首页 > 最新文献

Nuclear Fusion最新文献

英文 中文
Diagnosing inertial confinement fusion ignition 诊断惯性约束聚变点火
IF 3.3 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-04 DOI: 10.1088/1741-4326/ad703b
A.S. Moore, L. Divol, B. Bachmann, R. Bionta, D. Bradley, D.T. Casey, P. Celliers, H. Chen, A. Do, E. Dewald, M. Eckart, D. Fittinghoff, J. Frenje, M. Gatu-Johnson, H. Geppert-Kleinrath, V. Geppert-Kleinrath, G. Grim, K. Hahn, M. Hohenberger, J. Holder, O. Hurricane, N. Izumi, S. Kerr, S.F. Khan, J.D. Kilkenny, Y. Kim, B. Kozioziemski, N. Lemos, A.G. MacPhee, P. Michel, M. Millot, K.D. Meaney, S. Nagel, A. Pak, J.E. Ralph, J.S. Ross, M.S. Rubery, D.J. Schlossberg, V. Smalyuk, G. Swadling, R. Tommasini, C. Trosseille, A.B. Zylstra, A. Mackinnon, J.D. Moody, O.L. Landen, R. Town
Fusion ignition by inertial confinement requires compression and heating of the fusion fuel to temperatures in excess of 5 keV and densities exceeding hundreds of g/cc. In August 2021, this scientific milestone was surpassed at the National Ignition Facility (NIF), when the Lawson criterion for ignition was exceeded generating 1.37MJ of fusion energy (Abu-Shawareb et al 2022 Phys. Rev. Lett. 129 075001), and then in December 2022 target gain >1 was realized with the production of 3.1MJ of fusion energy from a target driven by 2.0MJ of laser energy (Abu-Shawareb et al 2024 Phys. Rev. Lett. 132 065102). At the NIF, inertial confinement fusion research primarily uses a laser indirect drive in which the fusion capsule is surrounded by a high-Z enclosure (‘hohlraum’) used to convert the directed laser energy into a symmetric x-ray drive on the capsule. Precise measurements of the plasma conditions, x-rays, γ-rays and neutrons produced are key to understanding the pathway to higher performance. This paper discusses the diagnostics and measurement techniques developed to understand these experiments, focusing on three main topics: (1) key diagnostic developments for achieving igniting plasmas, (2) novel signatures related to thermonuclear burn and (3) advances to diagnostic capabilities in the igniting regime with a perspective toward developments for intertial fusion energy.
利用惯性约束点燃核聚变需要将核聚变燃料压缩和加热到超过 5 keV 的温度和超过数百 g/cc 的密度。2021 年 8 月,国家点火装置(NIF)超越了这一科学里程碑,点火能量超过了劳森标准,产生了 137 万焦耳的聚变能(Abu-Shawareb 等人,2022 年物理评论快报 129 075001),随后在 2022 年 12 月实现了目标增益>1,由 200 万焦耳激光能量驱动的目标产生了 310 万焦耳的聚变能(Abu-Shawareb 等人,2024 年物理评论快报 132 065102)。在 NIF,惯性约束聚变研究主要使用激光间接驱动,其中聚变囊周围有一个高 Z 围栏("hohlraum"),用于将定向激光能量转换成囊上的对称 X 射线驱动。对等离子体条件、产生的 X 射线、γ 射线和中子进行精确测量是了解实现更高性能的关键。本文讨论了为了解这些实验而开发的诊断和测量技术,重点关注三个主要议题:(1) 实现点燃等离子体的关键诊断发展,(2) 与热核燃料有关的新特征,以及 (3) 点燃系统诊断能力的进展,并着眼于间歇聚变能的发展。
{"title":"Diagnosing inertial confinement fusion ignition","authors":"A.S. Moore, L. Divol, B. Bachmann, R. Bionta, D. Bradley, D.T. Casey, P. Celliers, H. Chen, A. Do, E. Dewald, M. Eckart, D. Fittinghoff, J. Frenje, M. Gatu-Johnson, H. Geppert-Kleinrath, V. Geppert-Kleinrath, G. Grim, K. Hahn, M. Hohenberger, J. Holder, O. Hurricane, N. Izumi, S. Kerr, S.F. Khan, J.D. Kilkenny, Y. Kim, B. Kozioziemski, N. Lemos, A.G. MacPhee, P. Michel, M. Millot, K.D. Meaney, S. Nagel, A. Pak, J.E. Ralph, J.S. Ross, M.S. Rubery, D.J. Schlossberg, V. Smalyuk, G. Swadling, R. Tommasini, C. Trosseille, A.B. Zylstra, A. Mackinnon, J.D. Moody, O.L. Landen, R. Town","doi":"10.1088/1741-4326/ad703b","DOIUrl":"https://doi.org/10.1088/1741-4326/ad703b","url":null,"abstract":"Fusion ignition by inertial confinement requires compression and heating of the fusion fuel to temperatures in excess of 5 keV and densities exceeding hundreds of g/cc. In August 2021, this scientific milestone was surpassed at the National Ignition Facility (NIF), when the Lawson criterion for ignition was exceeded generating 1.37MJ of fusion energy (Abu-Shawareb <italic toggle=\"yes\">et al</italic> 2022 <italic toggle=\"yes\">Phys. Rev. Lett.</italic> <bold>129</bold> 075001), and then in December 2022 target gain &gt;1 was realized with the production of 3.1MJ of fusion energy from a target driven by 2.0MJ of laser energy (Abu-Shawareb <italic toggle=\"yes\">et al</italic> 2024 <italic toggle=\"yes\">Phys. Rev. Lett.</italic> <bold>132</bold> 065102). At the NIF, inertial confinement fusion research primarily uses a laser indirect drive in which the fusion capsule is surrounded by a high-Z enclosure (‘hohlraum’) used to convert the directed laser energy into a symmetric x-ray drive on the capsule. Precise measurements of the plasma conditions, x-rays, <italic toggle=\"yes\">γ</italic>-rays and neutrons produced are key to understanding the pathway to higher performance. This paper discusses the diagnostics and measurement techniques developed to understand these experiments, focusing on three main topics: (1) key diagnostic developments for achieving igniting plasmas, (2) novel signatures related to thermonuclear burn and (3) advances to diagnostic capabilities in the igniting regime with a perspective toward developments for intertial fusion energy.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"20 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of locked mode instability triggered by a change in confinement 密闭性变化引发的锁定模式不稳定性的定量分析
