Hengzhen Cheng, Ting Liang, Wen Li, Weiyi Zhou, Caiyu Feng, Ziyang Wang, Bin Liu, Xinyue Wang, Yanbing Hou, Yan Zhang, Jingling Shen, Bo Zhang
Dynamic control of terahertz metamaterials using thin organic perovskite active layers has been extensively researched. However, the preparation of organic perovskite devices requires strict environmental conditions, and the devices are prone to hydrolysis in air, which reduces performance. Herein, we report an optical terahertz metamaterial switch controlled via hybridization with high-stability CsPbBr3 microcrystals prepared through precipitation from a water-dimethylformamide (DMF) mixed-solution. Under light excitation, a modulation factor of 24% was achieved based on the photoelectric and photothermal effects of the CsPbBr3 microcrystals. After exposure to air for four months, the modulation factor remained essentially unchanged, demonstrating the exceptional stability of the system generated. Following the integration of CsPbBr3 microcrystals with the metamaterial, a frequency-shift of its dipole resonance and switching of Fano resonance was achieved, providing a novel approach to dynamic control of terahertz waves.
{"title":"Optical terahertz metamaterial switch controlled via high-stability CsPbBr<sub>3</sub> microcrystals.","authors":"Hengzhen Cheng, Ting Liang, Wen Li, Weiyi Zhou, Caiyu Feng, Ziyang Wang, Bin Liu, Xinyue Wang, Yanbing Hou, Yan Zhang, Jingling Shen, Bo Zhang","doi":"10.1364/OE.527489","DOIUrl":"https://doi.org/10.1364/OE.527489","url":null,"abstract":"<p><p>Dynamic control of terahertz metamaterials using thin organic perovskite active layers has been extensively researched. However, the preparation of organic perovskite devices requires strict environmental conditions, and the devices are prone to hydrolysis in air, which reduces performance. Herein, we report an optical terahertz metamaterial switch controlled via hybridization with high-stability CsPbBr<sub>3</sub> microcrystals prepared through precipitation from a water-dimethylformamide (DMF) mixed-solution. Under light excitation, a modulation factor of 24% was achieved based on the photoelectric and photothermal effects of the CsPbBr<sub>3</sub> microcrystals. After exposure to air for four months, the modulation factor remained essentially unchanged, demonstrating the exceptional stability of the system generated. Following the integration of CsPbBr<sub>3</sub> microcrystals with the metamaterial, a frequency-shift of its dipole resonance and switching of Fano resonance was achieved, providing a novel approach to dynamic control of terahertz waves.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26094-26106"},"PeriodicalIF":3.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinzhou Su, Kaiheng Zou, Huibin Zhou, Hao Song, Yingning Wang, Ruoyu Zeng, Zile Jiang, Yuxiang Duan, Maxim Karpov, Tobias J Kippenberg, Moshe Tur, Demetrios N Christodoulides, Alan E Willner
In general, space-time wave packets with correlations between transverse spatial fields and temporal frequency spectra can lead to unique spatiotemporal dynamics, thus enabling control of the instantaneous light properties. However, spatiotemporal dynamics generated in previous approaches manifest themselves at a given propagation distance yet are not arbitrarily tailored longitudinally. Here, we propose and demonstrate a new versatile class of judiciously synthesized wave packets whose spatiotemporal evolution can be arbitrarily engineered to take place at various predesigned distances along the longitudinal propagation path. Spatiotemporal synthesis is achieved by introducing a 2-dimensional spectrum comprising both temporal and longitudinal wavenumbers associated with specific transverse Bessel-Gaussian fields. The resulting spectra are then employed to produce wave packets evolving in both time and axial distance - in full accord with the theoretical analysis. In this respect, various light degrees of freedom can be independently manipulated, such as intensity, polarization, and transverse spatial distribution (e.g., orbital angular momentum). Through a temporal-longitudinal frequency comb spectrum, we simulate the synthesis of the aforementioned wave packet properties, indicating a decrease in relative error compared to the desired phenomena as more spectral components are incorporated. Additionally, we experimentally demonstrate tailorable spatiotemporal fields carrying time- and longitudinal-varying orbital angular momentum, such that the local topological charge evolves every ∼1 ps in the time domain and 10 cm axially. We believe our space-time wave packets can significantly expand the exploration of spatiotemporal dynamics in the longitudinal dimension. Such wave packets might potentially enable novel applications in light-matter interactions and nonlinear optics.
