Pub Date : 2024-11-13eCollection Date: 2024-01-01DOI: 10.32604/or.2024.048007
Yuan Yin, Zhengyin Wang, Yujie Hu, Jia Wang, Y I Wang, Qun Lu
Background: Caffeic acid (CA) is considered a promising phytochemical that has inhibited numerous cancer cell proliferation. Therefore, it is gaining increasing attention due to its safe and pharmacological applications. In this study, we investigated the role of CA in inhibiting the Interleukin-6 (IL-6)/Janus kinase (JAK)/Signal transducer and activator of transcription-3 (STAT-3) mediated suppression of the proliferation signaling in human prostate cancer cells.
Materials and methods: The role of CA in proliferation and colony formation abilities was studied using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and colony formation assays. Tumour cell death and cell cycle arrest were identified using flow cytometry techniques. CA treatment-associated protein expression of mitogen-activated protein kinase (MAPK) families, IL-6/JAK/STAT-3, proliferation, and apoptosis protein expressions in PC-3 and LNCaP cell lines were measured using Western blot investigation.
Results: We have obtained that treatment with CA inhibits prostate cancer cells (PC-3 and LNCaP) proliferation and induces reactive oxygen species (ROS), cell cycle arrest, and apoptosis cell death in a concentration-dependent manner. Moreover, CA treatment alleviates the expression phosphorylated form of MAPK families, i.e., extracellular signal-regulated kinase 1 (ERK1), c-Jun N-terminal kinase (JNK), and p38 in PC-3 cells. IL-6 mediated JAK/STAT3 expressions regulate the proliferation and antiapoptosis that leads to prostate cancer metastasis and migration. Therefore, to mitigate the expression of IL-6/JAK/STAT-3 is considered an important target for the treatment of prostate cancer. In this study, we have observed that CA inhibits the expression of IL-6, JAK1, and phosphorylated STAT-3 in both PC-3 and LNCaP cells. Due to the inhibitory effect of IL-6/JAK/STAT-3, it resulted in decreased expression of cyclin-D1, cyclin-D2, and CDK1 in both PC-3 cells. In addition, CA induces apoptosis by enhancing the expression of Bax and caspase-3; and decreased expression of Bcl-2 in prostate cancer cells.
Conclusions: Thus, CA might act as a therapeutical application against prostate cancer by targeting the IL-6/JAK/STAT3 signaling axis.
背景:咖啡酸(CA)被认为是一种很有前景的植物化学物质,能抑制多种癌细胞增殖。因此,咖啡酸因其安全性和药理应用而受到越来越多的关注。在这项研究中,我们探讨了 CA 在抑制白细胞介素-6(IL-6)/Janus 激酶(JAK)/信号转导和激活剂转录-3(STAT-3)介导的人前列腺癌细胞增殖信号转导中的作用:采用 3-[4,5-二甲基噻唑-2-基]-2,5-二苯基溴化四唑(MTT)试验和集落形成试验研究了 CA 在增殖和集落形成能力中的作用。使用流式细胞仪技术确定肿瘤细胞死亡和细胞周期停滞。采用 Western 印迹法检测了 PC-3 和 LNCaP 细胞系中与 CA 处理相关的丝裂原活化蛋白激酶(MAPK)家族、IL-6/JAK/STAT-3 蛋白表达、增殖和凋亡蛋白表达:结果:我们发现,CA 能抑制前列腺癌细胞(PC-3 和 LNCaP)的增殖,并能诱导活性氧(ROS)、细胞周期停滞和细胞凋亡。此外,CA 还能减轻 PC-3 细胞中 MAPK 家族(即细胞外信号调节激酶 1(ERK1)、c-Jun N 端激酶(JNK)和 p38)磷酸化形式的表达。IL-6 介导的 JAK/STAT3 表达调控增殖和抗凋亡,从而导致前列腺癌转移和迁移。因此,减轻 IL-6/JAK/STAT-3 的表达被认为是治疗前列腺癌的一个重要靶点。在这项研究中,我们观察到 CA 可抑制 PC-3 和 LNCaP 细胞中 IL-6、JAK1 和磷酸化 STAT-3 的表达。由于IL-6/JAK/STAT-3的抑制作用,导致PC-3细胞中细胞周期蛋白-D1、细胞周期蛋白-D2和CDK1的表达减少。此外,CA还能通过增强前列腺癌细胞中Bax和caspase-3的表达以及降低Bcl-2的表达来诱导细胞凋亡:因此,CA 可通过靶向 IL-6/JAK/STAT3 信号轴来治疗前列腺癌。
{"title":"Caffeic acid hinders the proliferation and migration through inhibition of IL-6 mediated JAK-STAT-3 signaling axis in human prostate cancer.","authors":"Yuan Yin, Zhengyin Wang, Yujie Hu, Jia Wang, Y I Wang, Qun Lu","doi":"10.32604/or.2024.048007","DOIUrl":"10.32604/or.2024.048007","url":null,"abstract":"<p><strong>Background: </strong>Caffeic acid (CA) is considered a promising phytochemical that has inhibited numerous cancer cell proliferation. Therefore, it is gaining increasing attention due to its safe and pharmacological applications. In this study, we investigated the role of CA in inhibiting the Interleukin-6 (IL-6)/Janus kinase (JAK)/Signal transducer and activator of transcription-3 (STAT-3) mediated suppression of the proliferation signaling in human prostate cancer cells.