Pub Date : 2024-07-02DOI: 10.1016/j.peptides.2024.171269
Mingkwan Greenwood, Benjamin T. Gillard, David Murphy, Michael P. Greenwood
bZIP transcription factors can function as homodimers or heterodimers through interactions with their disordered coiled-coil domain. Such dimer assemblies are known to influence DNA-binding specificity and/or the recruitment of binding partners, which can cause a functional switch of a transcription factor from being an activator to a repressor. We recently identified the genomic targets of a bZIP transcription factor called CREB3L1 in rat hypothalamic supraoptic nucleus by ChIP-seq. The objective of this study was to investigate the CREB3L1 protein-to-protein interactome of which little is known. For this approach, we created and screened a rat supraoptic nucleus yeast two-hybrid prey library with the bZIP region of rat CREB3L1 as the bait. Our yeast two-hybrid approach captured five putative CREB3L1 interacting prey proteins in the supraoptic nucleus. One interactor was selected by bioinformatic analyses for more detailed investigation by co-immunoprecipitation, immunofluorescent cellular localisation, and reporter assays in vitro. Here we identify dimerisation hub protein Dynein Light Chain LC8-Type 1 as a CREB3L1 interacting protein that in vitro enhances CREB3L1 activation of target genes.
{"title":"Dimerization of hub protein DYNLL1 and bZIP transcription factor CREB3L1 enhances transcriptional activation of CREB3L1 target genes like arginine vasopressin","authors":"Mingkwan Greenwood, Benjamin T. Gillard, David Murphy, Michael P. Greenwood","doi":"10.1016/j.peptides.2024.171269","DOIUrl":"10.1016/j.peptides.2024.171269","url":null,"abstract":"<div><p>bZIP transcription factors can function as homodimers or heterodimers through interactions with their disordered coiled-coil domain. Such dimer assemblies are known to influence DNA-binding specificity and/or the recruitment of binding partners, which can cause a functional switch of a transcription factor from being an activator to a repressor. We recently identified the genomic targets of a bZIP transcription factor called CREB3L1 in rat hypothalamic supraoptic nucleus by ChIP-seq. The objective of this study was to investigate the CREB3L1 protein-to-protein interactome of which little is known. For this approach, we created and screened a rat supraoptic nucleus yeast two-hybrid prey library with the bZIP region of rat CREB3L1 as the bait. Our yeast two-hybrid approach captured five putative CREB3L1 interacting prey proteins in the supraoptic nucleus. One interactor was selected by bioinformatic analyses for more detailed investigation by co-immunoprecipitation, immunofluorescent cellular localisation, and reporter assays <em>in vitro</em>. Here we identify dimerisation hub protein Dynein Light Chain LC8-Type 1 as a CREB3L1 interacting protein that <em>in vitro</em> enhances CREB3L1 activation of target genes.</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"179 ","pages":"Article 171269"},"PeriodicalIF":2.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1016/j.peptides.2024.171268
Richard J. Bodnar
This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
{"title":"Endogenous opiates and behavior: 2023","authors":"Richard J. Bodnar","doi":"10.1016/j.peptides.2024.171268","DOIUrl":"10.1016/j.peptides.2024.171268","url":null,"abstract":"<div><p>This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"179 ","pages":"Article 171268"},"PeriodicalIF":2.8,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Signs and symptoms of hypernatremia largely indicate central nervous system dysfunction. Acute hypernatremia can cause demyelinating lesions similar to that observed in osmotic demyelination syndrome (ODS). We have previously demonstrated that microglia accumulate in ODS lesions and minocycline protects against ODS by inhibiting microglial activation. However, the direct effect of rapid rise in the sodium concentrations on microglia is largely unknown. In addition, the effect of chronic hypernatremia on microglia also remains elusive. Here, we investigated the effects of acute (6 or 24 h) and chronic (the extracellular sodium concentration was increased gradually for at least 7 days) high sodium concentrations on microglia using the microglial cell line, BV-2. We found that both acute and chronic high sodium concentrations increase NOS2 expression and nitric oxide (NO) production. We also demonstrated that the expression of nuclear factor of activated T-cells-5 (NFAT5) is increased by high sodium concentrations. Furthermore, NFAT5 knockdown suppressed NOS2 expression and NO production. We also demonstrated that high sodium concentrations decreased intracellular Ca2+ concentration and an inhibitor of Na+/Ca2+ exchanger, NCX, suppressed a decrease in intracellular Ca2+ concentrations and NOS2 expression and NO production induced by high sodium concentrations. Furthermore, minocycline inhibited NOS2 expression and NO production induced by high sodium concentrations. These in vitro data suggest that microglial activity in response to high sodium concentrations is regulated by NFAT5 and Ca2+ efflux through NCX and is suppressed by minocycline.