一般来说,具有横向空间场和时间频谱相关性的时空波包可以产生独特的时空动态,从而实现对瞬时光特性的控制。然而,以往方法所产生的时空动态只能在给定的传播距离上表现出来,而不能在纵向上任意调整。在此,我们提出并展示了一类新的多功能明智合成波包,其时空演变可任意设计,在纵向传播路径上的各种预先设计的距离上发生。时空合成是通过引入一个二维频谱来实现的,该频谱由与特定横向贝塞尔-高斯场相关的时间和纵向波数组成。然后利用由此产生的频谱来产生在时间和轴向距离上都在演变的波包--完全符合理论分析。在这方面,各种光的自由度都可以独立操控,如强度、偏振和横向空间分布(如轨道角动量)。通过时间-纵向频率组合频谱,我们模拟了上述波包特性的合成,结果表明,随着更多频谱成分的加入,与理想现象相比,相对误差有所减小。此外,我们还在实验中展示了可定制的时空场,它携带时变和纵变轨道角动量,因此局部拓扑电荷在时域上每隔 1 ps 就会发生一次变化,在轴向上每隔 10 cm 就会发生一次变化。我们相信,我们的时空波包可以大大扩展对纵向时空动力学的探索。这种波包有可能在光物质相互作用和非线性光学中实现新的应用。
{"title":"Temporally and longitudinally tailored dynamic space-time wave packets.","authors":"Xinzhou Su, Kaiheng Zou, Huibin Zhou, Hao Song, Yingning Wang, Ruoyu Zeng, Zile Jiang, Yuxiang Duan, Maxim Karpov, Tobias J Kippenberg, Moshe Tur, Demetrios N Christodoulides, Alan E Willner","doi":"10.1364/OE.527713","DOIUrl":"https://doi.org/10.1364/OE.527713","url":null,"abstract":"<p><p>In general, space-time wave packets with correlations between transverse spatial fields and temporal frequency spectra can lead to unique spatiotemporal dynamics, thus enabling control of the instantaneous light properties. However, spatiotemporal dynamics generated in previous approaches manifest themselves at a given propagation distance yet are not arbitrarily tailored longitudinally. Here, we propose and demonstrate a new versatile class of judiciously synthesized wave packets whose spatiotemporal evolution can be arbitrarily engineered to take place at various predesigned distances along the longitudinal propagation path. Spatiotemporal synthesis is achieved by introducing a 2-dimensional spectrum comprising both temporal and longitudinal wavenumbers associated with specific transverse Bessel-Gaussian fields. The resulting spectra are then employed to produce wave packets evolving in both time and axial distance - in full accord with the theoretical analysis. In this respect, various light degrees of freedom can be independently manipulated, such as intensity, polarization, and transverse spatial distribution (e.g., orbital angular momentum). Through a temporal-longitudinal frequency comb spectrum, we simulate the synthesis of the aforementioned wave packet properties, indicating a decrease in relative error compared to the desired phenomena as more spectral components are incorporated. Additionally, we experimentally demonstrate tailorable spatiotemporal fields carrying time- and longitudinal-varying orbital angular momentum, such that the local topological charge evolves every ∼1 ps in the time domain and 10 cm axially. We believe our space-time wave packets can significantly expand the exploration of spatiotemporal dynamics in the longitudinal dimension. Such wave packets might potentially enable novel applications in light-matter interactions and nonlinear optics.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26653-26666"},"PeriodicalIF":3.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Zhang, Chaofan Gu, Ragini Singh, Sourabh Jain, Ray T Chen, Bingyuan Zhang, Santosh Kumar
At present, pesticides are widely used in the cultivation of crops. Glyphosate is widely used in many pesticides. Glyphosate ingestion can cause a series of health problems. Therefore, this paper proposes to use localized surface plasmon resonance (LSPR) technology to develop a WaveFlex biosensor (plasma wave-based optical fiber sensor) to detect glyphosate concentration in pesticides. The evanescent field is improved by using the fusion of seven-core fiber and single-mode fiber and the tapering of the sensing area to improve the sensing performance. The gold nanoparticles (AuNPs) are used to excite the LSPR effect. Multi-walled carbon nanotubes (MWCNTs) and cerium oxide nanorods (CeO2-NRs) are used to increase the surface area and promote the adhesion of the enzyme. The sensitivity of the sensor is 137.7 pm/µM in the range of 0-60 µM glyphosate concentration, and the limit of detection (LoD) is 1.94 µM, which has good performance in compared to the existing biosensors. Subsequently, the sensor was tested for reusability, reproducibility, selectivity, stability, and excellent results were obtained. Finally, the sensor is tested on real samples, and the results show that it can be applied in practical applications. The test findings demonstrate that the sensor has a great deal of potential for use in glyphosate content detection in food samples.