IF 3.3 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-03 DOI: 10.1088/1741-4326/ad6ce7
M. Peterka, J. Seidl, T. Markovic, A. Loarte, N.C. Logan, J.-K. Park, P. Cahyna, J. Havlicek, M. Imrisek, L. Kripner, R. Panek, M. Sos, P. Bilkova, K. Bogar, P. Bohm, A. Casolari, Y. Gribov, O. Grover, P. Hacek, M. Hron, K. Kovarik, M. Tomes, D. Tskhakaya, J. Varju, P. Vondracek, V. Weinzettl, the COMPASS Teama
This work presents the first analysis of the disruptive locked mode (LM) triggered by the dynamics of a confinement change. It shows that, under certain conditions, the LM threshold during the transient is significantly lower than expected from steady states. We investigate the sensitivity to a controlled n = 1 error field (EF) activated prior to the L-H transition in the COMPASS tokamak, at q95 ∼ 3, βN ∼ 1, and using EF coils on the high-field side of the vessel. A threshold for EF penetration subsequent to the L-H transition is identified, which shows no significant trend with density or applied torque, and is an apparent consequence of the reduced intrinsic rotation of the 2/1 mode during this transient phase. This finding challenges the assumption made in theoretical and empirical works that natural mode rotation can be predicted by global plasma parameters and urges against using any parametric EF penetration scaling derived from steady-state experiments to define the EF correction strategy in the entire discharge. Furthermore, even at EFs below the identified penetration threshold, disruptive locking of sawtooth-seeded 2/1 tearing modes is observed after about 30% of L-H transitions without external torque.
这项研究首次分析了由约束变化动态引发的破坏性锁定模式(LM)。它表明,在某些条件下,瞬态期间的锁定模式阈值明显低于稳定状态下的预期阈值。我们研究了在 COMPASS 托卡马克的 L-H 转换之前,在 q95 ∼ 3,βN ∼ 1 的条件下,使用容器高场侧的 EF 线圈激活的受控 n = 1 误差场(EF)的敏感性。确定了 L-H 转换后 EF 穿透的阈值,该阈值与密度或应用扭矩无明显趋势,是 2/1 模式在此瞬态阶段本征旋转减少的明显结果。这一发现挑战了理论和经验研究中的假设,即自然模式旋转可由全局等离子体参数预测,并敦促不要使用从稳态实验中得出的任何参数 EF 穿透比例来定义整个放电过程中的 EF 校正策略。此外,即使在低于所确定的穿透阈值的 EF 下,在没有外部扭矩的情况下,在约 30% 的 L-H 转变之后,也能观察到锯齿种子 2/1 撕裂模式的破坏性锁定。
{"title":"Quantification of locked mode instability triggered by a change in confinement","authors":"M. Peterka, J. Seidl, T. Markovic, A. Loarte, N.C. Logan, J.-K. Park, P. Cahyna, J. Havlicek, M. Imrisek, L. Kripner, R. Panek, M. Sos, P. Bilkova, K. Bogar, P. Bohm, A. Casolari, Y. Gribov, O. Grover, P. Hacek, M. Hron, K. Kovarik, M. Tomes, D. Tskhakaya, J. Varju, P. Vondracek, V. Weinzettl, the COMPASS Teama","doi":"10.1088/1741-4326/ad6ce7","DOIUrl":"https://doi.org/10.1088/1741-4326/ad6ce7","url":null,"abstract":"This work presents the first analysis of the disruptive locked mode (LM) triggered by the dynamics of a confinement change. It shows that, under certain conditions, the LM threshold during the transient is significantly lower than expected from steady states. We investigate the sensitivity to a controlled <italic toggle=\"yes\">n</italic> = 1 error field (EF) activated prior to the L-H transition in the COMPASS tokamak, at <italic toggle=\"yes\">q</italic><sub>95</sub> ∼ 3, <italic toggle=\"yes\">β</italic><sub>N</sub> ∼ 1, and using EF coils on the high-field side of the vessel. A threshold for EF penetration subsequent to the L-H transition is identified, which shows no significant trend with density or applied torque, and is an apparent consequence of the reduced intrinsic rotation of the 2/1 mode during this transient phase. This finding challenges the assumption made in theoretical and empirical works that natural mode rotation can be predicted by global plasma parameters and urges against using any parametric EF penetration scaling derived from steady-state experiments to define the EF correction strategy in the entire discharge. Furthermore, even at EFs below the identified penetration threshold, disruptive locking of sawtooth-seeded 2/1 tearing modes is observed after about 30% of L-H transitions without external torque.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"76 2 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasilinear theory and modelling of gyrokinetic turbulent transport in tokamaks 托卡马克中陀螺动湍流输运的准线性理论与建模
IF 3.3 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-03 DOI: 10.1088/1741-4326/ad6ba5
G. Staebler, C. Bourdelle, J. Citrin, R. Waltz
The theory, development, and validation of reduced quasilinear models of gyrokinetic turbulent transport in the closed flux surface core of tokamaks is reviewed. In combination with neoclassical collisional transport, these models are successful in accurately predicting core tokamak plasma temperature, density, rotation, and impurity profiles in a variety of confinement regimes. Refined experimental tests have been performed to validate the predictions of the quasilinear models, probing changes in the dominant gyrokinetic instabilities, as reflected in fluctuation measurements, cross-phases, and transport properties. These tests continue to produce a deeper understanding of the complex mix of instabilities at both electron and ion gyroradius scales.
