Pub Date : 2024-08-01Epub Date: 2024-08-28DOI: 10.1098/rsob.240111
Gayani Senevirathne, Neil H Shubin
Evolutionary novelties entail the origin of morphologies that enable new functions. These features can arise through changes to gene function and regulation. One key novelty is the fused rod at the end of the vertebral column in anurans, the urostyle. This feature is composed of a coccyx and a hypochord, both of which ossify during metamorphosis. To elucidate the genetic basis of these features, we used laser capture microdissection of these tissues and did RNA-seq and ATAC-seq at three developmental stages in tadpoles of Xenopus tropicalis. RNA-seq reveals that the coccyx and hypochord have two different molecular signatures. Neuronal (TUBB3) and muscle markers (MYH3) are upregulated in coccygeal tissues, whereas T-box genes (TBXT, TBXT.2), corticosteroid stress hormones (CRCH.1) and matrix metallopeptidases (MMP1, MMP8 and MMP13) are upregulated in the hypochord. ATAC-seq reveals potential regulatory regions that are observed in proximity to candidate genes that regulate ossification identified from RNA-seq. Even though an ossifying hypochord is only present in anurans, this ossification between the vertebral column and the notochord resembles a congenital vertebral anomaly seen prenatally in humans caused by an ectopic expression of the TBXT/TBXT.2 gene. This work opens the way to functional studies that can elucidate anuran bauplan evolution.
{"title":"Molecular basis of urostyle development in frogs: genes and gene regulation underlying an evolutionary novelty.","authors":"Gayani Senevirathne, Neil H Shubin","doi":"10.1098/rsob.240111","DOIUrl":"10.1098/rsob.240111","url":null,"abstract":"<p><p>Evolutionary novelties entail the origin of morphologies that enable new functions. These features can arise through changes to gene function and regulation. One key novelty is the fused rod at the end of the vertebral column in anurans, the urostyle. This feature is composed of a coccyx and a hypochord, both of which ossify during metamorphosis. To elucidate the genetic basis of these features, we used laser capture microdissection of these tissues and did RNA-seq and ATAC-seq at three developmental stages in tadpoles of <i>Xenopus tropicalis</i>. RNA-seq reveals that the coccyx and hypochord have two different molecular signatures. Neuronal (<i>TUBB3</i>) and muscle markers (<i>MYH3</i>) are upregulated in coccygeal tissues, whereas T-box genes (<i>TBXT</i>, <i>TBXT.2</i>), corticosteroid stress hormones (<i>CRCH.1</i>) and matrix metallopeptidases (<i>MMP1</i>, <i>MMP8</i> and <i>MMP13</i>) are upregulated in the hypochord. ATAC-seq reveals potential regulatory regions that are observed in proximity to candidate genes that regulate ossification identified from RNA-seq. Even though an ossifying hypochord is only present in anurans, this ossification between the vertebral column and the notochord resembles a congenital vertebral anomaly seen prenatally in humans caused by an ectopic expression of the <i>TBXT</i>/<i>TBXT.2</i> gene. This work opens the way to functional studies that can elucidate anuran <i>bauplan</i> evolution.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 8","pages":"240111"},"PeriodicalIF":4.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-03DOI: 10.1098/rsob.230437
Renata C Barbosa, Raquel S M Godoy, Priscila G Ferreira, Tiago A O Mendes, Marcelo Ramalho-Ortigão, José M C Ribeiro, Gustavo F Martins
Toxorhynchites mosquitoes have an exclusively phytophagous feeding habit as adults, which leads to significant differences in their morphophysiology compared with haematophagous mosquitoes. However, the molecular mechanisms of digestion in this mosquito are not well understood. In this study, RNA sequencing of the posterior midgut (PMG) of the mosquito Toxorhynchites theobaldi was undertaken, highlighting its significance in mosquito digestion. Subsequently, a comparison was made between the differential gene expression of the PMG and that of the anterior midgut. It was found that the most abundant proteases in the PMG were trypsin and chymotrypsin, and the level of gene expression for enzymes essential for digestion (such as serine protease, α-amylase and pancreatic triacylglycerol lipase) and innate immune response (including catalase, cecropin-A2 and superoxide dismutase) was like that of haematophagous mosquitoes. Peritrophin-1 was detected in the entire midgut, with an elevated expression level in the PMG. Based on our findings, it is hypothesized that a non-haematophagic habit might have been exhibited by the ancestor of Tx. theobaldi, and this trait may have been retained. This study represents a pioneering investigation at the molecular level of midgut contents in a non-haematophagous mosquito. The findings offer valuable insights into the evolutionary aspects of feeding habits in culicids.