{"title":"Hump-shaped seven-core fiber-based WaveFlex biosensor for rapid detection of glyphosate pesticides in real food samples.","authors":"Qi Zhang, Chaofan Gu, Ragini Singh, Sourabh Jain, Ray T Chen, Bingyuan Zhang, Santosh Kumar","doi":"10.1364/OE.530348","DOIUrl":"https://doi.org/10.1364/OE.530348","url":null,"abstract":"<p><p>At present, pesticides are widely used in the cultivation of crops. Glyphosate is widely used in many pesticides. Glyphosate ingestion can cause a series of health problems. Therefore, this paper proposes to use localized surface plasmon resonance (LSPR) technology to develop a WaveFlex biosensor (plasma wave-based optical fiber sensor) to detect glyphosate concentration in pesticides. The evanescent field is improved by using the fusion of seven-core fiber and single-mode fiber and the tapering of the sensing area to improve the sensing performance. The gold nanoparticles (AuNPs) are used to excite the LSPR effect. Multi-walled carbon nanotubes (MWCNTs) and cerium oxide nanorods (CeO<sub>2</sub>-NRs) are used to increase the surface area and promote the adhesion of the enzyme. The sensitivity of the sensor is 137.7 pm/µM in the range of 0-60 µM glyphosate concentration, and the limit of detection (LoD) is 1.94 µM, which has good performance in compared to the existing biosensors. Subsequently, the sensor was tested for reusability, reproducibility, selectivity, stability, and excellent results were obtained. Finally, the sensor is tested on real samples, and the results show that it can be applied in practical applications. The test findings demonstrate that the sensor has a great deal of potential for use in glyphosate content detection in food samples.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"25789-25804"},"PeriodicalIF":3.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The diffractive deep neural network is a novel network model that applies the principles of diffraction to neural networks, enabling machine learning tasks to be performed through optical principles. In this paper, a fully optical authentication model is developed using the diffractive deep neural network. The model utilizes terahertz light for propagation and combines it with a self-calibration single-pixel imaging model to construct a comprehensive optical authentication system with faster authentication speed. The proposed system filters the authentication images, establishes an optical connection with the Fourier zero-frequency response of the illumination pattern, and introduces the signal-to-noise ratio as a criterion for batch image authentication. Computer simulations demonstrate the fast speed and strong automation performance of the proposed optical authentication system, suggesting broad prospects for the combined application of diffractive deep neural networks and optical systems.