</p><p><strong>Materials and methods: </strong>The role of CA in proliferation and colony formation abilities was studied using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and colony formation assays. Tumour cell death and cell cycle arrest were identified using flow cytometry techniques. CA treatment-associated protein expression of mitogen-activated protein kinase (MAPK) families, IL-6/JAK/STAT-3, proliferation, and apoptosis protein expressions in PC-3 and LNCaP cell lines were measured using Western blot investigation.</p><p><strong>Results: </strong>We have obtained that treatment with CA inhibits prostate cancer cells (PC-3 and LNCaP) proliferation and induces reactive oxygen species (ROS), cell cycle arrest, and apoptosis cell death in a concentration-dependent manner. Moreover, CA treatment alleviates the expression phosphorylated form of MAPK families, i.e., extracellular signal-regulated kinase 1 (ERK1), c-Jun N-terminal kinase (JNK), and p38 in PC-3 cells. IL-6 mediated JAK/STAT3 expressions regulate the proliferation and antiapoptosis that leads to prostate cancer metastasis and migration. Therefore, to mitigate the expression of IL-6/JAK/STAT-3 is considered an important target for the treatment of prostate cancer. In this study, we have observed that CA inhibits the expression of IL-6, JAK1, and phosphorylated STAT-3 in both PC-3 and LNCaP cells. Due to the inhibitory effect of IL-6/JAK/STAT-3, it resulted in decreased expression of cyclin-D1, cyclin-D2, and CDK1 in both PC-3 cells. In addition, CA induces apoptosis by enhancing the expression of Bax and caspase-3; and decreased expression of Bcl-2 in prostate cancer cells.</p><p><strong>Conclusions: </strong>Thus, CA might act as a therapeutical application against prostate cancer by targeting the IL-6/JAK/STAT3 signaling axis.</p>","PeriodicalId":19537,"journal":{"name":"Oncology Research","volume":"32 12","pages":"1881-1890"},"PeriodicalIF":2.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Dihydrolipoamide S-acetyltransferase (DLAT) is a subunit of the pyruvate dehydrogenase complex (PDC), a rate-limiting enzyme complex, that can participate in either glycolysis or the tricarboxylic acid cycle (TCA). However, the pathogenesis is not fully understood. We aimed to perform a more systematic and comprehensive analysis of DLAT in the occurrence and progression of tumors, and to investigate its function in patients' prognosis and immunotherapy.
Methods: The differential expression, diagnosis, prognosis, genetic and epigenetic alterations, tumor microenvironment, stemness, immune infiltration cells, function enrichment, single-cell analysis, and drug response across cancers were conducted based on multiple computational tools. Additionally, we validated its carcinogenic effect and possible mechanism in glioma cells.
Results: We exhibited that DLAT expression was increased in most tumors, especially in glioma, and affected the survival of tumor patients. DLAT was related to RNA modification genes, DNA methylation, immune infiltration, and immune infiltration cells, including CD4+ T cells, CD8+ T cells, Tregs, and cancer-associated fibroblasts. Single-cell analysis displayed that DLAT might regulate cancer by mediating angiogenesis, inflammation, and stemness. Enrichment analysis revealed that DLAT might take part in the cell cycle pathway. Increased expression of DLAT leads tumor cells to be more resistant to many kinds of compounds, including PI3Kβ inhibitors, PKC inhibitors, HSP90 inhibitors, and MEK inhibitors. In addition, glioma cells with DLAT silence inhibited proliferation, migration, and invasion ability, and promoted cell apoptosis.
Conclusion: We conducted a comprehensive analysis of DLAT in the occurrence and progression of tumors, and its possible functions and mechanisms. DLAT is a potential diagnostic, prognostic, and immunotherapeutic biomarker for cancer patients.