{"title":"Exploring the midgut physiology of the non-haematophagous mosquito <i>Toxorhynchites theobaldi</i>.","authors":"Renata C Barbosa, Raquel S M Godoy, Priscila G Ferreira, Tiago A O Mendes, Marcelo Ramalho-Ortigão, José M C Ribeiro, Gustavo F Martins","doi":"10.1098/rsob.230437","DOIUrl":"10.1098/rsob.230437","url":null,"abstract":"<p><p><i>Toxorhynchites</i> mosquitoes have an exclusively phytophagous feeding habit as adults, which leads to significant differences in their morphophysiology compared with haematophagous mosquitoes. However, the molecular mechanisms of digestion in this mosquito are not well understood. In this study, RNA sequencing of the posterior midgut (PMG) of the mosquito <i>Toxorhynchites theobaldi</i> was undertaken, highlighting its significance in mosquito digestion. Subsequently, a comparison was made between the differential gene expression of the PMG and that of the anterior midgut. It was found that the most abundant proteases in the PMG were trypsin and chymotrypsin, and the level of gene expression for enzymes essential for digestion (such as serine protease, α-amylase and pancreatic triacylglycerol lipase) and innate immune response (including catalase, cecropin-A2 and superoxide dismutase) was like that of haematophagous mosquitoes. Peritrophin-1 was detected in the entire midgut, with an elevated expression level in the PMG. Based on our findings, it is hypothesized that a non-haematophagic habit might have been exhibited by the ancestor of <i>Tx. theobaldi</i>, and this trait may have been retained. This study represents a pioneering investigation at the molecular level of midgut contents in a non-haematophagous mosquito. The findings offer valuable insights into the evolutionary aspects of feeding habits in culicids.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 7","pages":"230437"},"PeriodicalIF":4.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-31DOI: 10.1098/rsob.240140
Stephanie Niklaus, Stella M K Glasauer, Peter Kovermann, Kulsum F Farshori, Lucia Cadetti, Simon Früh, Nicolas N Rieser, Matthias Gesemann, Jingjing Zang, Christoph Fahlke, Stephan C F Neuhauss
In the central nervous system of vertebrates, glutamate serves as the primary excitatory neurotransmitter. However, in the retina, glutamate released from photoreceptors causes hyperpolarization in post-synaptic ON-bipolar cells through a glutamate-gated chloride current, which seems paradoxical. Our research reveals that this current is modulated by two excitatory glutamate transporters, EAAT5b and EAAT7. In the zebrafish retina, these transporters are located at the dendritic tips of ON-bipolar cells and interact with all four types of cone photoreceptors. The absence of these transporters leads to a decrease in ON-bipolar cell responses, with eaat5b mutants being less severely affected than eaat5b/eaat7 double mutants, which also exhibit altered response kinetics. Biophysical investigations establish that EAAT7 is an active glutamate transporter with a predominant anion conductance. Our study is the first to demonstrate the direct involvement of post-synaptic glutamate transporters in inhibitory direct synaptic transmission at a central nervous system synapse.