{"title":"Image authentication method based on Fourier zero-frequency replacement and single-pixel self-calibration imaging by diffractive deep neural network.","authors":"Jianxuan Duan, Linfei Chen","doi":"10.1364/OE.525632","DOIUrl":"https://doi.org/10.1364/OE.525632","url":null,"abstract":"<p><p>The diffractive deep neural network is a novel network model that applies the principles of diffraction to neural networks, enabling machine learning tasks to be performed through optical principles. In this paper, a fully optical authentication model is developed using the diffractive deep neural network. The model utilizes terahertz light for propagation and combines it with a self-calibration single-pixel imaging model to construct a comprehensive optical authentication system with faster authentication speed. The proposed system filters the authentication images, establishes an optical connection with the Fourier zero-frequency response of the illumination pattern, and introduces the signal-to-noise ratio as a criterion for batch image authentication. Computer simulations demonstrate the fast speed and strong automation performance of the proposed optical authentication system, suggesting broad prospects for the combined application of diffractive deep neural networks and optical systems.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"25940-25952"},"PeriodicalIF":3.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Liu, Jingping Zhu, Chen Chen, Xun Hou, Yongtian Wang
In the realm of active polarization detection systems, the imperative for polarization illumination systems with high-uniformity and predefined-shape irradiance distribution is evident. This paper introduces a novel anamorphic aspheric (AAS) microlens array (MLA) integral polarization homogenizer, incorporating projection MLA (PMLA), condenser MLA (CMLA), polarization film (PF), and a sub-image array (SIA) mask based on Kohler illumination principles. Firstly, the optimal design of an AAS-based projection sub-lens is proposed to facilitate the creation of a short-working-distance, predefined-geometric and sharp polarization irradiance tailoring. The SIA mask is constituted by plenty of predistortion SIs, which are generated through a combination of chief ray tracing and the radial basis function (RBF) image warping method. In addition, accompanied with tolerance sensitivity analysis, detailed analysis of stray light generation factors and proposed elimination or suppression methods further ensure the engineering reliability and stability of the proposed system. A compact integral-illumination polarization homogenizer design example is realized with an overall irradiance uniformity exceeding 90% and a volume of 25 mm × 25 mm × 18.25 mm. Different predefined-geometrical-profile and high-uniformity polarization irradiance distribution can be achieved by substituting different SIA masks and PFs, without replacing MLA optical elements, which greatly saves cost. Substantial simulations and experiments corroborate the efficacy of our polarization homogenizer.
在主动偏振探测系统领域,具有高均匀性和预定形状辐照度分布的偏振照明系统的必要性显而易见。本文介绍了一种新型非球面(AAS)微透镜阵列(MLA)整体偏振均质器,它集成了投影 MLA(PMLA)、聚光 MLA(CMLA)、偏振膜(PF)和基于科勒照明原理的子图像阵列(SIA)掩膜。首先,提出了基于 AAS 的投影子透镜的优化设计方案,以促进创建短工作距离、预定几何形状和锐利偏振辐照度的裁剪。SIA 掩膜由大量预失真 SI 构成,这些 SI 是通过主光线跟踪和径向基函数 (RBF) 图像扭曲方法组合生成的。此外,伴随着容差灵敏度分析,对杂散光产生因素的详细分析以及提出的消除或抑制方法,进一步确保了所提系统的工程可靠性和稳定性。实现了一个紧凑的整体照明偏振匀化器设计实例,其整体辐照度均匀性超过 90%,体积为 25 mm × 25 mm × 18.25 mm。通过替换不同的 SIA 掩膜和 PF,可以实现不同的预定义几何轮廓和高均匀度偏振辐照度分布,而无需更换 MLA 光学元件,从而大大节约了成本。大量的模拟和实验证实了我们的偏振匀化器的功效。
{"title":"Irradiance-tailoring integral-illumination polarization homogenizer based on anamorphic aspheric microlens arrays.","authors":"Yue Liu, Jingping Zhu, Chen Chen, Xun Hou, Yongtian Wang","doi":"10.1364/OE.525845","DOIUrl":"https://doi.org/10.1364/OE.525845","url":null,"abstract":"<p><p>In the realm of active polarization detection systems, the imperative for polarization illumination systems with high-uniformity and predefined-shape irradiance distribution is evident. This paper introduces a novel anamorphic aspheric (AAS) microlens array (MLA) integral polarization homogenizer, incorporating projection MLA (PMLA), condenser MLA (CMLA), polarization film (PF), and a sub-image array (SIA) mask based on Kohler illumination principles. Firstly, the optimal design of an AAS-based projection sub-lens is proposed to facilitate the creation of a short-working-distance, predefined-geometric and sharp polarization irradiance tailoring. The SIA mask is constituted by plenty of predistortion SIs, which are generated through a combination of chief ray tracing and the radial basis function (RBF) image warping method. In addition, accompanied with tolerance sensitivity analysis, detailed analysis of stray light generation factors and proposed elimination or suppression methods further ensure the engineering reliability and stability of the proposed system. A compact integral-illumination polarization homogenizer design example is realized with an overall irradiance uniformity exceeding 90% and a volume of 25 mm × 25 mm × 18.25 mm. Different predefined-geometrical-profile and high-uniformity polarization irradiance distribution can be achieved by substituting different SIA masks and PFs, without replacing MLA optical elements, which greatly saves cost. Substantial simulations and experiments corroborate the efficacy of our polarization homogenizer.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26609-26631"},"PeriodicalIF":3.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Si Wu, Xiaohui Su, Yaqing Qiao, Le Liu, ZiJing Yang, Wei Xiong, Qiaodan Chen, Leimin Deng
