Pub Date : 2019-02-19DOI: 10.4236/ojpchem.2019.91002
Ravindra V. Gadhave, P. Mahanwar, P. Gadekar
Polyvinyl alcohol (PVA) is water-soluble polymer manufactured by the saponification of polyvinyl acetate. The physical properties and its specific application depend on the degree of hydrolysis. To enhance the properties of different hydrolyzed PVA grades, it is generally chemically modified with various cross-linkers. Here, different degree hydrolyzed PVA grades with enhanced properties were achieved by cross-linking with boric acid. These samples were then characterized by Differential Scanning Calorimetry (DSC) and Gel permeation chromatography (GPC). For further analysis a film of samples were prepared by casting on glass plate. The effects of amount of boric acid and degree of hydrolysis of PVA on performance properties like tensile strength, pencil hardness and thermal properties like glass transition temperature were studied. The results showed that by cross-linking there was an increase in mechanical strength and thermal property.
{"title":"Study of Cross-Linking between Boric Acid and Different Types of Polyvinyl Alcohol Adhesive","authors":"Ravindra V. Gadhave, P. Mahanwar, P. Gadekar","doi":"10.4236/ojpchem.2019.91002","DOIUrl":"https://doi.org/10.4236/ojpchem.2019.91002","url":null,"abstract":"Polyvinyl alcohol (PVA) is water-soluble polymer manufactured by the saponification of polyvinyl acetate. The physical properties and its specific application depend on the degree of hydrolysis. To enhance the properties of different hydrolyzed PVA grades, it is generally chemically modified with various cross-linkers. Here, different degree hydrolyzed PVA grades with enhanced properties were achieved by cross-linking with boric acid. These samples were then characterized by Differential Scanning Calorimetry (DSC) and Gel permeation chromatography (GPC). For further analysis a film of samples were prepared by casting on glass plate. The effects of amount of boric acid and degree of hydrolysis of PVA on performance properties like tensile strength, pencil hardness and thermal properties like glass transition temperature were studied. The results showed that by cross-linking there was an increase in mechanical strength and thermal property.","PeriodicalId":19592,"journal":{"name":"Open Journal of Polymer Chemistry","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82527175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-01DOI: 10.4236/ojpchem.2019.91001
M. Phiriyawirut, K. Sarapat, S. Sirima, Anrasee Prasertchol
We studied the electrospinning process of the blend of polylactic acid (PLA) and polybutylene succinate (PBS). The blend PLA/PBS ratio 95/5, 90/10, 85/15 and 80/20 wt% were prepared by dissolved in mixture of solvent between dichloromethane (DCM) and N, N-dimethylformamide (DMF) at ratio 3/1. The suitable condition for electrospun of the blend was 17% wt concentration, 16 kV and 18 cm projection distance. The round fiber with pore on the surface was observed. Increasing content of PBS in the blend impact to the diameter of fibril decreased from 1350, 1290, 1210 and 1170 nm, respectively; while the pore on the surface changes from circle to oval shape. Regarding the thermal properties, blending of PBS increases the glass transition temperature (Tg) of PLA without affect to the melting temperature (Tm) of the electrospun nanofibers. The best tensile properties of PLA/PBS nanofibers were achieved at blend ratio of 95/5, and Young’s modulus is increased comparing to those of the pure electrospun fibers.
{"title":"Porous Electrospun Nanofiber from Biomass-Based Polyester Blends of Polylactic Acid and Polybutylene Succinate","authors":"M. Phiriyawirut, K. Sarapat, S. Sirima, Anrasee Prasertchol","doi":"10.4236/ojpchem.2019.91001","DOIUrl":"https://doi.org/10.4236/ojpchem.2019.91001","url":null,"abstract":"We studied the electrospinning process of the blend of polylactic acid (PLA) and polybutylene succinate (PBS). The blend PLA/PBS ratio 95/5, 90/10, 85/15 and 80/20 wt% were prepared by dissolved in mixture of solvent between dichloromethane (DCM) and N, N-dimethylformamide (DMF) at ratio 3/1. The suitable condition for electrospun of the blend was 17% wt concentration, 16 kV and 18 cm projection distance. The round fiber with pore on the surface was observed. Increasing content of PBS in the blend impact to the diameter of fibril decreased from 1350, 1290, 1210 and 1170 nm, respectively; while the pore on the surface changes from circle to oval shape. Regarding the thermal properties, blending of PBS increases the glass transition temperature (Tg) of PLA without affect to the melting temperature (Tm) of the electrospun nanofibers. The best tensile properties of PLA/PBS nanofibers were achieved at blend ratio of 95/5, and Young’s modulus is increased comparing to those of the pure electrospun fibers.","PeriodicalId":19592,"journal":{"name":"Open Journal of Polymer Chemistry","volume":"49 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91435872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}