{"title":"Glutamate transporters are involved in direct inhibitory synaptic transmission in the vertebrate retina.","authors":"Stephanie Niklaus, Stella M K Glasauer, Peter Kovermann, Kulsum F Farshori, Lucia Cadetti, Simon Früh, Nicolas N Rieser, Matthias Gesemann, Jingjing Zang, Christoph Fahlke, Stephan C F Neuhauss","doi":"10.1098/rsob.240140","DOIUrl":"10.1098/rsob.240140","url":null,"abstract":"<p><p>In the central nervous system of vertebrates, glutamate serves as the primary excitatory neurotransmitter. However, in the retina, glutamate released from photoreceptors causes hyperpolarization in post-synaptic ON-bipolar cells through a glutamate-gated chloride current, which seems paradoxical. Our research reveals that this current is modulated by two excitatory glutamate transporters, EAAT5b and EAAT7. In the zebrafish retina, these transporters are located at the dendritic tips of ON-bipolar cells and interact with all four types of cone photoreceptors. The absence of these transporters leads to a decrease in ON-bipolar cell responses, with <i>eaat5b</i> mutants being less severely affected than <i>eaat5b</i>/<i>eaat7</i> double mutants, which also exhibit altered response kinetics. Biophysical investigations establish that EAAT7 is an active glutamate transporter with a predominant anion conductance. Our study is the first to demonstrate the direct involvement of post-synaptic glutamate transporters in inhibitory direct synaptic transmission at a central nervous system synapse.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 7","pages":"240140"},"PeriodicalIF":4.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-17DOI: 10.1098/rsob.240043
Serena Mahnoor, Cristina Molnar, Diego Velázquez, Jose Reina, Salud Llamazares, Jan Peter Heinen, Jaume Mora, Cayetano Gonzalez
Ewing sarcoma (EwS) is a cancer that arises in the bones and soft tissues, typically driven by the Ewing's sarcoma breakpoint region 1-Friend leukemia virus integration 1 (EWS-FLI) oncogene. Implementation of genetically modified animal models of EwS has proved difficult largely owing to EWS-FLI's high toxicity. The EWS-FLI1FS frameshift variant that circumvents toxicity but is still able to perform key oncogenic functions provided the first study model in Drosophila. However, the quest for Drosophila lines expressing full-length, unmodified EWS-FLI remained open. Here, we show that EWS-FLI1FS's lower toxicity is owed to reduced protein levels caused by its frameshifted C-terminal peptide, and report new strategies through which we have generated Drosophila lines that express full-length, unmodified EWS-FLI. Using these lines, we have found that the upregulation of transcription from GGAA-microsatellites (GGAAμSats) presents a positive linear correlation within a wide range of EWS-FLI protein concentrations. In contrast, rather counterintuitively, GGAAμSats-independent transcriptomic dysregulation presents relatively minor differences across the same range, suggesting that GGAAμSat-dependent and -independent transcriptional upregulation present different kinetics of response with regards to changing EWS-FLI protein concentration. Our results underpin the functional relevance of varying EWS-FLI expression levels and provide experimental tools to investigate, in Drosophila, the effect of the EWS-FLI 'high' and 'low' states that have been reported and are suspected to be important for EwS in humans.