Silicon carbide (SiC) ceramics have emerged as critical materials in the production of high-precision components. Ultrafast laser processing is deemed the optimal technique for micro-nano manufacturing of SiC. However, the permanent deposition layer induced by laser ablation can critically impact the precision of the component. In this work, a coating-assisted picosecond laser ablation (CAPLA) method was proposed, in which sacrificial photoresist coating was utilized to improve surface quality without efficiency loss. The coating serves to prevent the uncooled plasma from contacting with the substrate, thereby preventing the formation of a permanent deposition layer. By comparing the CAPLA method with laser direct ablation, the influence of laser parameters and photoresist coating characteristics on the deposition layer was investigated systematically. A processed surface devoid of deposition layers can be achieved by CAPLA with low pulse energy and a high number of scans. The uniformity is critical to ensure the transmission of the laser beam, and a larger thickness can improve the processing efficiency by increasing the limit of pulse energy capacity. Pin arrays and vacuum grooves for SiC ceramic vacuum chucks were fabricated to demonstrate the superiority of the CAPLA method. These results suggest that this method can be a novel and promising approach for high-precision component manufacturing.
碳化硅(SiC)陶瓷已成为生产高精度部件的关键材料。超快激光加工被认为是碳化硅微纳制造的最佳技术。然而,激光烧蚀引起的永久沉积层会严重影响部件的精度。在这项工作中,提出了一种涂层辅助皮秒激光烧蚀(CAPLA)方法,利用牺牲型光刻胶涂层在不损失效率的情况下提高表面质量。涂层的作用是防止未冷却的等离子体与基底接触,从而防止形成永久沉积层。通过比较 CAPLA 法和激光直接烧蚀法,系统地研究了激光参数和光刻胶涂层特性对沉积层的影响。通过低脉冲能量和高扫描次数的 CAPLA,可实现无沉积层的加工表面。均匀性对于确保激光束的传输至关重要,而较大的厚度可通过增加脉冲能量容量的限制来提高加工效率。为了证明 CAPLA 方法的优越性,我们制作了用于 SiC 陶瓷真空吸盘的针阵列和真空槽。这些结果表明,这种方法是制造高精度部件的一种新颖而有前途的方法。
{"title":"Coating-assisted picosecond laser ablation for microstructure fabrication of SiC ceramics.","authors":"Si Wu, Xiaohui Su, Yaqing Qiao, Le Liu, ZiJing Yang, Wei Xiong, Qiaodan Chen, Leimin Deng","doi":"10.1364/OE.521035","DOIUrl":"https://doi.org/10.1364/OE.521035","url":null,"abstract":"<p><p>Silicon carbide (SiC) ceramics have emerged as critical materials in the production of high-precision components. Ultrafast laser processing is deemed the optimal technique for micro-nano manufacturing of SiC. However, the permanent deposition layer induced by laser ablation can critically impact the precision of the component. In this work, a coating-assisted picosecond laser ablation (CAPLA) method was proposed, in which sacrificial photoresist coating was utilized to improve surface quality without efficiency loss. The coating serves to prevent the uncooled plasma from contacting with the substrate, thereby preventing the formation of a permanent deposition layer. By comparing the CAPLA method with laser direct ablation, the influence of laser parameters and photoresist coating characteristics on the deposition layer was investigated systematically. A processed surface devoid of deposition layers can be achieved by CAPLA with low pulse energy and a high number of scans. The uniformity is critical to ensure the transmission of the laser beam, and a larger thickness can improve the processing efficiency by increasing the limit of pulse energy capacity. Pin arrays and vacuum grooves for SiC ceramic vacuum chucks were fabricated to demonstrate the superiority of the CAPLA method. These results suggest that this method can be a novel and promising approach for high-precision component manufacturing.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26512-26524"},"PeriodicalIF":3.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric R Sung, Yun Kai, Thomas Pezeril, Keith A Nelson
The development of methods for the generation of strong ultrafast electromagnetic pulses in the terahertz (THz) spectral range has led to a surge of progress in nonlinear THz spectroscopy and THz control of molecular and collective responses. For spectroscopy in the 1-THz range, the submillimeter wavelengths and associated large spot sizes, large optical elements, and short distances between final focusing elements and samples can lead to cumbersome experimental setups that are incompatible with some sample environments. Here, we introduce a novel terahertz ring excitation (TREx) optical pumping geometry to generate superposing, focusing fields in planar THz waveguides made out of the electro-optic material lithium tantalate. High THz fields, >175 kV/cm, are generated and measured optically with no free-space THz propagation. The field level achieved by pumping with a sequence of concentric rings of excitation light exceeds by about 20× the result of a single cylindrically focused line of pump light that has been used routinely in previous work. The technique opens new prospects for compact waveguide-based linear and nonlinear THz spectroscopy and signal processing.