背景:二氢脂酰胺 S-乙酰转移酶(DLAT)是丙酮酸脱氢酶复合物(PDC)的一个亚基,PDC 是一种限速酶复合物,可参与糖酵解或三羧酸循环(TCA)。然而,其发病机制尚未完全明了。我们旨在对 DLAT 在肿瘤发生和发展过程中的作用进行更系统、更全面的分析,并研究其在患者预后和免疫治疗中的功能:方法:基于多种计算工具,对不同癌症的差异表达、诊断、预后、遗传和表观遗传学改变、肿瘤微环境、干细胞、免疫浸润细胞、功能富集、单细胞分析和药物反应进行了研究。此外,我们还验证了它在胶质瘤细胞中的致癌作用和可能的机制:结果:我们发现 DLAT 在大多数肿瘤中表达增加,尤其是在胶质瘤中,并影响肿瘤患者的生存。DLAT 与 RNA 修饰基因、DNA 甲基化、免疫浸润以及免疫浸润细胞(包括 CD4+ T 细胞、CD8+ T 细胞、Tregs 和癌症相关成纤维细胞)有关。单细胞分析显示,DLAT可能通过介导血管生成、炎症和干细胞来调控癌症。富集分析显示,DLAT可能参与了细胞周期途径。DLAT表达的增加会导致肿瘤细胞对多种化合物(包括PI3Kβ抑制剂、PKC抑制剂、HSP90抑制剂和MEK抑制剂)产生抗药性。此外,DLAT沉默的胶质瘤细胞具有抑制增殖、迁移和侵袭能力,促进细胞凋亡的作用:我们全面分析了DLAT在肿瘤发生和发展中的作用及其可能的功能和机制。DLAT是一种潜在的癌症诊断、预后和免疫治疗生物标记物。
{"title":"A comprehensive and systematic analysis of Dihydrolipoamide S-acetyltransferase <i>(DLAT)</i> as a novel prognostic biomarker in pan-cancer and glioma.","authors":"Hui Zhou, Zhengyu Yu, Jing Xu, Zhongwang Wang, Yali Tao, Jinjin Wang, Peipei Yang, Jinrong Yang, Ting Niu","doi":"10.32604/or.2024.048138","DOIUrl":"10.32604/or.2024.048138","url":null,"abstract":"<p><strong>Background: </strong>Dihydrolipoamide S-acetyltransferase (<i>DLAT</i>) is a subunit of the pyruvate dehydrogenase complex (PDC), a rate-limiting enzyme complex, that can participate in either glycolysis or the tricarboxylic acid cycle (TCA). However, the pathogenesis is not fully understood. We aimed to perform a more systematic and comprehensive analysis of <i>DLAT</i> in the occurrence and progression of tumors, and to investigate its function in patients' prognosis and immunotherapy.</p><p><strong>Methods: </strong>The differential expression, diagnosis, prognosis, genetic and epigenetic alterations, tumor microenvironment, stemness, immune infiltration cells, function enrichment, single-cell analysis, and drug response across cancers were conducted based on multiple computational tools. Additionally, we validated its carcinogenic effect and possible mechanism in glioma cells.</p><p><strong>Results: </strong>We exhibited that <i>DLAT</i> expression was increased in most tumors, especially in glioma, and affected the survival of tumor patients. <i>DLAT</i> was related to RNA modification genes, DNA methylation, immune infiltration, and immune infiltration cells, including CD4+ T cells, CD8+ T cells, Tregs, and cancer-associated fibroblasts. Single-cell analysis displayed that <i>DLAT</i> might regulate cancer by mediating angiogenesis, inflammation, and stemness. Enrichment analysis revealed that <i>DLAT</i> might take part in the cell cycle pathway. Increased expression of <i>DLAT</i> leads tumor cells to be more resistant to many kinds of compounds, including PI3Kβ inhibitors, PKC inhibitors, HSP90 inhibitors, and MEK inhibitors. In addition, glioma cells with <i>DLAT</i> silence inhibited proliferation, migration, and invasion ability, and promoted cell apoptosis.</p><p><strong>Conclusion: </strong>We conducted a comprehensive analysis of <i>DLAT</i> in the occurrence and progression of tumors, and its possible functions and mechanisms. <i>DLAT</i> is a potential diagnostic, prognostic, and immunotherapeutic biomarker for cancer patients.</p>","PeriodicalId":19537,"journal":{"name":"Oncology Research","volume":"32 12","pages":"1903-1919"},"PeriodicalIF":2.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576973/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13eCollection Date: 2024-01-01DOI: 10.32604/or.2024.055286
Zhen Wang, Jun Fu, Saisai Zhu, Haodong Tang, Kui Shi, Jihua Yang, Meng Wang, Mengge Wu, Dunfeng Qi
Background: Pancreatic ductal adenocarcinoma (PDAC) has a rich and complex tumor immune microenvironment (TIME). M2 macrophages are among the most extensively infiltrated immune cells in the TIME and are necessary for the growth and migration of cancers. However, the mechanisms and targets mediating M2 macrophage infiltration in pancreatic cancer remain elusive.
Methods: The M2 macrophage infiltration score of patients was assessed using the xCell algorithm. Using weighted gene co-expression network analysis (WGCNA), module genes associated with M2 macrophages were identified, and a predictive model was designed. The variations in immunological cell patterns, cancer mutations, and enrichment pathways between the cohorts with the high- and low-risk were examined. Additionally, the expression of FCGR3A and RNASE2, as well as their association with M2 macrophages were evaluated using the HPA, TNMplot, and GEPIA2 databases and verified by tissue immunofluorescence staining. Moreover, in vitro cell experiments were conducted, where FCGR3A was knocked down in pancreatic cancer cells using siRNA to analyze its effects on M2 macrophage infiltration, tumor proliferation, and metastasis.
Results: The prognosis of patients in high-risk and low-risk groups was successfully distinguished using a prognostic risk score model of M2 macrophage-related genes (p = 0.024). Between the high- and low-risk cohorts, there have been notable variations in immune cell infiltration patterns, tumor mutations, and biological functions. The risk score was linked to the manifestation of prevalent immunological checkpoints, immunological scores, and stroma values (all p < 0.05). In vitro experiments and tissue immunofluorescence staining revealed that FCGR3A can promote the infiltration or polarization of M2 macrophages and enhance tumor proliferation and migration.