{"title":"Effects of hypernatremia on the microglia","authors":"Sachiho Fuse , Haruki Fujisawa , Naoya Murao , Naoko Iwata , Takashi Watanabe , Yusuke Seino , Hideyuki Takeuchi , Atsushi Suzuki , Yoshihisa Sugimura","doi":"10.1016/j.peptides.2024.171267","DOIUrl":"10.1016/j.peptides.2024.171267","url":null,"abstract":"<div><p>Signs and symptoms of hypernatremia largely indicate central nervous system dysfunction. Acute hypernatremia can cause demyelinating lesions similar to that observed in osmotic demyelination syndrome (ODS). We have previously demonstrated that microglia accumulate in ODS lesions and minocycline protects against ODS by inhibiting microglial activation. However, the direct effect of rapid rise in the sodium concentrations on microglia is largely unknown. In addition, the effect of chronic hypernatremia on microglia also remains elusive. Here, we investigated the effects of acute (6 or 24 h) and chronic (the extracellular sodium concentration was increased gradually for at least 7 days) high sodium concentrations on microglia using the microglial cell line, BV-2. We found that both acute and chronic high sodium concentrations increase NOS2 expression and nitric oxide (NO) production. We also demonstrated that the expression of nuclear factor of activated T-cells-5 (NFAT5) is increased by high sodium concentrations. Furthermore, NFAT5 knockdown suppressed NOS2 expression and NO production. We also demonstrated that high sodium concentrations decreased intracellular Ca<sup>2+</sup> concentration and an inhibitor of Na<sup>+</sup>/Ca<sup>2+</sup> exchanger, NCX, suppressed a decrease in intracellular Ca<sup>2+</sup> concentrations and NOS2 expression and NO production induced by high sodium concentrations. Furthermore, minocycline inhibited NOS2 expression and NO production induced by high sodium concentrations. These in vitro data suggest that microglial activity in response to high sodium concentrations is regulated by NFAT5 and Ca<sup>2+</sup> efflux through NCX and is suppressed by minocycline.</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"179 ","pages":"Article 171267"},"PeriodicalIF":2.8,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196978124001207/pdfft?md5=44e37b90ad13a17446bd7f206369f756&pid=1-s2.0-S0196978124001207-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1016/j.peptides.2024.171263
Makoto Kawasaki , Akinori Sakai , Yoichi Ueta
Oxytocin (OXT) was discovered in 1906 as a substance that promotes the pregnancy and childbirth. It affects uterine contraction and lactation. Furthermore, as one of its physiological properties, it exerts analgesic effects. The living body has an ascending pathway that transmits pain stimuli from the periphery to the center and a descending pathway that regulates the dorsal horn neurons from the upper center downward. OXT is involved in the pain-inhibitory descending pathway and generally assumed to exert analgesic effects. In this article, we describe the pain-suppressive effects of OXT, among its many physiological effects.