本文回顾了托卡马克封闭通量面核心陀螺动湍流输运的简化准线性模型的理论、开发和验证。这些模型与新古典碰撞输运相结合,成功地准确预测了各种约束机制下托卡马克核心等离子体的温度、密度、旋转和杂质剖面。为了验证准线性模型的预测结果,我们进行了完善的实验测试,探测主要陀螺动能不稳定性的变化,这些变化反映在波动测量、交叉相位和传输特性上。这些测试继续加深了对电子和离子回旋半径尺度上不稳定性复杂组合的理解。
{"title":"Quasilinear theory and modelling of gyrokinetic turbulent transport in tokamaks","authors":"G. Staebler, C. Bourdelle, J. Citrin, R. Waltz","doi":"10.1088/1741-4326/ad6ba5","DOIUrl":"https://doi.org/10.1088/1741-4326/ad6ba5","url":null,"abstract":"The theory, development, and validation of reduced quasilinear models of gyrokinetic turbulent transport in the closed flux surface core of tokamaks is reviewed. In combination with neoclassical collisional transport, these models are successful in accurately predicting core tokamak plasma temperature, density, rotation, and impurity profiles in a variety of confinement regimes. Refined experimental tests have been performed to validate the predictions of the quasilinear models, probing changes in the dominant gyrokinetic instabilities, as reflected in fluctuation measurements, cross-phases, and transport properties. These tests continue to produce a deeper understanding of the complex mix of instabilities at both electron and ion gyroradius scales.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"24 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistive wall tearing mode disruptions 阻力墙撕裂模式中断
IF 3.3 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-03 DOI: 10.1088/1741-4326/ad7272
H.R. Strauss, B.E. Chapman, B.C. Lyons
This paper deals with resistive wall tearing mode (RWTM) disruptions. RWTMs are closely related to resistive wall modes. RWTMs are tearing modes whose linear and nonlinear behavior is strongly dependent on the resistive wall outside the plasma. The consequence for ITER, is that the thermal quench timescale could be much longer than previously conjectured. Active feedback stabilization is another possible way to mitigate or prevent RWTM disruptions. Simulations of RWTM disruptions are reviewed for DIII-D and MST. MST has a longer resistive wall time than ITER, and disruptions are not observed experimentally when MST is operated as a standard tokamak. Simulations indicate that the RWTM disruption time scale is longer than the experimental shot time. Edge cooling causes contraction of the current profile, which can destabilize RWTMs. The equilibria studied here have the q = 2 rational surface close to the edge of the plasma, and low current density between the q = 2 surface and the wall. A sequence of low edge current model equilibria has major disruptions only for a resistive, not ideal, wall, and edge q3.4. This is consistent with regimes of tokamak disruptivity, suggesting that tokamak disruptions caused by edge cooling at low edge q could be RWTMs.
本文涉及阻性墙体撕裂模式(RWTM)破坏。RWTM 与电阻壁模式密切相关。RWTM 是一种撕裂模式,其线性和非线性行为与等离子体外的电阻壁密切相关。这对热核实验堆的影响是,热淬火的时间尺度可能比之前推测的要长很多。主动反馈稳定是减轻或防止 RWTM 干扰的另一种可能方法。对 DIII-D 和 MST 的 RWTM 干扰模拟进行了回顾。MST 的阻力壁时间比热核实验堆更长,而且当 MST 作为标准托卡马克运行时,在实验中没有观察到中断现象。模拟结果表明,RWTM 的中断时间尺度长于实验射出时间。边缘冷却会导致电流曲线收缩,从而破坏 RWTM 的稳定。本文研究的平衡状态是 q = 2 理性表面靠近等离子体边缘,q = 2 表面和壁之间的电流密度较低。一连串的低边缘电流模型平衡只有在电阻壁(而非理想壁)和边缘 q⩽3.4 时才会出现严重破坏。这与托卡马克的破坏性是一致的,表明在低边缘q时由边缘冷却引起的托卡马克破坏可能是RWTMs。
{"title":"Resistive wall tearing mode disruptions","authors":"H.R. Strauss, B.E. Chapman, B.C. Lyons","doi":"10.1088/1741-4326/ad7272","DOIUrl":"https://doi.org/10.1088/1741-4326/ad7272","url":null,"abstract":"This paper deals with resistive wall tearing mode (RWTM) disruptions. RWTMs are closely related to resistive wall modes. RWTMs are tearing modes whose linear and nonlinear behavior is strongly dependent on the resistive wall outside the plasma. The consequence for ITER, is that the thermal quench timescale could be much longer than previously conjectured. Active feedback stabilization is another possible way to mitigate or prevent RWTM disruptions. Simulations of RWTM disruptions are reviewed for DIII-D and MST. MST has a longer resistive wall time than ITER, and disruptions are not observed experimentally when MST is operated as a standard tokamak. Simulations indicate that the RWTM disruption time scale is longer than the experimental shot time. Edge cooling causes contraction of the current profile, which can destabilize RWTMs. The equilibria studied here have the <italic toggle=\"yes\">q</italic> = 2 rational surface close to the edge of the plasma, and low current density between the <italic toggle=\"yes\">q</italic> = 2 surface and the wall. A sequence of low edge current model equilibria has major disruptions only for a resistive, not ideal, wall, and edge <inline-formula>\u0000<tex-math><?CDATA $q unicode{x2A7D} 3.4.$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>q</mml:mi><mml:mtext>⩽</mml:mtext><mml:mn>3.4</mml:mn><mml:mo>.</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad7272ieqn1.gif\"></inline-graphic></inline-formula> This is consistent with regimes of tokamak disruptivity, suggesting that tokamak disruptions caused by edge cooling at low edge <italic toggle=\"yes\">q</italic> could be RWTMs.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"7 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of differential plasma rotation to prevent disruptive tearing mode onset from 3-wave coupling 利用差分等离子体旋转防止 3 波耦合产生破坏性撕裂模式
IF 3.3 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-03 DOI: 10.1088/1741-4326/ad7273
N.J. Richner, L. Bardóczi, J.D. Callen, R.J. La Haye, N.C. Logan, E.J. Strait
Plasma differential rotation is found to be capable of preventing disruptive neoclassical tearing modes (NTMs) seeded by nonlinear three-wave coupling. As tearing modes degrade confinement and can lead to disruptions, stabilization strategies are crucial to the successful operation of future devices. In ITER-relevant scenarios on DIII-D, rotationally coupled m/n = 1/1 and 3/2 modes have been observed to drive 2/1 islands through three-wave coupling. The frequency of the driven 2/1 mode is set by matching conditions and the frequencies of the driving modes. When the driven mode frequency matches the local plasma rotation frequency, e.g. at low differential rotation, the driven 2/1 island can grow into a disruptive NTM. Using neutral beam torque as an actuator to scan the differential rotation, these experiments demonstrate that a sufficiently large frequency mismatch prevents destabilization of disruptive 2/1 NTMs by three-wave coupling. This work indicates that differential rotation can be used as an actuator to prevent NTMs seeded by three-wave coupling.