Conclusions: In this study, an M2 macrophage-related pancreatic cancer risk score model was established, and found that FCGR3A was correlated with tumor formation, metastasis, and M2 macrophage infiltration.
{"title":"Identification of M2 macrophage-related genes for establishing a prognostic model in pancreatic cancer: <i>FCGR3A</i> as key gene.","authors":"Zhen Wang, Jun Fu, Saisai Zhu, Haodong Tang, Kui Shi, Jihua Yang, Meng Wang, Mengge Wu, Dunfeng Qi","doi":"10.32604/or.2024.055286","DOIUrl":"10.32604/or.2024.055286","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) has a rich and complex tumor immune microenvironment (TIME). M2 macrophages are among the most extensively infiltrated immune cells in the TIME and are necessary for the growth and migration of cancers. However, the mechanisms and targets mediating M2 macrophage infiltration in pancreatic cancer remain elusive.</p><p><strong>Methods: </strong>The M2 macrophage infiltration score of patients was assessed using the xCell algorithm. Using weighted gene co-expression network analysis (WGCNA), module genes associated with M2 macrophages were identified, and a predictive model was designed. The variations in immunological cell patterns, cancer mutations, and enrichment pathways between the cohorts with the high- and low-risk were examined. Additionally, the expression of FCGR3A and RNASE2, as well as their association with M2 macrophages were evaluated using the HPA, TNMplot, and GEPIA2 databases and verified by tissue immunofluorescence staining. Moreover, <i>in vitro</i> cell experiments were conducted, where FCGR3A was knocked down in pancreatic cancer cells using siRNA to analyze its effects on M2 macrophage infiltration, tumor proliferation, and metastasis.</p><p><strong>Results: </strong>The prognosis of patients in high-risk and low-risk groups was successfully distinguished using a prognostic risk score model of M2 macrophage-related genes (<i>p</i> = 0.024). Between the high- and low-risk cohorts, there have been notable variations in immune cell infiltration patterns, tumor mutations, and biological functions. The risk score was linked to the manifestation of prevalent immunological checkpoints, immunological scores, and stroma values (all <i>p</i> < 0.05). <i>In vitro</i> experiments and tissue immunofluorescence staining revealed that FCGR3A can promote the infiltration or polarization of M2 macrophages and enhance tumor proliferation and migration.</p><p><strong>Conclusions: </strong>In this study, an M2 macrophage-related pancreatic cancer risk score model was established, and found that FCGR3A was correlated with tumor formation, metastasis, and M2 macrophage infiltration.</p>","PeriodicalId":19537,"journal":{"name":"Oncology Research","volume":"32 12","pages":"1851-1866"},"PeriodicalIF":2.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13eCollection Date: 2024-01-01DOI: 10.32604/or.2024.056565
Weitao Zheng, Dong Jiang, Songen Chen, Meiling Wu, Baoqi Yan, Jiahui Zhai, Yunqiang Shi, Bin Xie, Xingwang Xie, Kanghong Hu, Wenxue Ma
Objectives: The Kirsten rat sarcoma virus (KRAS) G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions. This study aims to explore innovative approaches in T cell receptor (TCR) engineering and characterization to target the KRAS G12D7-16 mutation, providing potential strategies for overcoming this therapeutic challenge.
Methods: In this innovative study, we engineered and characterized two T cell receptors (TCRs), KDA11-01 and KDA11-02 with high affinity for the KRAS G12D7-16 mutation. These TCRs were isolated from tumor-infiltrating lymphocytes (TILs) derived from tumor tissues of patients with the KRAS G12D mutation. We assessed their specificity and anti-tumor activity in vitro using various cancer cell lines.
Results: KDA11-01 and KDA11-02 demonstrated exceptional specificity for the HLA-A*11:01-restricted KRAS G12D7-16 epitope, significantly inducing IFN-γ release and eliminating tumor cells without cross-reactivity or alloreactivity.
Conclusions: The successful development of KDA11-01 and KDA11-02 introduces a novel and precise TCR-based therapeutic strategy against KRAS G12D mutation, showing potential for significant advancements in cancer immunotherapy.