{"title":"Pain modulation by oxytocin","authors":"Makoto Kawasaki , Akinori Sakai , Yoichi Ueta","doi":"10.1016/j.peptides.2024.171263","DOIUrl":"10.1016/j.peptides.2024.171263","url":null,"abstract":"<div><p>Oxytocin (OXT) was discovered in 1906 as a substance that promotes the pregnancy and childbirth. It affects uterine contraction and lactation. Furthermore, as one of its physiological properties, it exerts analgesic effects. The living body has an ascending pathway that transmits pain stimuli from the periphery to the center and a descending pathway that regulates the dorsal horn neurons from the upper center downward. OXT is involved in the pain-inhibitory descending pathway and generally assumed to exert analgesic effects. In this article, we describe the pain-suppressive effects of OXT, among its many physiological effects.</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"179 ","pages":"Article 171263"},"PeriodicalIF":2.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1016/j.peptides.2024.171264
Peter R. Flatt, J. Michael Conlon
{"title":"Editorial: The rise and rise of peptide therapeutics for obesity-diabetes","authors":"Peter R. Flatt, J. Michael Conlon","doi":"10.1016/j.peptides.2024.171264","DOIUrl":"10.1016/j.peptides.2024.171264","url":null,"abstract":"","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"179 ","pages":"Article 171264"},"PeriodicalIF":3.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-02DOI: 10.1016/j.peptides.2024.171255
Patrick Swan , Brett Johnson , Carel W. le Roux , Alexander D. Miras
The central and peripheral melanocortin system, comprising of five receptors and their endogenous ligands, is responsible for a wide array of physiological functions such as skin pigmentation, sexual function and development, and inflammation. A growing body of both clinical and pre-clinical research is demonstrating the relevance of this system in metabolic health. Disruption of hypothalamic melanocortin signalling is the most common cause of monogenic obesity in humans. Setmelanotide, an FDA-approved analogue of alpha-melanocyte stimulating hormone (α-MSH) that functions by restoring central melanocortin signalling, has proven to be a potent pharmacological tool in the treatment of syndromic obesity. As the first effective therapy targeting the melanocortin system to treat metabolic disorders, its approval has sparked research to further harness the links between these melanocortin receptors and metabolic processes. Here, we outline the structure of the central and peripheral melanocortin system, discuss its critical role in the regulation of food intake, and review promising targets that may hold potential to treat metabolic disorders in humans.
{"title":"Harnessing the melanocortin system in the control of food intake and glucose homeostasis","authors":"Patrick Swan , Brett Johnson , Carel W. le Roux , Alexander D. Miras","doi":"10.1016/j.peptides.2024.171255","DOIUrl":"10.1016/j.peptides.2024.171255","url":null,"abstract":"<div><p>The central and peripheral melanocortin system, comprising of five receptors and their endogenous ligands, is responsible for a wide array of physiological functions such as skin pigmentation, sexual function and development, and inflammation. A growing body of both clinical and pre-clinical research is demonstrating the relevance of this system in metabolic health. Disruption of hypothalamic melanocortin signalling is the most common cause of monogenic obesity in humans. Setmelanotide, an FDA-approved analogue of alpha-melanocyte stimulating hormone (α-MSH) that functions by restoring central melanocortin signalling, has proven to be a potent pharmacological tool in the treatment of syndromic obesity. As the first effective therapy targeting the melanocortin system to treat metabolic disorders, its approval has sparked research to further harness the links between these melanocortin receptors and metabolic processes. Here, we outline the structure of the central and peripheral melanocortin system, discuss its critical role in the regulation of food intake, and review promising targets that may hold potential to treat metabolic disorders in humans.</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"179 ","pages":"Article 171255"},"PeriodicalIF":2.8,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196978124001086/pdfft?md5=eba2fa918e9b20f3d18f7dbd31bd875d&pid=1-s2.0-S0196978124001086-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141228841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1016/j.peptides.2024.171256
Ryan A. Lafferty, Peter R. Flatt, Nigel Irwin