研究发现,等离子体差分旋转能够防止由非线性三波耦合引发的破坏性新经典撕裂模式(NTMs)。由于撕裂模会降低约束性并导致破坏,因此稳定策略对于未来装置的成功运行至关重要。在 DIII-D 上的热核实验堆相关场景中,已经观察到旋转耦合 m/n = 1/1 和 3/2 模式通过三波耦合驱动 2/1 岛。驱动 2/1 模式的频率由匹配条件和驱动模式的频率决定。当驱动模式的频率与局部等离子体旋转频率相匹配时,例如在低差分旋转时,驱动的 2/1 岛可以发展成为破坏性的非晶态物质。这些实验利用中性束扭矩作为扫描差分旋转的致动器,证明足够大的频率失配可以防止三波耦合破坏性 2/1 非晶态金属的稳定性。这项工作表明,差分旋转可作为一种致动器,用于防止三波耦合产生非晶态种子。
{"title":"Use of differential plasma rotation to prevent disruptive tearing mode onset from 3-wave coupling","authors":"N.J. Richner, L. Bardóczi, J.D. Callen, R.J. La Haye, N.C. Logan, E.J. Strait","doi":"10.1088/1741-4326/ad7273","DOIUrl":"https://doi.org/10.1088/1741-4326/ad7273","url":null,"abstract":"Plasma differential rotation is found to be capable of preventing disruptive neoclassical tearing modes (NTMs) seeded by nonlinear three-wave coupling. As tearing modes degrade confinement and can lead to disruptions, stabilization strategies are crucial to the successful operation of future devices. In ITER-relevant scenarios on DIII-D, rotationally coupled <inline-formula>\u0000<tex-math><?CDATA $m/n$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>m</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad7273ieqn1.gif\"></inline-graphic></inline-formula> = 1/1 and 3/2 modes have been observed to drive 2/1 islands through three-wave coupling. The frequency of the driven 2/1 mode is set by matching conditions and the frequencies of the driving modes. When the driven mode frequency matches the local plasma rotation frequency, e.g. at low differential rotation, the driven 2/1 island can grow into a disruptive NTM. Using neutral beam torque as an actuator to scan the differential rotation, these experiments demonstrate that a sufficiently large frequency mismatch prevents destabilization of disruptive 2/1 NTMs by three-wave coupling. This work indicates that differential rotation can be used as an actuator to prevent NTMs seeded by three-wave coupling.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"7 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FLARE: field line analysis and reconstruction for 3D boundary plasma modeling FLARE:用于三维边界等离子体建模的场线分析和重构
IF 3.3 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-03 DOI: 10.1088/1741-4326/ad7303
H. Frerichs
The FLARE code is a magnetic mesh generator that is integrated within a suite of tools for the analysis of the magnetic geometry in toroidal fusion devices. A magnetic mesh is constructed from field line segments and permits fast reconstruction of field lines in 3D boundary plasma codes such as EMC3-EIRENE. Both intrinsically non-axisymmetric configurations (stellarators) and those with symmetry breaking perturbations of an axisymmetric equilibrium (tokamaks) are supported. The code itself is written in Modern Fortran with MPI support for parallel computing, and it incorporates object-oriented programming for the definition of the magnetic field and the material surface geometry. Extended derived types for a number of different magnetohydrodynamic equilibrium and plasma response models are implemented. The core element of FLARE is a field line tracer with adaptive step-size control, and this is integrated into tools for the construction of Poincaré maps and invariant manifolds of X-points. A collection of high-level procedures that generate output files for visualization is build on top of that. The analysis modules are build with Python frontends that facilitate customization of tasks and/or scripting of parameter scans.