目的:柯氏大鼠肉瘤病毒(KRAS)G12D致癌突变是治疗实体瘤的重大挑战,因为缺乏特异性的有效治疗干预措施。本研究旨在探索针对 KRAS G12D7-16 突变的 T 细胞受体(TCR)工程和表征的创新方法,为克服这一治疗难题提供潜在策略:在这项创新性研究中,我们设计并鉴定了两种对 KRAS G12D7-16 突变具有高亲和力的 T 细胞受体 (TCR):KDA11-01 和 KDA11-02。这些TCR是从KRAS G12D突变患者的肿瘤组织中提取的肿瘤浸润淋巴细胞(TIL)中分离出来的。我们利用各种癌细胞系对它们的特异性和体外抗肿瘤活性进行了评估:结果:KDA11-01和KDA11-02对HLA-A*11:01限制的KRAS G12D7-16表位表现出了极高的特异性,能显著诱导IFN-γ的释放并清除肿瘤细胞,且无交叉反应或异体反应:KDA11-01和KDA11-02的成功开发为基于TCR的针对KRAS G12D突变的新型精准治疗策略提供了可能,有望在癌症免疫治疗领域取得重大进展。
{"title":"Exploring the therapeutic potential of precision T-Cell Receptors (TCRs) in targeting KRAS G12D cancer through <i>in vitro</i> development.","authors":"Weitao Zheng, Dong Jiang, Songen Chen, Meiling Wu, Baoqi Yan, Jiahui Zhai, Yunqiang Shi, Bin Xie, Xingwang Xie, Kanghong Hu, Wenxue Ma","doi":"10.32604/or.2024.056565","DOIUrl":"10.32604/or.2024.056565","url":null,"abstract":"<p><strong>Objectives: </strong>The Kirsten rat sarcoma virus (KRAS) G12D oncogenic mutation poses a significant challenge in treating solid tumors due to the lack of specific and effective therapeutic interventions. This study aims to explore innovative approaches in T cell receptor (TCR) engineering and characterization to target the KRAS G12D<sub>7-16</sub> mutation, providing potential strategies for overcoming this therapeutic challenge.</p><p><strong>Methods: </strong>In this innovative study, we engineered and characterized two T cell receptors (TCRs), KDA11-01 and KDA11-02 with high affinity for the KRAS G12D<sub>7-16</sub> mutation. These TCRs were isolated from tumor-infiltrating lymphocytes (TILs) derived from tumor tissues of patients with the KRAS G12D mutation. We assessed their specificity and anti-tumor activity <i>in vitro</i> using various cancer cell lines.</p><p><strong>Results: </strong>KDA11-01 and KDA11-02 demonstrated exceptional specificity for the HLA-A*11:01-restricted KRAS G12D<sub>7-16</sub> epitope, significantly inducing IFN-γ release and eliminating tumor cells without cross-reactivity or alloreactivity.</p><p><strong>Conclusions: </strong>The successful development of KDA11-01 and KDA11-02 introduces a novel and precise TCR-based therapeutic strategy against KRAS G12D mutation, showing potential for significant advancements in cancer immunotherapy.</p>","PeriodicalId":19537,"journal":{"name":"Oncology Research","volume":"32 12","pages":"1837-1850"},"PeriodicalIF":2.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13eCollection Date: 2024-01-01DOI: 10.32604/or.2024.052985
Sam Son, Akshaar Brahmbhatt, Ken Zhao, Brett Marinelli, James Harding, William Jarnagin, Ghassan K Abou-Alfa, Hooman Yarmohammadi
Background: This article aims to present the single-institution outcomes of patients with Fibrolamellar Carcinoma (FLC) treated with liver-directed therapies (LDT).
Methods: In this single-center retrospective study, all patients diagnosed with FLC who underwent LDT were identified. Between July 2012 and July 2023, six patients were identified. One patient was excluded due to bleeding. Demographic and clinical parameters were recorded. Complications within 30 days of the LDT were evaluated. Radiological treatment responses at 1, 6, and 12 months were assessed per mRECIST.
Results: A total of five patients, which included three females and two males, were reviewed. Three patients were treated with transarterial hepatic embolization (TAE; n = 3), transarterial radioembolization (TARE; n = 1), and combined TAE + radiofrequency ablation (n = 1). The objective response rate at one month was 80% [CR = 2 (40%), PR = 2 (40%), and SD = 1 (20%)]. At 12 months (n = 4), two patients demonstrated CR (50%) and two demonstrated PR (50%). Overall survival from LDT at five years was 50%. There was no 30-day mortality among this group of patients or any adverse event attributable to the LDT.
Conclusion: TAE, TARE, and ablation are safe and effective therapeutic options for FLC. Based on this study and previously published case reports, ablation and TARE yielded the most favorable results.