The approval of the glucagon-like peptide 1 (GLP-1) mimetics semaglutide and liraglutide for management of obesity, independent of type 2 diabetes (T2DM), has initiated a resurgence of interest in gut-hormone derived peptide therapies for the management of metabolic diseases, but side-effect profile is a concern for these medicines. However, the recent approval of tirzepatide for obesity and T2DM, a glucose-dependent insulinotropic polypeptide (GIP), GLP-1 receptor co-agonist peptide therapy, may provide a somewhat more tolerable option. Despite this, an increasing number of non-incretin alternative peptides are in development for obesity, and it stands to reason that other hormones will take to the limelight in the coming years, such as peptides from the neuropeptide Y family. This narrative review outlines the therapeutic promise of the neuropeptide Y family of peptides, comprising of the 36 amino acid polypeptides neuropeptide Y (NPY), peptide tyrosine-tyrosine (PYY) and pancreatic polypeptide (PP), as well as their derivatives. This family of peptides exerts a number of metabolically relevant effects such as appetite regulation and can influence pancreatic beta-cell survival. Although some of these actions still require full translation to the human setting, potential therapeutic application in obesity and type 2 diabetes is conceivable. However, like GLP-1 and GIP, the endogenous NPY, PYY and PP peptide forms are subject to rapid in vivo degradation and inactivation by the serine peptidase, dipeptidyl-peptidase 4 (DPP-4), and hence require structural modification to prolong circulating half-life. Numerous protective modification strategies are discussed in this regard herein, alongside related impact on biological activity profile and therapeutic promise.
{"title":"NPYR modulation: Potential for the next major advance in obesity and type 2 diabetes management?","authors":"Ryan A. Lafferty, Peter R. Flatt, Nigel Irwin","doi":"10.1016/j.peptides.2024.171256","DOIUrl":"10.1016/j.peptides.2024.171256","url":null,"abstract":"<div><p>The approval of the glucagon-like peptide 1 (GLP-1) mimetics semaglutide and liraglutide for management of obesity, independent of type 2 diabetes (T2DM), has initiated a resurgence of interest in gut-hormone derived peptide therapies for the management of metabolic diseases, but side-effect profile is a concern for these medicines. However, the recent approval of tirzepatide for obesity and T2DM, a glucose-dependent insulinotropic polypeptide (GIP), GLP-1 receptor co-agonist peptide therapy, may provide a somewhat more tolerable option. Despite this, an increasing number of non-incretin alternative peptides are in development for obesity, and it stands to reason that other hormones will take to the limelight in the coming years, such as peptides from the neuropeptide Y family. This narrative review outlines the therapeutic promise of the neuropeptide Y family of peptides, comprising of the 36 amino acid polypeptides neuropeptide Y (NPY), peptide tyrosine-tyrosine (PYY) and pancreatic polypeptide (PP), as well as their derivatives. This family of peptides exerts a number of metabolically relevant effects such as appetite regulation and can influence pancreatic beta-cell survival. Although some of these actions still require full translation to the human setting, potential therapeutic application in obesity and type 2 diabetes is conceivable. However, like GLP-1 and GIP, the endogenous NPY, PYY and PP peptide forms are subject to rapid <em>in vivo</em> degradation and inactivation by the serine peptidase, dipeptidyl-peptidase 4 (DPP-4), and hence require structural modification to prolong circulating half-life. Numerous protective modification strategies are discussed in this regard herein, alongside related impact on biological activity profile and therapeutic promise.</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"179 ","pages":"Article 171256"},"PeriodicalIF":3.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196978124001098/pdfft?md5=0bd20b581df451588748e616fdf49d5e&pid=1-s2.0-S0196978124001098-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1016/j.peptides.2024.171253
Cheyenne C. Tait , Meagan N. Olson , Kristina Nedeljkovic , Emily Kirchner , Paul S. Katz
The highly conserved oxytocin/vasopressin family of nonapeptides plays many roles across the animal kingdom, from osmoregulation to reproductive physiology. We investigated the expression patterns and pharmacological effects of the gastropod ortholog of this peptide, conopressin, along with another peptide involved in gastropod reproduction, APGWamide, in the nudibranch Berghia stephanieae. A brain transcriptome was used to identify and annotate the gene sequences for the peptides and one conopressin receptor. In-situ hybridization chain reaction showed that many neurons in the brain expressed these peptides. However, the peptide genes were co-expressed by only three neurons, which were in the right cerebral ganglion, the same side on which the reproductive organs are located. A conopressin receptor (BSCPR1) was expressed in a prominent population of APGWamide expressing neurons. Placing animals in a solution containing the APGWamide peptide caused minimal behavioral changes. However, exposure to conopressin reduced locomotion, increased gut contractions, and caused voiding at high concentration. The genes for these peptides and BSCPR1 were expressed in cells in the digestive system. BSCPR1 was also expressed by a line of neurons on the anterior portion of the radula and would be contacted during feeding. APGWamide-expressing neurons were found in the genital ganglion. All three genes expressed in cells on sensory appendages. These results are consistent with the conopressin playing a variety of roles in the brain and the body and being involved in both reproduction and digestion. This study sheds light on the function of this ancient nonapeptide in a new-to-neuroscience invertebrate species.