{"title":"Enhancement of terahertz fields in LiTaO<sub>3</sub> waveguides using a conical pulse front.","authors":"Eric R Sung, Yun Kai, Thomas Pezeril, Keith A Nelson","doi":"10.1364/OE.519603","DOIUrl":"https://doi.org/10.1364/OE.519603","url":null,"abstract":"<p><p>The development of methods for the generation of strong ultrafast electromagnetic pulses in the terahertz (THz) spectral range has led to a surge of progress in nonlinear THz spectroscopy and THz control of molecular and collective responses. For spectroscopy in the 1-THz range, the submillimeter wavelengths and associated large spot sizes, large optical elements, and short distances between final focusing elements and samples can lead to cumbersome experimental setups that are incompatible with some sample environments. Here, we introduce a novel terahertz ring excitation (TREx) optical pumping geometry to generate superposing, focusing fields in planar THz waveguides made out of the electro-optic material lithium tantalate. High THz fields, >175 kV/cm, are generated and measured optically with no free-space THz propagation. The field level achieved by pumping with a sequence of concentric rings of excitation light exceeds by about 20× the result of a single cylindrically focused line of pump light that has been used routinely in previous work. The technique opens new prospects for compact waveguide-based linear and nonlinear THz spectroscopy and signal processing.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26913-26924"},"PeriodicalIF":3.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-precision microwave spectroscopy has been used to measure the transition frequency of nS1/2 → nPJ (n is the principle quantum number) and further the quantum defect of nPJ states in a standard cesium magneto-optical trap. A microwave field with 30-μs duration coupling the nS1/2 → nP1/2,3/2 transition yields a narrow linewidth microwave spectroscopy with the linewidth approaching the Fourier limit. After carefully compensating the stray electric and magnetic field and using the diluted atomic gas, we extract improved quantum defects of nPJ state, δ0(nP1/2) = 3.59159091(19), δ2(nP1/2) = 0.36092(35) and δ0(nP3/2) = 3.55907153(25), δ2(nP3/2) = 0.37344(47).
{"title":"Measurements of cesium PJ-series quantum defect with the microwave spectroscopy.","authors":"Rong Song, Jingxu Bai, Zhenhua Li, Yuechun Jiao, Jianming Zhao, Suotang Jia","doi":"10.1364/OE.528290","DOIUrl":"https://doi.org/10.1364/OE.528290","url":null,"abstract":"<p><p>High-precision microwave spectroscopy has been used to measure the transition frequency of nS<sub>1/2</sub> → nP<sub>J</sub> (n is the principle quantum number) and further the quantum defect of nP<sub>J</sub> states in a standard cesium magneto-optical trap. A microwave field with 30-μs duration coupling the nS<sub>1/2</sub> → nP<sub>1/2,3/2</sub> transition yields a narrow linewidth microwave spectroscopy with the linewidth approaching the Fourier limit. After carefully compensating the stray electric and magnetic field and using the diluted atomic gas, we extract improved quantum defects of nP<sub>J</sub> state, δ<sub>0</sub>(nP<sub>1/2</sub>) = 3.59159091(19), δ<sub>2</sub>(nP<sub>1/2</sub>) = 0.36092(35) and δ<sub>0</sub>(nP<sub>3/2</sub>) = 3.55907153(25), δ<sub>2</sub>(nP<sub>3/2</sub>) = 0.37344(47).</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"25717-25725"},"PeriodicalIF":3.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present MetaHDR, which is a single-shot high-dynamic range (HDR) imaging and sensing system using a multifunctional metasurface. The metasurface is capable of splitting an incident beam into multiple focusing beams with different amounts of power, simultaneously forming multiple low dynamic range (LDR) images with distinct irradiance on a photosensor. Then, the LDR images are jointly processed using a gradient-based HDR fusion algorithm, which is shown to be effective in attenuating the residual light artifacts incurred by the metasurface and the lens flare. MetaHDR achieves single-shot HDR photography and videography that increases the dynamic range by at least 50 dB compared to the original dynamic range of the photosensor. It can also perform single-shot HDR sensing, including reflectance calibration and surface curvature estimation of reflective materials. MetaHDR's demonstrated functionalities could be broadly applied in surveillance and security, microscopic imaging, advanced manufacturing, etc.