{"title":"Liver-directed therapies for fibrolamellar carcinoma: A single-center experience.","authors":"Sam Son, Akshaar Brahmbhatt, Ken Zhao, Brett Marinelli, James Harding, William Jarnagin, Ghassan K Abou-Alfa, Hooman Yarmohammadi","doi":"10.32604/or.2024.052985","DOIUrl":"10.32604/or.2024.052985","url":null,"abstract":"<p><strong>Background: </strong>This article aims to present the single-institution outcomes of patients with Fibrolamellar Carcinoma (FLC) treated with liver-directed therapies (LDT).</p><p><strong>Methods: </strong>In this single-center retrospective study, all patients diagnosed with FLC who underwent LDT were identified. Between July 2012 and July 2023, six patients were identified. One patient was excluded due to bleeding. Demographic and clinical parameters were recorded. Complications within 30 days of the LDT were evaluated. Radiological treatment responses at 1, 6, and 12 months were assessed per mRECIST.</p><p><strong>Results: </strong>A total of five patients, which included three females and two males, were reviewed. Three patients were treated with transarterial hepatic embolization (TAE; n = 3), transarterial radioembolization (TARE; n = 1), and combined TAE + radiofrequency ablation (n = 1). The objective response rate at one month was 80% [CR = 2 (40%), PR = 2 (40%), and SD = 1 (20%)]. At 12 months (n = 4), two patients demonstrated CR (50%) and two demonstrated PR (50%). Overall survival from LDT at five years was 50%. There was no 30-day mortality among this group of patients or any adverse event attributable to the LDT.</p><p><strong>Conclusion: </strong>TAE, TARE, and ablation are safe and effective therapeutic options for FLC. Based on this study and previously published case reports, ablation and TARE yielded the most favorable results.</p>","PeriodicalId":19537,"journal":{"name":"Oncology Research","volume":"32 12","pages":"1831-1836"},"PeriodicalIF":2.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13eCollection Date: 2024-01-01DOI: 10.32604/or.2024.051569
Mahdi Abdoli Shadbad, Behzad Baradaran
Background: Glioblastoma remains a highly invasive primary brain malignancy with an undesirable prognosis. Growing evidence has shed light on the importance of microRNAs (miRs), as small non-coding RNAs, in tumor development and progression. The present study leverages the in-silico and in-vitro techniques to investigate the significance of hsa-miR-181a-5p and the underlying hsa-miR-181a-5p-meidated signaling pathway in glioblastoma development.
Methods: Bioinformatic studies were performed on GSE158284, GSE108474 (REMBRANDT study), TCGA-GTEx, CCLE, GeneMANIA, Reactome, WikiPathways, KEGG, miRDB, and microT-CDS to identify the significance of hsa-miR-181a-5p and its underlying target. Afterward, the U373 cell line was selected and transfected with hsa-miR-181a-5p mimics, and the cell viability, clonogenicity, migration, mRNA expression, apoptosis, and cell cycle were studied using the MTT assay, colony formation test, migration assay, qRT-PCR, and flow cytometry respectively.
Results: hsa-miR-181a-5p expression is decreased in glioblastoma samples. The in-silico results have shown that hsa-miR-181a-5p could regulate the MAPK pathway by targeting AKT3. The experimental assays have shown that hsa-miR-181a-5p decreases the migration of glioblastoma cells, arrests the cell cycle, and increases the apoptosis rate. Besides downregulating MMP9 and upregulating BAX, hsa-miR-181a-5p downregulates MET, MAP2K1, MAPK1, MAPK3, and AKT3 expression in U373 cells. The in-vitro results were consistent with in-silico results regarding the regulatory effect of hsa-miR-181a-5p on the MAPK pathway, leading to tumor suppression in glioblastoma.
Conclusions: hsa-miR-181a-5p inhibits glioblastoma development partially by regulating the signaling factors of the MAPK pathway.
{"title":"hsa-miR-181a-5p inhibits glioblastoma development via the MAPK pathway: <i>in-silico</i> and <i>in-vitro</i> study.","authors":"Mahdi Abdoli Shadbad, Behzad Baradaran","doi":"10.32604/or.2024.051569","DOIUrl":"10.32604/or.2024.051569","url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma remains a highly invasive primary brain malignancy with an undesirable prognosis. Growing evidence has shed light on the importance of microRNAs (miRs), as small non-coding RNAs, in tumor development and progression. The present study leverages the <i>in-silico</i> and <i>in-vitro</i> techniques to investigate the significance of hsa-miR-181a-5p and the underlying hsa-miR-181a-5p-meidated signaling pathway in glioblastoma development.</p><p><strong>Methods: </strong>Bioinformatic studies were performed on GSE158284, GSE108474 (REMBRANDT study), TCGA-GTEx, CCLE, GeneMANIA, Reactome, WikiPathways, KEGG, miRDB, and microT-CDS to identify the significance of hsa-miR-181a-5p and its underlying target. Afterward, the U373 cell line was selected and transfected with hsa-miR-181a-5p mimics, and the cell viability, clonogenicity, migration, mRNA expression, apoptosis, and cell cycle were studied using the MTT assay, colony formation test, migration assay, qRT-PCR, and flow cytometry respectively.</p><p><strong>Results: </strong>hsa-miR-181a-5p expression is decreased in glioblastoma samples. The <i>in-silico</i> results have shown that hsa-miR-181a-5p could regulate the MAPK pathway by targeting <i>AKT3</i>. The experimental assays have shown that hsa-miR-181a-5p decreases the migration of glioblastoma cells, arrests the cell cycle, and increases the apoptosis rate. Besides downregulating <i>MMP9</i> and upregulating <i>BAX</i>, hsa-miR-181a-5p downregulates <i>MET</i>, <i>MAP2K1</i>, <i>MAPK1</i>, <i>MAPK3</i>, and <i>AKT3</i> expression in U373 cells. The <i>in-vitro</i> results were consistent with <i>in-silico</i> results regarding the regulatory effect of hsa-miR-181a-5p on the MAPK pathway, leading to tumor suppression in glioblastoma.</p><p><strong>Conclusions: </strong>hsa-miR-181a-5p inhibits glioblastoma development partially by regulating the signaling factors of the MAPK pathway.</p>","PeriodicalId":19537,"journal":{"name":"Oncology Research","volume":"32 12","pages":"1949-1958"},"PeriodicalIF":2.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576920/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16eCollection Date: 2024-01-01DOI: 10.32604/or.2024.056888
[This retracts the article DOI: 10.3727/096504017X15144755633680.].