{"title":"Human EWS-FLI protein levels and neomorphic functions show a complex, function-specific dose-response relationship in <i>Drosophila</i>.","authors":"Serena Mahnoor, Cristina Molnar, Diego Velázquez, Jose Reina, Salud Llamazares, Jan Peter Heinen, Jaume Mora, Cayetano Gonzalez","doi":"10.1098/rsob.240043","DOIUrl":"10.1098/rsob.240043","url":null,"abstract":"<p><p>Ewing sarcoma (EwS) is a cancer that arises in the bones and soft tissues, typically driven by the Ewing's sarcoma breakpoint region 1-Friend leukemia virus integration 1 (EWS-FLI) oncogene. Implementation of genetically modified animal models of EwS has proved difficult largely owing to EWS-FLI's high toxicity. The EWS-FLI<sub>1FS</sub> frameshift variant that circumvents toxicity but is still able to perform key oncogenic functions provided the first study model in <i>Drosophila</i>. However, the quest for <i>Drosophila</i> lines expressing full-length, unmodified EWS-FLI remained open. Here, we show that EWS-FLI<sub>1FS</sub>'s lower toxicity is owed to reduced protein levels caused by its frameshifted C-terminal peptide, and report new strategies through which we have generated <i>Drosophila</i> lines that express full-length, unmodified EWS-FLI. Using these lines, we have found that the upregulation of transcription from GGAA-microsatellites (GGAAμSats) presents a positive linear correlation within a wide range of EWS-FLI protein concentrations. In contrast, rather counterintuitively, GGAAμSats-independent transcriptomic dysregulation presents relatively minor differences across the same range, suggesting that GGAAμSat-dependent and -independent transcriptional upregulation present different kinetics of response with regards to changing EWS-FLI protein concentration. Our results underpin the functional relevance of varying EWS-FLI expression levels and provide experimental tools to investigate, in <i>Drosophila</i>, the effect of the EWS-FLI 'high' and 'low' states that have been reported and are suspected to be important for EwS in humans.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 7","pages":"240043"},"PeriodicalIF":4.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agβ1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agβ1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.
{"title":"Unravelling nicotinic receptor and ligand features underlying neonicotinoid knockdown actions on the malaria vector mosquito <i>Anopheles gambiae</i>.","authors":"Ryo Ito, Masaki Kamiya, Koichi Takayama, Sumito Mori, Rei Matsumoto, Mayuka Takebayashi, Hisanori Ojima, Shota Fujimura, Haruki Yamamoto, Masayuki Ohno, Makoto Ihara, Toshihide Okajima, Atsuko Yamashita, Fraser Colman, Gareth J Lycett, David B Sattelle, Kazuhiko Matsuda","doi":"10.1098/rsob.240057","DOIUrl":"10.1098/rsob.240057","url":null,"abstract":"<p><p>With the spread of resistance to long-established insecticides targeting <i>Anopheles</i> malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 <i>Anopheles gambiae</i> nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Ag<i>α</i>1, Ag<i>α</i>2, Ag<i>α</i>3, Ag<i>α</i>8 and Ag<i>β</i>1 subunits in <i>Xenopus laevis</i> oocytes, the <i>Drosophila melanogaster</i> orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Ag<i>α</i>2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Ag<i>α</i>3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Ag<i>α</i>1/Ag<i>α</i>2/Ag<i>α</i>8/Ag<i>β</i>1 nAChR, their hydrophobicity and their rate of knockdown of adult female <i>An. gambiae</i>, providing new insights into neonicotinoid features important for malaria vector control.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 7","pages":"240057"},"PeriodicalIF":4.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-10DOI: 10.1098/rsob.230355
Pengfei Lv, Zhangwu Zhao, Yukinori Hirano, Juan Du
Epigenetic regulation is important for circadian rhythm. In previous studies, multiple histone modifications were found at the Period (Per) locus. However, most of these studies were not conducted in clock neurons. In our screen, we found that a CoREST mutation resulted in defects in circadian rhythm by affecting Per transcription. Based on previous studies, we hypothesized that CoREST regulates circadian rhythm by regulating multiple histone modifiers at the Per locus. Genetic and physical interaction experiments supported these regulatory relationships. Moreover, through tissue-specific chromatin immunoprecipitation assays in clock neurons, we found that the CoREST mutation led to time-dependent changes in corresponding histone modifications at the Per locus. Finally, we proposed a model indicating the role of the CoREST complex in the regulation of circadian rhythm. This study revealed the dynamic changes of histone modifications at the Per locus specifically in clock neurons. Importantly, it provides insights into the role of epigenetic factors in the regulation of dynamic gene expression changes in circadian rhythm.