{"title":"MetaHDR: single shot high-dynamic range imaging and sensing using a multifunctional metasurface.","authors":"Charles Brookshire, Yuxuan Liu, Yuanrui Chen, Wei Ting Chen, Qi Guo","doi":"10.1364/OE.528270","DOIUrl":"https://doi.org/10.1364/OE.528270","url":null,"abstract":"<p><p>We present MetaHDR, which is a single-shot high-dynamic range (HDR) imaging and sensing system using a multifunctional metasurface. The metasurface is capable of splitting an incident beam into multiple focusing beams with different amounts of power, simultaneously forming multiple low dynamic range (LDR) images with distinct irradiance on a photosensor. Then, the LDR images are jointly processed using a gradient-based HDR fusion algorithm, which is shown to be effective in attenuating the residual light artifacts incurred by the metasurface and the lens flare. MetaHDR achieves single-shot HDR photography and videography that increases the dynamic range by at least 50 dB compared to the original dynamic range of the photosensor. It can also perform single-shot HDR sensing, including reflectance calibration and surface curvature estimation of reflective materials. MetaHDR's demonstrated functionalities could be broadly applied in surveillance and security, microscopic imaging, advanced manufacturing, etc.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26690-26707"},"PeriodicalIF":3.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Zhang, Yan Yu, Yihao Zhang, Chao Wang, Ming Liu, Qing Wu, Congya You, Ruzhi Wang, Songlin Yu, Hongying Wei
Broadband photodetectors are of great significance in a wide variety of technologically important areas. Inspired by bionics, insect cornea-mimicking microstructures could reduce surface reflection, thus enabling broadband detection. Here, we fabricate a broadband large-area (1280 × 1024) HgCdTe focal plane array photodetector based on biomimetic ZnS microarrays, which achieves high external quantum efficiency (> 60%, averaging 79%) across the broad wavelength range of 400 nm - 5000 nm. These results demonstrate that implementing biomimetic ZnS microstructures has effectively broadened the operational wavelength range of conventional HgCdTe infrared photodetectors to encompass the visible light spectrum. Our work achieves continuous visible-to-infrared spectral imaging and provides a beneficial route to fabricate broadband, large-area, high-performance photodetectors.
{"title":"Fabrication of broadband HgCdTe photodetectors with biomimetic insect corneal arrays.","authors":"Yi Zhang, Yan Yu, Yihao Zhang, Chao Wang, Ming Liu, Qing Wu, Congya You, Ruzhi Wang, Songlin Yu, Hongying Wei","doi":"10.1364/OE.531103","DOIUrl":"https://doi.org/10.1364/OE.531103","url":null,"abstract":"<p><p>Broadband photodetectors are of great significance in a wide variety of technologically important areas. Inspired by bionics, insect cornea-mimicking microstructures could reduce surface reflection, thus enabling broadband detection. Here, we fabricate a broadband large-area (1280 × 1024) HgCdTe focal plane array photodetector based on biomimetic ZnS microarrays, which achieves high external quantum efficiency (> 60%, averaging 79%) across the broad wavelength range of 400 nm - 5000 nm. These results demonstrate that implementing biomimetic ZnS microstructures has effectively broadened the operational wavelength range of conventional HgCdTe infrared photodetectors to encompass the visible light spectrum. Our work achieves continuous visible-to-infrared spectral imaging and provides a beneficial route to fabricate broadband, large-area, high-performance photodetectors.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"25839-25848"},"PeriodicalIF":3.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}