[本文撤回文章 DOI:10.3727/096504017X15144755633680]。
{"title":"Retraction: Downregulation of microRNA-135 promotes sensitivity of non-small cell lung cancer to gefitinib by targeting TRIM16.","authors":"","doi":"10.32604/or.2024.056888","DOIUrl":"https://doi.org/10.32604/or.2024.056888","url":null,"abstract":"<p><p>[This retracts the article DOI: 10.3727/096504017X15144755633680.].</p>","PeriodicalId":19537,"journal":{"name":"Oncology Research","volume":"32 11","pages":"1813"},"PeriodicalIF":2.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16eCollection Date: 2024-01-01DOI: 10.32604/or.2024.056896
[This retracts the article DOI: 10.3727/096504018X15166193231711.].
[本文撤回了文章 DOI:10.3727/096504018X15166193231711]。
{"title":"Retraction: Long noncoding RNA GAS5 promotes proliferation, migration, and invasion by regulation of miR-301a in esophageal cancer.","authors":"","doi":"10.32604/or.2024.056896","DOIUrl":"https://doi.org/10.32604/or.2024.056896","url":null,"abstract":"<p><p>[This retracts the article DOI: 10.3727/096504018X15166193231711.].</p>","PeriodicalId":19537,"journal":{"name":"Oncology Research","volume":"32 11","pages":"1823"},"PeriodicalIF":2.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16eCollection Date: 2024-01-01DOI: 10.32604/or.2024.052358
Yousef Katib, Nasser Mulla
Background: Lung cancer (LC) is one of the most common neoplastic diseases and a leading cause of death in Saudi Arabia. Its incidence in Saudi Arabia has increased by more than 3% within two decades. Our study aimed to describe the epidemiological and genetic landscapes of LC in Al-Madinah city in Saudi Arabia.
Methods: A retrospective analysis was conducted on the medical records of 65 patients diagnosed with lung cancer between 2015 and 2021 at a single medical oncology center in Al-Madinah city of Saudi Arabia.
Results: The mean patients' age was 59.2 years, with 50 (76.9%) males and 15 (23.1%) females; 37 (57%) smokers, and 28 (43%) non-smokers. The number of cases per year has increased gradually over six years from 2015 (n = 3) to 2020 (n = 13). The most prevalent histopathological diagnosis was non-small cell lung cancer (NSCLC) (n = 58, 89%) followed by small cell lung cancer (SCLC) (n = 5, 7.8%). NSCLC was frequently more common in smokers while squamous cell carcinoma was more frequent in non-smokers. Around 89% (n = 58) of the cases were diagnosed in late stage IV and the most common metastatic sites were to pleura and lymph nodes (n = 32, 49.2%). Program Death Legend-1 (PDL-1) was fairly expressed in 7/10 (70%) patients. Epidermal Growth Factor Receptor (EGFR) was mutated in 5/17 (29%) patients. Other mutations detected include Anaplastic Lymphoma Kinase (ALK) and phosphatidylinositol 3-kinase (PIK3C) mutations in two patients.
Conclusions: Our study revealed that lung cancer is a significant burden in Al-Madinah city of Saudi Arabia. If the risk factors are not controlled, the number of cases may increase considerably. Health education about the risk factors and cancer prevention helps in early lung cancer detection.
