The parity-violation difference between mirror images of chiral metal centers found in naturally occurring proteins and enzymes is computed at the Dirac-Hartree-Fock level, for both equilibrium and transition state configurations. The systems, selected on the likelihood of yielding high parity violation energies based on atomic mass and coordination geometry, are extracted from: type I Blue Copper Protein active site, Zn and Cd Carbon Anhydrase, Ni Acetyl-Coenzyme-A Synthase, and Mo based CO-Dehydrogenase. Our values provide an approximate upper limit to possible parity-violation effects in biological systems based on static effects.
Chiral symmetry breaking in far from equilibrium systems with large number of amino acids and peptides, like a prebiotic Earth, was considered. It was shown that if organic catalysts were abundant, then effective averaging of enantioselectivity would prohibit any symmetry breaking in such systems. It was further argued that non-linear (catalytic) reactions must be very scarce (called the abundance parameter) and catalysts should work on small groups of similar reactions (called the similarity parameter) in order to chiral symmetry breaking have a chance to occur. Models with 20 amino acids and peptide lengths up to three were considered. It was shown that there are preferred ranges of abundance and similarity parameters where the symmetry breaking can occur in the models with catalytic synthesis / catalytic destruction / both catalytic synthesis and catalytic destruction. It was further shown that models with catalytic synthesis and catalytic destruction statistically result in a substantially higher percentage of the models where the symmetry breaking can occur in comparison to the models with just catalytic synthesis or catalytic destruction. It was also shown that when chiral symmetry breaking occurs, then concentrations of some amino acids, which collectively have some mutually beneficial properties, go up, whereas the concentrations of the ones, which don't have such properties, go down. An open source code of the whole system was provided to ensure that the results can be checked, repeated, and extended further if needed.
Extraterrestrial environments influence the biochemistry of organisms through a variety of factors, including high levels of radiation and vacuum, temperature extremes and a lack of water and nutrients. A wide variety of terrestrial microorganisms, including those counted amongst the most ancient inhabitants of Earth, can cope with high levels of salinity, extreme temperatures, desiccation and high levels of radiation. Key among these are the haloarchaea, considered particularly relevant for astrobiological studies due to their ability to thrive in hypersaline environments. In this study, a novel haloarchaea isolated from Urmia Salt Lake, Iran, Halovarius luteus strain DA50T, was exposed to varying levels of simulated extraterrestrial conditions and compared to that of the bacteria Bacillus atrophaeus. Bacillus atrophaeus was selected for comparison due to its well-described resistance to extreme conditions and its ability to produce strong spore structures. Thin films were produced to investigate viability without the protective influence of cell multi-layers. Late exponential phase cultures of Hvr. luteus and B. atrophaeus were placed in brine and phosphate buffered saline media, respectively. The solutions were allowed to evaporate and cells were encapsulated and exposed to radiation, desiccation and vacuum conditions, and their post-exposure viability was studied by the Most Probable Number method. The protein profile using High Performance Liquid Chromatography and Matrix Assisted Laser Desorption/Ionization bench top reflector time-of-flight are explored after vacuum and UV-radiation exposure. Results showed that the change in viability of the spore-forming bacteria B. atrophaeus was only minor whereas Hvr. luteus demonstrated a range of viability under different conditions. At the peak radiation flux of 105 J/m2 under nitrogen flow and after two weeks of desiccation, Hvr. luteus demonstrated the greatest decrease in viability. This study further expands our understanding of the boundary conditions of astrobiologically relevant organisms in the harsh space environment.
Life itself is grander than the sum of its constituent molecules. Any living organism may be regarded as a part of a dissipative process that connects irreversible energy consumption with growth, reproduction, and evolution. Under energy-fuelled, far-from-equilibrium conditions, chemical systems capable of exponential growth can manifest a specific form of stability- dynamic kinetic stability (DKS) - indicating the persistence of self-reproducible entities. This kinetic behavior is associated with thermodynamic conditions far from equilibrium leading to an evolutionary view of the origin of life in which increasing entities have to be associated with the dissipation of free energy. This review aims to reformulate Darwinian theory in physicochemical terms so that it can handle both animate and inanimate systems, thus helping to overcome this theoretical divide. The expanded formulation is based on the principle of dynamic kinetic stability and evidence from the emerging field of systems chemistry. Although the classic Darwinian theory is useful for understanding the origins and evolution of species, it is not meant to primarily build an explicit framework for predicting potential evolution routes. Throughout the last century, the inherently systemic and dynamic nature of the biological systems has been brought to the attention of researchers. During the last decades, "systems" approaches to biology and genome evolution are gaining ever greater significance providing the possibility of a deeper interpretation of the basic concepts of life. Further progress of this approach depends on crossing disciplinary boundaries and complex simulations of biological systems. Evolutionary systems biology (ESB) through the integration of methods from evolutionary biology and systems biology aims to the understanding of the fundamental principles of life as well as the prediction of biological systems evolution.