{"title":"Expression patterns and behavioral effects of conopressin and APGWamide in the nudibranch Berghia stephanieae","authors":"Cheyenne C. Tait , Meagan N. Olson , Kristina Nedeljkovic , Emily Kirchner , Paul S. Katz","doi":"10.1016/j.peptides.2024.171253","DOIUrl":"10.1016/j.peptides.2024.171253","url":null,"abstract":"<div><p>The highly conserved oxytocin/vasopressin family of nonapeptides plays many roles across the animal kingdom, from osmoregulation to reproductive physiology. We investigated the expression patterns and pharmacological effects of the gastropod ortholog of this peptide, conopressin, along with another peptide involved in gastropod reproduction, APGWamide, in the nudibranch <em>Berghia stephanieae</em>. A brain transcriptome was used to identify and annotate the gene sequences for the peptides and one conopressin receptor. <em>In-situ</em> hybridization chain reaction showed that many neurons in the brain expressed these peptides. However, the peptide genes were co-expressed by only three neurons, which were in the right cerebral ganglion, the same side on which the reproductive organs are located. A conopressin receptor (BSCPR1) was expressed in a prominent population of APGWamide expressing neurons. Placing animals in a solution containing the APGWamide peptide caused minimal behavioral changes. However, exposure to conopressin reduced locomotion, increased gut contractions, and caused voiding at high concentration. The genes for these peptides and BSCPR1 were expressed in cells in the digestive system. BSCPR1 was also expressed by a line of neurons on the anterior portion of the radula and would be contacted during feeding. APGWamide-expressing neurons were found in the genital ganglion. All three genes expressed in cells on sensory appendages. These results are consistent with the conopressin playing a variety of roles in the brain and the body and being involved in both reproduction and digestion. This study sheds light on the function of this ancient nonapeptide in a new-to-neuroscience invertebrate species.</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"179 ","pages":"Article 171253"},"PeriodicalIF":3.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1016/j.peptides.2024.171246
Elizabeth Pereira Mendes , Danielle Ianzer , Diogo Barros Peruchetti , Robson Augusto Souza Santos , Maria Aparecida Ribeiro Vieira
Changes in renal hemodynamics impact renal function during physiological and pathological conditions. In this context, renal vascular resistance (RVR) is regulated by components of the Renin-Angiotensin System (RAS) and the Kallikrein-Kinin System (KKS). However, the interaction between these vasoactive peptides on RVR is still poorly understood. Here, we studied the crosstalk between angiotensin-(1−7) and kinins on RVR. The right kidneys of Wistar rats were isolated and perfused in a closed-circuit system. The perfusion pressure and renal perfusate flow were continuously monitored. Ang-(1−7) (1.0–25.0 nM) caused a sustained, dose-dependent reduction of relative RVR (rRVR). This phenomenon was sensitive to 10 nM A-779, a specific Mas receptor (MasR) antagonist. Bradykinin (BK) promoted a sustained and transient reduction in rRVR at 1.25 nM and 125 nM, respectively. The transient effect was abolished by 4 μM des-Arg9-Leu8-bradykinin (DALBK), a specific kinin B1 receptor (B1R) antagonist. Accordingly, des-Arg9-bradykinin (DABK) 1 μM (a B1R agonist) increased rRVR. Interestingly, pre-perfusion of Ang-(1−7) changed the sustained reduction of rRVR triggered by 1.25 nM BK into a transient effect. On the other hand, pre-perfusion of Ang-(1−7) primed and potentiated the DABK response, this mechanism being sensitive to A-779 and DALBK. Binding studies performed with CHO cells stably transfected with MasR, B1R, and kinin B2 receptor (B2R) showed no direct interaction between Ang-(1−7) with B1R or B2R. In conclusion, our findings suggest that Ang-(1−7) differentially modulates kinin's effect on RVR in isolated rat kidneys. These results help to expand the current knowledge regarding the crosstalk between the RAS and KKS complex network in RVR.