FLARE 代码是一种磁场网格生成器,集成在一套工具中,用于分析环形聚变装置中的磁场几何形状。磁网格由磁场线段构建,允许在三维边界等离子体代码(如 EMC3-EIRENE)中快速重建磁场线。既支持非轴对称结构(恒星器),也支持轴对称平衡的对称破缺扰动结构(托卡马克)。代码本身采用现代Fortran语言编写,支持MPI并行计算,并采用面向对象编程来定义磁场和材料表面几何形状。它还为许多不同的磁流体动力学平衡和等离子体响应模型实现了扩展的派生类型。FLARE 的核心要素是一个具有自适应步长控制的场线追踪器,并将其集成到用于构建 Poincaré 地图和 X 点不变流形的工具中。在此基础上,还构建了一系列高级程序,用于生成可视化输出文件。分析模块采用 Python 前端,便于定制任务和/或编写参数扫描脚本。
{"title":"FLARE: field line analysis and reconstruction for 3D boundary plasma modeling","authors":"H. Frerichs","doi":"10.1088/1741-4326/ad7303","DOIUrl":"https://doi.org/10.1088/1741-4326/ad7303","url":null,"abstract":"The FLARE code is a magnetic mesh generator that is integrated within a suite of tools for the analysis of the magnetic geometry in toroidal fusion devices. A magnetic mesh is constructed from field line segments and permits fast reconstruction of field lines in 3D boundary plasma codes such as EMC3-EIRENE. Both intrinsically non-axisymmetric configurations (stellarators) and those with symmetry breaking perturbations of an axisymmetric equilibrium (tokamaks) are supported. The code itself is written in Modern Fortran with MPI support for parallel computing, and it incorporates object-oriented programming for the definition of the magnetic field and the material surface geometry. Extended derived types for a number of different magnetohydrodynamic equilibrium and plasma response models are implemented. The core element of FLARE is a field line tracer with adaptive step-size control, and this is integrated into tools for the construction of Poincaré maps and invariant manifolds of X-points. A collection of high-level procedures that generate output files for visualization is build on top of that. The analysis modules are build with Python frontends that facilitate customization of tasks and/or scripting of parameter scans.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"64 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study of a general criterion for divertor detachment control 分流器脱离控制一般标准的数值研究
IF 3.3 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-03 DOI: 10.1088/1741-4326/ad6e07
Hao Yang, Guido Ciraolo, Olivier Février, Nicolas Fedorczak, Nicolas Rivals, Andreas Bierwage, Hugo Bufferand, Gloria L Falchetto, Tomohide Nakano, Patrick Tamain, Jérôme Bucalossi, the WEST teama
The parameter <inline-formula><tex-math><?CDATA $R_mathrm{D} = P_mathrm{rad}/P_mathrm{cond}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant="normal">D</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mi>rad</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mi>cond</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="nfad6e07ieqn1.gif"></inline-graphic></inline-formula>, which measures the ratio of radiated power to conductive heat flux at downstream <italic toggle="yes">Scrape-Off-Layer</italic> (SOL), is proposed as a robust and practically useful figure of merit for divertor detachment control. The simulations performed using the SOLEDGE3X-EIRENE code predict that the instant where <inline-formula><tex-math><?CDATA $R_mathrm{D}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant="normal">D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="nfad6e07ieqn2.gif"></inline-graphic></inline-formula> passes through unity (that is, when <inline-formula><tex-math><?CDATA $P_mathrm{rad} approx P_mathrm{cond}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mi>rad</mml:mi></mml:mrow></mml:msub><mml:mo>≈</mml:mo><mml:msub><mml:mi>P</mml:mi><mml:mrow><mml:mi>cond</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="nfad6e07ieqn3.gif"></inline-graphic></inline-formula>) coincides with the detachment of the radiation front from the divertor target. Furthermore, as a function of <inline-formula><tex-math><?CDATA $R_mathrm{D}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant="normal">D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="nfad6e07ieqn4.gif"></inline-graphic></inline-formula>, there is a decrease in target temperature and an increase in the distance at which the radiation front detaches from the target. These simulations cover scenarios in WEST and TCV with different levels of confinement, divertor closure, impurity concentration, and input power. The physical rationale underlying the above definition of <inline-formula><tex-math><?CDATA $R_mathrm{D}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mrow><mml:mi mathvariant="normal">D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="nfad6e07ieqn5.gif"></inline-graphic></inline-formula> is that when the divertor radiated power is comparable to the conductive heat flux, there will be a lack of energy reaching the target. Consequently, the radiation front detaches some distance from the divertor target. <inline-formula><tex-math><?CDATA $R_mathrm{D}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mm
参数 RD=Prad/Pcond 用于测量下游刮掉层 (SOL) 的辐射功率与传导热通量之比,是用于控制分流器脱落的一个稳健且实用的优点参数。使用 SOLEDGE3X-EIRENE 代码进行的模拟预测,RD 通过统一值的瞬间(即 Prad≈Pcond 时)与辐射前沿脱离分流器目标的时间相吻合。此外,作为 RD 的函数,目标温度降低,辐射锋脱离目标的距离增加。这些模拟涵盖了 WEST 和 TCV 中不同约束水平、分流器封闭程度、杂质浓度和输入功率的情况。上述 RD 定义的物理原理是,当分流器的辐射功率与传导热通量相当时,到达目标的能量将不足。因此,辐射前沿会与转移目标分离一段距离。因此,RD 可以很好地指示脱离状态的转换。通过监测 RD,可以更容易地将目标处的热通量沉积保持在可控水平。评估 RD 需要对下游 SOL 辐射和上游温度进行诊断性测量,这在托卡马克装置中是可行的。通过对 WEST 托卡马克进行现实的随时间变化的数值模拟,以及 WEST、TCV 和 JT-60U 的实验数据,对这一优点的稳健性进行了评估。结果表明,尽管放电和机器不同,但 RD 能够捕捉憩室等离子体状态的演变,这表明 RD 可以作为实时实验憩室脱离控制的重要控制变量。