表观遗传调控对昼夜节律非常重要。以往的研究发现,Per(周期)基因座存在多种组蛋白修饰。然而,这些研究大多不是在时钟神经元中进行的。在我们的筛选中,我们发现 CoREST 突变会影响 Per 的转录,从而导致昼夜节律缺陷。基于之前的研究,我们假设 CoREST 通过调节 Per 基因座上的多个组蛋白修饰因子来调节昼夜节律。遗传和物理相互作用实验证实了这些调控关系。此外,通过在时钟神经元中进行组织特异性染色质免疫沉淀实验,我们发现 CoREST 突变会导致 Per 基因座上相应组蛋白修饰的时间依赖性变化。最后,我们提出了一个模型,表明了CoREST复合物在昼夜节律调控中的作用。这项研究揭示了Per基因座组蛋白修饰在时钟神经元中的动态变化。重要的是,它提供了关于表观遗传因素在调控昼夜节律动态基因表达变化中的作用的见解。
{"title":"The CoREST complex regulates multiple histone modifications temporal-specifically in clock neurons.","authors":"Pengfei Lv, Zhangwu Zhao, Yukinori Hirano, Juan Du","doi":"10.1098/rsob.230355","DOIUrl":"10.1098/rsob.230355","url":null,"abstract":"<p><p>Epigenetic regulation is important for circadian rhythm. In previous studies, multiple histone modifications were found at the <i>Period</i> (<i>Per</i>) locus. However, most of these studies were not conducted in clock neurons. In our screen, we found that a <i>CoREST</i> mutation resulted in defects in circadian rhythm by affecting <i>Per</i> transcription. Based on previous studies, we hypothesized that <i>CoREST</i> regulates circadian rhythm by regulating multiple histone modifiers at the <i>Per</i> locus. Genetic and physical interaction experiments supported these regulatory relationships. Moreover, through tissue-specific chromatin immunoprecipitation assays in clock neurons, we found that the <i>CoREST</i> mutation led to time-dependent changes in corresponding histone modifications at the <i>Per</i> locus. Finally, we proposed a model indicating the role of the CoREST complex in the regulation of circadian rhythm. This study revealed the dynamic changes of histone modifications at the <i>Per</i> locus specifically in clock neurons. Importantly, it provides insights into the role of epigenetic factors in the regulation of dynamic gene expression changes in circadian rhythm.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 7","pages":"230355"},"PeriodicalIF":4.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285899/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-03DOI: 10.1098/rsob.240071
Jackson Dann, Zhipeng Qu, Linda Shearwin-Whyatt, Rachel van der Ploeg, Frank Grützner
The enzymatic breakdown and regulation of food passage through the vertebrate antral stomach and pyloric sphincter (antropyloric region) is a trait conserved over 450 million years. Development of the structures involved is underpinned by a highly conserved signalling pathway involving the hedgehog, bone morphogenetic protein and Wingless/Int-1 (Wnt) protein families. Monotremes are one of the few vertebrate lineages where acid-based digestion has been lost, and this is consistent with the lack of genes for hydrochloric acid secretion and gastric enzymes in the genomes of the platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus) . Furthermore, these species feature unique gastric phenotypes, both with truncated and aglandular antral stomachs and the platypus with no pylorus. Here, we explore the genetic underpinning of monotreme gastric phenotypes, investigating genes important in antropyloric development using the newest monotreme genomes (mOrnAna1.pri.v4 and mTacAcu1) together with RNA-seq data. We found that the pathway constituents are generally conserved, but surprisingly, NK3 homeobox 2 (Nkx3.2) was pseudogenized in both platypus and echidna. We speculate that the unique sequence evolution of Grem1 and Bmp4 sequences in the echidna lineage may correlate with their pyloric-like restriction and that the convergent loss of gastric acid and stomach size genotypes and phenotypes in teleost and monotreme lineages may be a result of eco-evolutionary dynamics. These findings reflect the effects of gene loss on phenotypic evolution and further elucidate the genetic control of monotreme stomach anatomy and physiology.