{"title":"Interaction of Angiotensin-(1−7) with kinins in the kidney circulation: Role of B1 receptors","authors":"Elizabeth Pereira Mendes , Danielle Ianzer , Diogo Barros Peruchetti , Robson Augusto Souza Santos , Maria Aparecida Ribeiro Vieira","doi":"10.1016/j.peptides.2024.171246","DOIUrl":"10.1016/j.peptides.2024.171246","url":null,"abstract":"<div><p>Changes in renal hemodynamics impact renal function during physiological and pathological conditions. In this context, renal vascular resistance (RVR) is regulated by components of the Renin-Angiotensin System (RAS) and the Kallikrein-Kinin System (KKS). However, the interaction between these vasoactive peptides on RVR is still poorly understood. Here, we studied the crosstalk between angiotensin-(1−7) and kinins on RVR. The right kidneys of Wistar rats were isolated and perfused in a closed-circuit system. The perfusion pressure and renal perfusate flow were continuously monitored. Ang-(1−7) (1.0–25.0 nM) caused a sustained, dose-dependent reduction of relative RVR (rRVR). This phenomenon was sensitive to 10 nM A-779, a specific Mas receptor (MasR) antagonist. Bradykinin (BK) promoted a sustained and transient reduction in rRVR at 1.25 nM and 125 nM, respectively. The transient effect was abolished by 4 μM des-Arg9-Leu8-bradykinin (DALBK), a specific kinin B<sub>1</sub> receptor (B<sub>1</sub>R) antagonist. Accordingly, des-Arg9-bradykinin (DABK) 1 μM (a B<sub>1</sub>R agonist) increased rRVR. Interestingly, pre-perfusion of Ang-(1−7) changed the sustained reduction of rRVR triggered by 1.25 nM BK into a transient effect. On the other hand, pre-perfusion of Ang-(1−7) primed and potentiated the DABK response, this mechanism being sensitive to A-779 and DALBK. Binding studies performed with CHO cells stably transfected with MasR, B<sub>1</sub>R, and kinin B2 receptor (B<sub>2</sub>R) showed no direct interaction between Ang-(1−7) with B<sub>1</sub>R or B<sub>2</sub>R. In conclusion, our findings suggest that Ang-(1−7) differentially modulates kinin's effect on RVR in isolated rat kidneys. These results help to expand the current knowledge regarding the crosstalk between the RAS and KKS complex network in RVR.</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"179 ","pages":"Article 171246"},"PeriodicalIF":3.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1016/j.peptides.2024.171254
Ananyaa Sridhar, Dawood Khan, Gayathri Babu, Nigel Irwin, Victor A. Gault, Peter R. Flatt, Charlotte R. Moffett
The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to their major circulating metabolites GLP-1(9−36) and GIP(3−42). This study investigates the possible effects of these metabolites, and the equivalent exendin molecule Ex(9−39), on pancreatic islet morphology and constituent alpha and beta cells in high-fat diet (HFD) fed mice. Male Swiss TO-mice (6–8 weeks-old) were maintained on a HFD or normal diet (ND) for 4 months and then received twice-daily subcutaneous injections of GLP-1(9−36), GIP(3−42), Ex(9−39) (25 nmol/kg bw) or saline vehicle (0.9% (w/v) NaCl) over a 60-day period. Metabolic parameters were monitored and excised pancreatic tissues were used for immunohistochemical analysis. Body weight and assessed metabolic indices were not changed by peptide