{"title":"Numerical study of a general criterion for divertor detachment control","authors":"Hao Yang, Guido Ciraolo, Olivier Février, Nicolas Fedorczak, Nicolas Rivals, Andreas Bierwage, Hugo Bufferand, Gloria L Falchetto, Tomohide Nakano, Patrick Tamain, Jérôme Bucalossi, the WEST teama","doi":"10.1088/1741-4326/ad6e07","DOIUrl":"https://doi.org/10.1088/1741-4326/ad6e07","url":null,"abstract":"The parameter &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $R_mathrm{D} = P_mathrm{rad}/P_mathrm{cond}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;R&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;D&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;mml:mo&gt;=&lt;/mml:mo&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;P&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;rad&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;/&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;P&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;cond&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"nfad6e07ieqn1.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;, which measures the ratio of radiated power to conductive heat flux at downstream &lt;italic toggle=\"yes\"&gt;Scrape-Off-Layer&lt;/italic&gt; (SOL), is proposed as a robust and practically useful figure of merit for divertor detachment control. The simulations performed using the SOLEDGE3X-EIRENE code predict that the instant where &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $R_mathrm{D}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;R&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;D&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"nfad6e07ieqn2.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; passes through unity (that is, when &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $P_mathrm{rad} approx P_mathrm{cond}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;P&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;rad&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;mml:mo&gt;≈&lt;/mml:mo&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;P&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;cond&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"nfad6e07ieqn3.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;) coincides with the detachment of the radiation front from the divertor target. Furthermore, as a function of &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $R_mathrm{D}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;R&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;D&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"nfad6e07ieqn4.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;, there is a decrease in target temperature and an increase in the distance at which the radiation front detaches from the target. These simulations cover scenarios in WEST and TCV with different levels of confinement, divertor closure, impurity concentration, and input power. The physical rationale underlying the above definition of &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $R_mathrm{D}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;R&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;D&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"nfad6e07ieqn5.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; is that when the divertor radiated power is comparable to the conductive heat flux, there will be a lack of energy reaching the target. Consequently, the radiation front detaches some distance from the divertor target. &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $R_mathrm{D}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mm","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"63 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The formation of an radial edge electric field due to finite ion orbit width effects is the possible root cause of the H-mode edge 由于有限离子轨道宽度效应而形成的径向边缘电场是 H 模式边缘的可能根本原因。
IF 3.3 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-03 DOI: 10.1088/1741-4326/ad7275
G.J. Kramer, A. Bortolon, A. Diallo, R. Maingi
Full orbit-following simulations of thermal ions show that finite ion-orbit width effects create charge separation near the last closed flux surface (LCFS) which generates a localized radial electric field. Experimentally, edge electric fields are observed in H-mode plasmas and they are necessary for the edge turbulence suppression via the E×B flow shear mechanism. Confined trapped (and to a lesser extent co-passing) ions near the plasma edge form a positive charge distribution outside the LCFS, while thermal electrons are tied more tightly to field lines owing to their small mass and are poorly confined outside the LCFS, hence charge neutrality is violated outside the LCFS. A large number of reported observations from spherical and conventional tokamaks support the results from the simulations although the simulations were not performed fully self consistently. The results suggest ways to lower the H-mode power threshold and optimize the H-mode plasma edge.
热离子的全轨道跟踪模拟表明,有限离子轨道宽度效应会在最后一个封闭通量面(LCFS)附近产生电荷分离,从而产生局部径向电场。实验在 H 模式等离子体中观测到了边缘电场,它们是通过 E×B 流剪切机制抑制边缘湍流的必要条件。等离子体边缘附近受限的被困离子(其次是共通离子)在 LCFS 外形成正电荷分布,而热电子由于质量较小,与场线的束缚较紧,在 LCFS 外受限程度较低,因此在 LCFS 外违反了电荷中性原则。尽管模拟并不是完全自洽地进行的,但大量来自球形和常规托卡马克的观测报告支持了模拟结果。结果提出了降低 H 模式功率阈值和优化 H 模式等离子体边缘的方法。
{"title":"The formation of an radial edge electric field due to finite ion orbit width effects is the possible root cause of the H-mode edge","authors":"G.J. Kramer, A. Bortolon, A. Diallo, R. Maingi","doi":"10.1088/1741-4326/ad7275","DOIUrl":"https://doi.org/10.1088/1741-4326/ad7275","url":null,"abstract":"Full orbit-following simulations of thermal ions show that finite ion-orbit width effects create charge separation near the last closed flux surface (LCFS) which generates a localized radial electric field. Experimentally, edge electric fields are observed in H-mode plasmas and they are necessary for the edge turbulence suppression via the <inline-formula>\u0000<tex-math><?CDATA $boldsymbol{ E times B }$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"bold-italic\">E</mml:mi><mml:mo mathvariant=\"bold\">×</mml:mo><mml:mi mathvariant=\"bold-italic\">B</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"nfad7275ieqn1.gif\"></inline-graphic></inline-formula> flow shear mechanism. Confined trapped (and to a lesser extent co-passing) ions near the plasma edge form a positive charge distribution outside the LCFS, while thermal electrons are tied more tightly to field lines owing to their small mass and are poorly confined outside the LCFS, hence charge neutrality is violated outside the LCFS. A large number of reported observations from spherical and conventional tokamaks support the results from the simulations although the simulations were not performed fully self consistently. The results suggest ways to lower the H-mode power threshold and optimize the H-mode plasma edge.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"21 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics basis for the divertor tokamak test facility 转发器托卡马克试验设施的物理基础
