ARH 的技术瓶颈问题,因为木质素及其小衍生物储量丰富,对净化污染物、减少二氧化碳排放和丰富农业生态系统中的 H-LBs 非常重要。
{"title":"Artificially regulated humification in creating humic-like biostimulators","authors":"Kai Sun, Ziyan Niu, Shenghua Xiao, Xuemin Qi, Shunyao Li, Meihua Chen, Lingzhi Dai, Youbin Si","doi":"10.1038/s41545-024-00344-3","DOIUrl":"10.1038/s41545-024-00344-3","url":null,"abstract":"Humic substances (HSs), as the “black gold” of global agriculture, have a crucial environmental significance in cleaning harmful compounds, maintaining carbon mass balance, and increasing crop productivity. Unfortunately, the resources of HSs extracted from nature are insufficient, causing the supply, demand, and budget of the humus market to gradually increase. Given the analogous architectures of lignin and HSs, artificially regulated humification (ARH) has a great potential for directionally controlling the oxidative cleavage of lignin and/or the radical copolymerization of lignin precursors, to produce reassembled oligomers and/or polymers that can compare favorably with the function and efficacy of HSs. Herein, different ARH strategies are innovatively proposed to tackle hazardous chemicals and create humic-like biostimulators (H-LBs). We briefly describe the characteristics and functionalities of natural HSs, and summarize the latest approaches and mechanisms of lignin and its precursor-based ARH. In particular, the ARH routes of bio-composting, laccase catalysis, white-rot fungal degradation, Fenton-based advanced oxidation, and hydrothermal humification are comparatively highlighted to govern harmful substrates, enhance carbon sequestration, generate H-LBs, and practice sustainable agriculture. Furthermore, the mechanisms for promoting crop growth of H-LBs are also illustrated. Advances in modulating humification pathways may solve the technological bottlenecks of ARH in-situ and ex-situ by well-stocked lignin and its small derivatives, which are important for decontaminating contaminants, reducing CO2 emissions, and enriching H-LBs in agroecosystems.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00344-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From wastewater treatment plants to decentralized resource factories 从污水处理厂到分散式资源工厂
IF 11.4 1区 工程技术 Q1 Environmental Science Pub Date : 2024-06-10 DOI: 10.1038/s41545-024-00343-4
María Molinos-Senante, Manel Poch, Diego Rosso, Manel Garrido-Baserba
Current wastewater management practices underutilize wastewater as a valuable source of water, energy, and essential plant nutrients. A new paradigm shift is needed, one that integrates the water-energy-food nexus into wastewater management. Decentralized wastewater management has the power to redefine not only the urban water cycle but also reshape society towards a more economic and environmentally sustainable future.
目前的废水管理方法没有充分利用废水这一宝贵的水、能源和植物必需养分来源。需要进行新的范式转变,将水、能源和粮食之间的关系纳入废水管理。分散式废水管理不仅有能力重新定义城市水循环,还能重塑社会,使其走向更加经济和环境可持续发展的未来。
{"title":"From wastewater treatment plants to decentralized resource factories","authors":"María Molinos-Senante, Manel Poch, Diego Rosso, Manel Garrido-Baserba","doi":"10.1038/s41545-024-00343-4","DOIUrl":"10.1038/s41545-024-00343-4","url":null,"abstract":"Current wastewater management practices underutilize wastewater as a valuable source of water, energy, and essential plant nutrients. A new paradigm shift is needed, one that integrates the water-energy-food nexus into wastewater management. Decentralized wastewater management has the power to redefine not only the urban water cycle but also reshape society towards a more economic and environmentally sustainable future.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00343-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainability of global small-scale constructed wetlands for multiple pollutant control 用于多种污染物控制的全球小型人工湿地的可持续性
IF 11.4 1区 工程技术 Q1 Environmental Science Pub Date : 2024-06-06 DOI: 10.1038/s41545-024-00336-3
Guogui Chen, Yuanyuan Mo, Xuan Gu, Erik Jeppesen, Tian Xie, Zhonghua Ning, Yina Li, Dongxue Li, Cong Chen, Baoshan Cui, Haiming Wu
The global wastewater surge demands constructed wetlands (CWs) to achieve the UN’s Sustainable Development Goals (SDG); yet the pollutant removal interactions and global sustainability of small CWs are unclear. This study synthesizes small CW data from 364 sites worldwide. The removal efficiency of organic matter and nutrient pollutants of small CWs had a 75th percentile of 68.8–84.0%. Bivariate analysis found consistent synergies between pollutant removals, lasting 3–12 years. The optimal thresholds for maintaining the synergistic effects were as follows: area size—17587 m2, hydraulic loading rate—0.45 m/d, hydraulic retention time—8.2 days, and temperature—20.2 °C. When considering the co-benefits and sustainability of small CWs for multi-pollutants control, promoting small-scale CWs could be an effective and sustainable solution for managing diverse wastewater pollutants while simultaneously minimizing land requirements. This solution holds the potential to address the challenges posed by global water scarcity resulting from wastewater discharge and water pollution.
全球废水量激增,需要建造湿地(CW)来实现联合国可持续发展目标(SDG);然而,小型湿地的污染物去除相互作用和全球可持续性尚不明确。本研究综合了来自全球 364 个地点的小型 CW 数据。小型化武对有机物和营养物污染物的去除率为 68.8-84.0%,第 75 百分位数为 68.8-84.0%。双变量分析发现,污染物清除之间的协同作用持续了 3-12 年。维持协同效应的最佳阈值如下:面积-17587 平方米,水力负荷率-0.45 米/天,水力停留时间-8.2 天,温度-20.2 °C。考虑到小型化武处理对多种污染物控制的共同效益和可持续性,推广小型化武处理可成为一种有效且可持续的解决方案,在管理多种废水污染物的同时最大限度地减少对土地的需求。这种解决方案有可能解决废水排放和水污染造成的全球水资源短缺问题。
{"title":"Sustainability of global small-scale constructed wetlands for multiple pollutant control","authors":"Guogui Chen, Yuanyuan Mo, Xuan Gu, Erik Jeppesen, Tian Xie, Zhonghua Ning, Yina Li, Dongxue Li, Cong Chen, Baoshan Cui, Haiming Wu","doi":"10.1038/s41545-024-00336-3","DOIUrl":"10.1038/s41545-024-00336-3","url":null,"abstract":"The global wastewater surge demands constructed wetlands (CWs) to achieve the UN’s Sustainable Development Goals (SDG); yet the pollutant removal interactions and global sustainability of small CWs are unclear. This study synthesizes small CW data from 364 sites worldwide. The removal efficiency of organic matter and nutrient pollutants of small CWs had a 75th percentile of 68.8–84.0%. Bivariate analysis found consistent synergies between pollutant removals, lasting 3–12 years. The optimal thresholds for maintaining the synergistic effects were as follows: area size—17587 m2, hydraulic loading rate—0.45 m/d, hydraulic retention time—8.2 days, and temperature—20.2 °C. When considering the co-benefits and sustainability of small CWs for multi-pollutants control, promoting small-scale CWs could be an effective and sustainable solution for managing diverse wastewater pollutants while simultaneously minimizing land requirements. This solution holds the potential to address the challenges posed by global water scarcity resulting from wastewater discharge and water pollution.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00336-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Clean Water
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1