administration. GLP-1(9−36) significantly (p<0.001) increased islet density per mm2 tissue, that was decreased (p<0.05) by HFD. Islet, beta and alpha cell areas were increased (p<0.01) following HFD and subsequently reduced (p<0.01-p<0.001) by GIP(3−42) and Ex(9−39) treatment. While GLP-1(9−36) did not affect islet and beta cell areas in HFD mice, it significantly (p<0.01) decreased alpha cell area. Compared to ND and HFD mice, GIP(3−42) treatment significantly (p<0.05) increased beta cell proliferation. Whilst HFD increased (p<0.001) beta cell apoptosis, this was reduced (p<0.01-p<0.001) by both GLP-1(9−36) and GIP(3−42). These data indicate that the major circulating forms of GLP-1 and GIP, namely GLP-1(9−36) and GIP(3−42) previously considered largely inactive, may directly impact pancreatic morphology, with an important protective effect on beta cell health under conditions of beta cell stress.
{"title":"Chronic exposure to incretin metabolites GLP-1(9−36) and GIP(3−42) affect islet morphology and beta cell health in high fat fed mice","authors":"Ananyaa Sridhar, Dawood Khan, Gayathri Babu, Nigel Irwin, Victor A. Gault, Peter R. Flatt, Charlotte R. Moffett","doi":"10.1016/j.peptides.2024.171254","DOIUrl":"10.1016/j.peptides.2024.171254","url":null,"abstract":"<div><p>The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to their major circulating metabolites GLP-1(9−36) and GIP(3−42). This study investigates the possible effects of these metabolites, and the equivalent exendin molecule Ex(9−39), on pancreatic islet morphology and constituent alpha and beta cells in high-fat diet (HFD) fed mice. Male Swiss TO-mice (6–8 weeks-old) were maintained on a HFD or normal diet (ND) for 4 months and then received twice-daily subcutaneous injections of GLP-1(9−36), GIP(3−42), Ex(9−39) (25 nmol/kg bw) or saline vehicle (0.9% (w/v) NaCl) over a 60-day period. Metabolic parameters were monitored and excised pancreatic tissues were used for immunohistochemical analysis. Body weight and assessed metabolic indices were not changed by peptide administration. GLP-1(9−36) significantly (p<0.001) increased islet density per mm<sup>2</sup> tissue, that was decreased (p<0.05) by HFD. Islet, beta and alpha cell areas were increased (p<0.01) following HFD and subsequently reduced (p<0.01-p<0.001) by GIP(3−42) and Ex(9−39) treatment. While GLP-1(9−36) did not affect islet and beta cell areas in HFD mice, it significantly (p<0.01) decreased alpha cell area. Compared to ND and HFD mice, GIP(3−42) treatment significantly (p<0.05) increased beta cell proliferation. Whilst HFD increased (p<0.001) beta cell apoptosis, this was reduced (p<0.01-p<0.001) by both GLP-1(9−36) and GIP(3−42). These data indicate that the major circulating forms of GLP-1 and GIP, namely GLP-1(9−36) and GIP(3−42) previously considered largely inactive, may directly impact pancreatic morphology, with an important protective effect on beta cell health under conditions of beta cell stress.</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"178 ","pages":"Article 171254"},"PeriodicalIF":3.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196978124001074/pdfft?md5=41a2f9cd81f9e54cf8646a0ad14d211d&pid=1-s2.0-S0196978124001074-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}