IF 3.3 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-03 DOI: 10.1088/1741-4326/ad6e06
F. Crisanti, R. Ambrosino, M.V. Falessi, L. Gabellieri, G. Giruzzi, G. Granucci, P. Innocente, P. Mantica, G. Ramogida, G. Vlad, R. Albanese, E. Alessi, C. Angioni, P. Agostinetti, L. Aucone, F. Auriemma, B. Baiocchi, L. Balbinot, A. Balestri, T. Barberis, M. Baruzzo, T. Bolzonella, N. Bonanomi, D. Bonfiglio, S. Brezinsek, G. Calabrò, F. Cani, I. Casiraghi, A. Castaldo, C. Castaldo, M. Cavedon, S. Ceccuzzi, F. Cichocki, M. Ciotti, C. Day, C. De Piccoli, G. Dose, E. Emanueli, L. Frassinetti, L. Figini, V. Fusco, E. Giovannozzi, M. Gobbin, F. Koechi, A. Kryzhanovskyy, Y. Li, R. Lombroni, T. Luda, A. Mariani, P. Martin, C. Meineri, A. Murari, P. Muscente, F. Napoli, E. Nardon, R. Neu, M. Nocente, M. Notazio, S. Nowak, L. Pigatto, C. Piron, F. Porcelli, S. Roccella, G. Rubino, M. Scarpari, C. Sozzi, G. Spizzo, F. Subba, F. Taccogna, C. Tantos, D. Terranova, E. Tsitrone, A. Uccello, D. Van Eester, N. Vianello, P. Vincenzi, M. Wischmeier, F. Zonca
This paper is dealing with the physics basis used for the design of the Divertor Tokamak Test facility (DTT), under construction in Frascati (DTT 2019 DTT interim design report (2019)) Italy, and with the description of the main target plasma scenarios of the device. The main goal of the facility will be the study of the power exhaust, intended as a fully integrated core-edge problem, and eventually to propose an optimized divertor for the European DEMO plant. The approach used to design the facility is described and their main features are reported, by using simulations performed by state-of-the-art codes both for the bulk and edge studies. A detailed analysis of MHD, including also the possibility to study disruption events and Energetic Particles physics is also reported. Eventually, a description of the ongoing work to build-up a Research Plan written and shared by the full EUROfusion community is presented.
本文论述了意大利弗拉斯卡蒂正在建设的转发器托卡马克试验设施(DTT)(DTT 2019 DTT中期设计报告(2019))设计所使用的物理学基础,并描述了该装置的主要目标等离子体方案。该设施的主要目标是研究作为一个完全集成的核心-边缘问题的功率排气装置,并最终为欧洲 DEMO 工厂提出一个优化的分流器。本文介绍了设计该设施所采用的方法,并报告了其主要特点,包括使用最先进的代码进行的体动力学和边缘动力学模拟。还报告了对 MHD 的详细分析,包括研究破坏事件和高能粒子物理学的可能性。最后,还介绍了目前正在开展的工作,以制定一项研究计划,并由整个欧洲核聚变社区共享。
{"title":"Physics basis for the divertor tokamak test facility","authors":"F. Crisanti, R. Ambrosino, M.V. Falessi, L. Gabellieri, G. Giruzzi, G. Granucci, P. Innocente, P. Mantica, G. Ramogida, G. Vlad, R. Albanese, E. Alessi, C. Angioni, P. Agostinetti, L. Aucone, F. Auriemma, B. Baiocchi, L. Balbinot, A. Balestri, T. Barberis, M. Baruzzo, T. Bolzonella, N. Bonanomi, D. Bonfiglio, S. Brezinsek, G. Calabrò, F. Cani, I. Casiraghi, A. Castaldo, C. Castaldo, M. Cavedon, S. Ceccuzzi, F. Cichocki, M. Ciotti, C. Day, C. De Piccoli, G. Dose, E. Emanueli, L. Frassinetti, L. Figini, V. Fusco, E. Giovannozzi, M. Gobbin, F. Koechi, A. Kryzhanovskyy, Y. Li, R. Lombroni, T. Luda, A. Mariani, P. Martin, C. Meineri, A. Murari, P. Muscente, F. Napoli, E. Nardon, R. Neu, M. Nocente, M. Notazio, S. Nowak, L. Pigatto, C. Piron, F. Porcelli, S. Roccella, G. Rubino, M. Scarpari, C. Sozzi, G. Spizzo, F. Subba, F. Taccogna, C. Tantos, D. Terranova, E. Tsitrone, A. Uccello, D. Van Eester, N. Vianello, P. Vincenzi, M. Wischmeier, F. Zonca","doi":"10.1088/1741-4326/ad6e06","DOIUrl":"https://doi.org/10.1088/1741-4326/ad6e06","url":null,"abstract":"This paper is dealing with the physics basis used for the design of the Divertor Tokamak Test facility (DTT), under construction in Frascati (DTT 2019 DTT interim design report (2019)) Italy, and with the description of the main target plasma scenarios of the device. The main goal of the facility will be the study of the power exhaust, intended as a fully integrated core-edge problem, and eventually to propose an optimized divertor for the European DEMO plant. The approach used to design the facility is described and their main features are reported, by using simulations performed by state-of-the-art codes both for the bulk and edge studies. A detailed analysis of MHD, including also the possibility to study disruption events and Energetic Particles physics is also reported. Eventually, a description of the ongoing work to build-up a Research Plan written and shared by the full EUROfusion community is presented.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"91 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron transport barrier and high confinement in configurations with internal islands close to the plasma edge of W7-X 在靠近 W7-X 等离子体边缘的内部岛屿配置中的电子传输障碍和高约束性
IF 3.3 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-03 DOI: 10.1088/1741-4326/ad703e
N. Chaudhary, M. Hirsch, T. Andreeva, J. Geiger, R.C. Wolf, G.A. Wurden, the W7-X Teama
The low magnetic shear in the Wendelstein 7-X (W7-X) stellarator makes it feasible to shape the separatrix by the large islands constituting an island-divertor, and this can be exploited to access various magnetic configurations, including samples of different internal island sizes and locations. To investigate the configuration effects on the plasma confinement, a configuration scan was performed by changing the coil currents to vary the rotational transform between values <inline-formula><tex-math><?CDATA $5/4$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mn>5</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="nfad703eieqn1.gif"></inline-graphic></inline-formula> and <inline-formula><tex-math><?CDATA $5/6$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mn>5</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="nfad703eieqn2.gif"></inline-graphic></inline-formula> at the plasma boundary with different power levels (2, 4, 6 MW) of electron cyclotron resonance heating (ECRH) at a maximum plasma density of <inline-formula><tex-math><?CDATA $8 times 