{"title":"Epidemiological and clinical characteristics of lung cancer in Saudi Arabia: a retrospective study in single oncology center.","authors":"Yousef Katib, Nasser Mulla","doi":"10.32604/or.2024.052358","DOIUrl":"https://doi.org/10.32604/or.2024.052358","url":null,"abstract":"<p><strong>Background: </strong>Lung cancer (LC) is one of the most common neoplastic diseases and a leading cause of death in Saudi Arabia. Its incidence in Saudi Arabia has increased by more than 3% within two decades. Our study aimed to describe the epidemiological and genetic landscapes of LC in Al-Madinah city in Saudi Arabia.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on the medical records of 65 patients diagnosed with lung cancer between 2015 and 2021 at a single medical oncology center in Al-Madinah city of Saudi Arabia.</p><p><strong>Results: </strong>The mean patients' age was 59.2 years, with 50 (76.9%) males and 15 (23.1%) females; 37 (57%) smokers, and 28 (43%) non-smokers. The number of cases per year has increased gradually over six years from 2015 (n = 3) to 2020 (n = 13). The most prevalent histopathological diagnosis was non-small cell lung cancer (NSCLC) (n = 58, 89%) followed by small cell lung cancer (SCLC) (n = 5, 7.8%). NSCLC was frequently more common in smokers while squamous cell carcinoma was more frequent in non-smokers. Around 89% (n = 58) of the cases were diagnosed in late stage IV and the most common metastatic sites were to pleura and lymph nodes (n = 32, 49.2%). Program Death Legend-1 (<i>PDL-1</i>) was fairly expressed in 7/10 (70%) patients. Epidermal Growth Factor Receptor (<i>EGFR</i>) was mutated in 5/17 (29%) patients. Other mutations detected include Anaplastic Lymphoma Kinase (<i>ALK</i>) and phosphatidylinositol 3-kinase (<i>PIK3C</i>) mutations in two patients.</p><p><strong>Conclusions: </strong>Our study revealed that lung cancer is a significant burden in Al-Madinah city of Saudi Arabia. If the risk factors are not controlled, the number of cases may increase considerably. Health education about the risk factors and cancer prevention helps in early lung cancer detection.</p>","PeriodicalId":19537,"journal":{"name":"Oncology Research","volume":"32 11","pages":"1803-1809"},"PeriodicalIF":2.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16eCollection Date: 2024-01-01DOI: 10.32604/or.2024.049348
Jinxia Chen, Suli Dai, Geng Zhang, Sisi Wei, Xuetao Zhao, Yang Zheng, Yaojie Wang, Xiaohan Wang, Yunjiang Liu, Lianmei Zhao
Background: Triple-negative breast cancer (TNBC) is a heterogeneous, recurring cancer characterized by a high rate of metastasis, poor prognosis, and lack of efficient therapies. KBU2046, a small molecule inhibitor, can inhibit cell motility in malignant tumors, including breast cancer. However, the specific targets and the corresponding mechanism of its function remain unclear.
Methods: In this study, we employed (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium) (MTS) assay and transwell assay to investigate the impact of KBU2046 on the proliferation and migration of TNBC cells in vitro. RNA-Seq was used to explore the targets of KBU2046 that inhibit the motility of TNBC. Finally, confirmed the predicted important signaling pathways through RT-qPCR and western blotting.
Results: In this study, we found that KBU2046 functioned as a novel transforming growth factor-β (TGF-β1) inhibitor, effectively suppressing tumor cell motility in vitro. Mechanistically, it directly down-regulated leucine-rich repeat-containing 8 family, member E (LRRC8E), latent TGFβ-binding protein 3 (LTBP3), dynein light chain 1 (DNAL1), and MAF family of bZIP transcription factors (MAFF) genes, along with reduced protein expression of the integrin family. Additionally, KBU2046 decreased phosphorylation levels of Raf and ERK. This deactivation of the ERK signaling pathway impeded cancer invasion and metastasis.
Conclusions: In summary, these findings advocate for the utilization of TGF-β1 as a diagnostic and prognostic biomarker and as a therapeutic target in TNBC. Furthermore, our data underscore the potential of KBU2046 as a novel therapeutic strategy for combating cancer metastasis.
{"title":"Unveiling the therapeutic potential: KBU2046 halts triple-negative breast cancer cell migration by constricting TGF-β1 activation <i>in vitro</i>.","authors":"Jinxia Chen, Suli Dai, Geng Zhang, Sisi Wei, Xuetao Zhao, Yang Zheng, Yaojie Wang, Xiaohan Wang, Yunjiang Liu, Lianmei Zhao","doi":"10.32604/or.2024.049348","DOIUrl":"10.32604/or.2024.049348","url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) is a heterogeneous, recurring cancer characterized by a high rate of metastasis, poor prognosis, and lack of efficient therapies. KBU2046, a small molecule inhibitor, can inhibit cell motility in malignant tumors, including breast cancer. However, the specific targets and the corresponding mechanism of its function remain unclear.</p><p><strong>Methods: </strong>In this study, we employed (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium) (MTS) assay and transwell assay to investigate the impact of KBU2046 on the proliferation and migration of TNBC cells <i>in vitro</i>. RNA-Seq was used to explore the targets of KBU2046 that inhibit the motility of TNBC. Finally, confirmed the predicted important signaling pathways through RT-qPCR and western blotting.</p><p><strong>Results: </strong>In this study, we found that KBU2046 functioned as a novel transforming growth factor-β (TGF-β1) inhibitor, effectively suppressing tumor cell motility <i>in vitro</i>. Mechanistically, it directly down-regulated leucine-rich repeat-containing 8 family, member E (LRRC8E), latent TGFβ-binding protein 3 (LTBP3), dynein light chain 1 (DNAL1), and MAF family of bZIP transcription factors (MAFF) genes, along with reduced protein expression of the integrin family. Additionally, KBU2046 decreased phosphorylation levels of Raf and ERK. This deactivation of the ERK signaling pathway impeded cancer invasion and metastasis.</p><p><strong>Conclusions: </strong>In summary, these findings advocate for the utilization of TGF-β1 as a diagnostic and prognostic biomarker and as a therapeutic target in TNBC. Furthermore, our data underscore the potential of KBU2046 as a novel therapeutic strategy for combating cancer metastasis.</p>","PeriodicalId":19537,"journal":{"name":"Oncology Research","volume":"32 11","pages":"1791-1802"},"PeriodicalIF":2.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}