{"title":"Pseudogenization of NK3 homeobox 2 (<i>Nkx3.2</i>) in monotremes provides insight into unique gastric anatomy and physiology.","authors":"Jackson Dann, Zhipeng Qu, Linda Shearwin-Whyatt, Rachel van der Ploeg, Frank Grützner","doi":"10.1098/rsob.240071","DOIUrl":"10.1098/rsob.240071","url":null,"abstract":"<p><p>The enzymatic breakdown and regulation of food passage through the vertebrate antral stomach and pyloric sphincter (antropyloric region) is a trait conserved over 450 million years. Development of the structures involved is underpinned by a highly conserved signalling pathway involving the hedgehog, bone morphogenetic protein and Wingless/Int-1 (Wnt) protein families. Monotremes are one of the few vertebrate lineages where acid-based digestion has been lost, and this is consistent with the lack of genes for hydrochloric acid secretion and gastric enzymes in the genomes of the platypus (<i>Ornithorhynchus anatinus</i>) and short-beaked echidna (<i>Tachyglossus aculeatus</i>) . Furthermore, these species feature unique gastric phenotypes, both with truncated and aglandular antral stomachs and the platypus with no pylorus. Here, we explore the genetic underpinning of monotreme gastric phenotypes, investigating genes important in antropyloric development using the newest monotreme genomes (mOrnAna1.pri.v4 and mTacAcu1) together with RNA-seq data. We found that the pathway constituents are generally conserved, but surprisingly, NK3 homeobox 2 (<i>Nkx3.2</i>) was pseudogenized in both platypus and echidna. We speculate that the unique sequence evolution of <i>Grem1</i> and <i>Bmp4</i> sequences in the echidna lineage may correlate with their pyloric-like restriction and that the convergent loss of gastric acid and stomach size genotypes and phenotypes in teleost and monotreme lineages may be a result of eco-evolutionary dynamics. These findings reflect the effects of gene loss on phenotypic evolution and further elucidate the genetic control of monotreme stomach anatomy and physiology.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 7","pages":"240071"},"PeriodicalIF":4.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-24DOI: 10.1098/rsob.240059
Menglong Rui
The brain can adapt to changes in the environment through alterations in the number and structure of synapses. During embryonic and early postnatal stages, the synapses in the brain undergo rapid expansion and interconnections to form circuits. However, many of these synaptic connections are redundant or incorrect. Neurite pruning is a conserved process that occurs during both vertebrate and invertebrate development. It requires precise spatiotemporal control of local degradation of cellular components, comprising cytoskeletons and membranes, refines neuronal circuits, and ensures the precise connectivity required for proper function. The Drosophila's class IV dendritic arborization (C4da) sensory neuron has a well-characterized architecture and undergoes dendrite-specific sculpting, making it a valuable model for unravelling the intricate regulatory mechanisms underlie dendritic pruning. In this review, I attempt to provide an overview of the present state of research on dendritic pruning in C4da sensory neurons, as well as potential functional mechanisms in neurodevelopmental disorders.