10^{19},textrm{m}^{-2}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mn>8</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mn>19</mml:mn></mml:mrow></mml:msup><mml:mstyle scriptlevel="0"></mml:mstyle><mml:msup><mml:mtext>m</mml:mtext><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href="nfad703eieqn3.gif"></inline-graphic></inline-formula>. neutral beam injection (NBI) heating was also applied during some configurations of the scan to create a density ramp and access high densities beyond the X2 ECRH cutoff. For the magnetic configurations, where the <inline-formula><tex-math><?CDATA $5/5$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mn>5</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="nfad703eieqn4.gif"></inline-graphic></inline-formula> and <inline-formula><tex-math><?CDATA $5/6$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mn>5</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="nfad703eieqn5.gif"></inline-graphic></inline-formula> island chains were moved closer to separatrix but remaining inside the last closed flux surface, the electron cyclotron emission shows that an electron temperature, <inline-formula><tex-math><?CDATA $T_{mathrm e}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant="normal">e</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href="nfad703eieqn6.gif"></inline-graphic></inline-formula>, pedestal develops already during ECRH heated plasma buildup phase indicating a transport barrier, and the
温德斯坦 7-X 恒星器(W7-X)中的低磁剪切使得通过构成岛-分流器的大岛来塑造分离矩阵成为可能,这可以用来获得各种磁配置,包括不同内部岛尺寸和位置的样本。为了研究构型对等离子体约束的影响,在最大等离子体密度为 8×1019m-2 的情况下,通过改变线圈电流来改变等离子体边界 5/4 和 5/6 值之间的旋转变换,并采用不同功率级别(2、4、6 MW)的电子回旋共振加热(ECRH)进行了构型扫描。在扫描的某些构型中还采用了中性束注入(NBI)加热,以产生密度斜坡并获得超出 X2 ECRH 截止值的高密度。在磁性配置中,5/5 和 5/6 岛链靠近分离矩阵,但仍位于最后一个封闭的通量面内,电子回旋发射显示,在 ECRH 加热等离子体建立阶段就已经出现了电子温度 Te 基座,这表明存在传输障碍,并且在放电后期,无论等离子体加热条件(如 NBI)如何变化,该障碍都会持续存在。传输屏障被随后的快速撞击打破,通过多种等离子体诊断技术观测到的撞击具有托卡马克边缘局部模式等特征,相应的撞击幅度和频率随等离子体压力而变化。传输屏障对等离子体约束的影响可以通过增加的核心 Te 曲线看出,这可能是这些配置中存储的二磁性能量总体增加约 10%的原因。在等离子体加热终止后,还观察到向退化约束状态的逆向过渡。这些观察结果表明,在低剪切力 W7-X 中,配置触发了高约束模式。这项工作的重点是在不同磁构型下出现的这种传输障碍及其与内部磁岛的关系。
{"title":"Electron transport barrier and high confinement in configurations with internal islands close to the plasma edge of W7-X","authors":"N. Chaudhary, M. Hirsch, T. Andreeva, J. Geiger, R.C. Wolf, G.A. Wurden, the W7-X Teama","doi":"10.1088/1741-4326/ad703e","DOIUrl":"https://doi.org/10.1088/1741-4326/ad703e","url":null,"abstract":"The low magnetic shear in the Wendelstein 7-X (W7-X) stellarator makes it feasible to shape the separatrix by the large islands constituting an island-divertor, and this can be exploited to access various magnetic configurations, including samples of different internal island sizes and locations. To investigate the configuration effects on the plasma confinement, a configuration scan was performed by changing the coil currents to vary the rotational transform between values &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $5/4$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;5&lt;/mml:mn&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;/&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mn&gt;4&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"nfad703eieqn1.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; and &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $5/6$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;5&lt;/mml:mn&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;/&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mn&gt;6&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"nfad703eieqn2.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; at the plasma boundary with different power levels (2, 4, 6 MW) of electron cyclotron resonance heating (ECRH) at a maximum plasma density of &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $8 times 10^{19},textrm{m}^{-2}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;8&lt;/mml:mn&gt;&lt;mml:mo&gt;×&lt;/mml:mo&gt;&lt;mml:msup&gt;&lt;mml:mn&gt;10&lt;/mml:mn&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;19&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:msup&gt;&lt;mml:mstyle scriptlevel=\"0\"&gt;&lt;/mml:mstyle&gt;&lt;mml:msup&gt;&lt;mml:mtext&gt;m&lt;/mml:mtext&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:msup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"nfad703eieqn3.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;. neutral beam injection (NBI) heating was also applied during some configurations of the scan to create a density ramp and access high densities beyond the X2 ECRH cutoff. For the magnetic configurations, where the &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $5/5$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;5&lt;/mml:mn&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;/&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mn&gt;5&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"nfad703eieqn4.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; and &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $5/6$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;5&lt;/mml:mn&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;/&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mn&gt;6&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"nfad703eieqn5.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; island chains were moved closer to separatrix but remaining inside the last closed flux surface, the electron cyclotron emission shows that an electron temperature, &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $T_{mathrm e}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;T&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;e&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"nfad703eieqn6.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;, pedestal develops already during ECRH heated plasma buildup phase indicating a transport barrier, and the","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"31 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nuclear Fusion
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1