{"title":"Recent progress in dendritic pruning of <i>Drosophila</i> C4da sensory neurons.","authors":"Menglong Rui","doi":"10.1098/rsob.240059","DOIUrl":"10.1098/rsob.240059","url":null,"abstract":"<p><p>The brain can adapt to changes in the environment through alterations in the number and structure of synapses. During embryonic and early postnatal stages, the synapses in the brain undergo rapid expansion and interconnections to form circuits. However, many of these synaptic connections are redundant or incorrect. Neurite pruning is a conserved process that occurs during both vertebrate and invertebrate development. It requires precise spatiotemporal control of local degradation of cellular components, comprising cytoskeletons and membranes, refines neuronal circuits, and ensures the precise connectivity required for proper function. The <i>Drosophila</i>'s class IV dendritic arborization (C4da) sensory neuron has a well-characterized architecture and undergoes dendrite-specific sculpting, making it a valuable model for unravelling the intricate regulatory mechanisms underlie dendritic pruning. In this review, I attempt to provide an overview of the present state of research on dendritic pruning in C4da sensory neurons, as well as potential functional mechanisms in neurodevelopmental disorders.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 7","pages":"240059"},"PeriodicalIF":4.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-03DOI: 10.1098/rsob.240139
Timothy R Wood, Iwo Kucinski, Octavian Voiculescu
The vertebrate organizer plays a crucial role in building the main (antero-posterior) axis of the embryo: it neuralizes the surrounding ectoderm, and is the site of emigration for cells making axial and paraxial mesendoderm during elongation. The chick organizer becomes a stem zone at the onset of elongation; it stops recruiting cells from the neighbouring ectoderm and generates all its derivatives from the small number of resident cells it contains at the end of gastrulation stages. Nothing is known about the molecular identity of this stem zone. Here, we specifically labelled long-term resident cells of the organizer and compared their RNA-seq profile to that of the neighbouring cell populations. Screening by reverse transcription-polymerase chain reaction and in situ hybridization identified four genes (WIF1, PTGDS, ThPO and UCKL1) that are upregulated only in the organizer region when it becomes a stem zone and remain expressed there during axial elongation. In experiments specifically labelling the resident cells of the mature organizer, we show that only these cells express these genes. These findings molecularly define the organizer as a stem zone and offer a key to understanding how this zone is set up, the molecular control of its cells' behaviour and the evolution of axial growth zones.
{"title":"Distinct molecular profile of the chick organizer as a stem zone during axial elongation.","authors":"Timothy R Wood, Iwo Kucinski, Octavian Voiculescu","doi":"10.1098/rsob.240139","DOIUrl":"10.1098/rsob.240139","url":null,"abstract":"<p><p>The vertebrate organizer plays a crucial role in building the main (antero-posterior) axis of the embryo: it neuralizes the surrounding ectoderm, and is the site of emigration for cells making axial and paraxial mesendoderm during elongation. The chick organizer becomes a stem zone at the onset of elongation; it stops recruiting cells from the neighbouring ectoderm and generates all its derivatives from the small number of resident cells it contains at the end of gastrulation stages. Nothing is known about the molecular identity of this stem zone. Here, we specifically labelled long-term resident cells of the organizer and compared their RNA-seq profile to that of the neighbouring cell populations. Screening by reverse transcription-polymerase chain reaction and <i>in situ</i> hybridization identified four genes (<i>WIF1</i>, <i>PTGDS</i>, <i>ThPO</i> and <i>UCKL1</i>) that are upregulated only in the organizer region when it becomes a stem zone and remain expressed there during axial elongation. In experiments specifically labelling the resident cells of the mature organizer, we show that only these cells express these genes. These findings molecularly define the organizer as a stem zone and offer a key to understanding how this zone is set up, the molecular control of its cells' behaviour and the evolution of axial growth zones.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 7","pages":"240139"},"PeriodicalIF":4.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-07-10DOI: 10.1098/rsob.240089
Polly Downton, Suzanna H Dickson, David W Ray, David A Bechtold, Julie E Gibbs
Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene Bmal1 in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS Bmal1 deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.
{"title":"Fibroblast-like synoviocytes orchestrate daily rhythmic inflammation in arthritis.","authors":"Polly Downton, Suzanna H Dickson, David W Ray, David A Bechtold, Julie E Gibbs","doi":"10.1098/rsob.240089","DOIUrl":"10.1098/rsob.240089","url":null,"abstract":"<p><p>Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene <i>Bmal1</i> in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS <i>Bmal1</i> deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 7","pages":"240089"},"PeriodicalIF":4.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285822/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}