Pub Date : 2024-09-18DOI: 10.1186/s13071-024-06445-9
Lissa Cruz-Saavedra, Carlos Ospina, Stivenn A. Gutiérrez, Jeiczon Jaimes-Dueñez, Omar Cantillo-Barraza, Carolina Hernández, Francisco Álvarez, María Blanco, Bernardo Leal, Lida Martínez, Manuel Medina, Mabel Medina, Silvia Valdivieso, Lauren Natalia Ramirez Celis, Luz H. Patiño, Juan David Ramírez
Chagas disease (CD), caused by Trypanosoma cruzi, poses a major global public health challenge. Although vector-borne transmission is the primary mode of infection, oral transmission is increasingly concerning. This study utilized long-amplicon-based sequencing (long-ABS), focusing on the 18S rRNA gene, to explore T. cruzi’s genetic diversity and transmission dynamics during an acute CD outbreak in Colombia, an area without domestic infestation. Analyzing samples from five patients and five T. cruzi-positive marsupial samples, we identified coinfections between T. cruzi and Trypanosoma rangeli, mixed T. cruzi DTUs, suggesting possible links between human and marsupial T. cruzi infections. Coexistence of TcI, TcIV and T. rangeli suggests marsupial secretions as the possible source of T. cruzi transmission. Our investigation revealed diversity loss in DTUs TcIV and T. rangeli in humans after infection and in marsupial samples after culture. These findings provide significant insights into T. cruzi dynamics, crucial for implementing control and prevention strategies.
由克鲁兹锥虫引起的恰加斯病(CD)是全球公共卫生面临的一大挑战。虽然病媒传播是主要的感染模式,但口腔传播也越来越令人担忧。这项研究利用基于长扩增子的测序(long-ABS)技术,以18S rRNA基因为重点,探讨了在哥伦比亚(一个没有国内侵扰的地区)爆发急性CD疫情期间,克鲁兹锥虫的遗传多样性和传播动态。通过分析五例患者样本和五例T. cruzi阳性有袋动物样本,我们发现了T. cruzi和Trypanosoma rangeli、混合T. cruzi DTUs之间的共感染,这表明人类和有袋动物T. cruzi感染之间可能存在联系。TcI、TcIV和T. rangeli的共存表明有袋类动物的分泌物可能是T. cruzi的传播源。我们的调查发现,在人类感染后和有袋动物样本培养后,DTUs TcIV 和 T. rangeli 的多样性丧失。这些发现为我们提供了有关 T. cruzi 动态的重要信息,对于实施控制和预防策略至关重要。
{"title":"Exploring Trypanosoma cruzi transmission dynamics in an acute Chagas disease outbreak using next-generation sequencing","authors":"Lissa Cruz-Saavedra, Carlos Ospina, Stivenn A. Gutiérrez, Jeiczon Jaimes-Dueñez, Omar Cantillo-Barraza, Carolina Hernández, Francisco Álvarez, María Blanco, Bernardo Leal, Lida Martínez, Manuel Medina, Mabel Medina, Silvia Valdivieso, Lauren Natalia Ramirez Celis, Luz H. Patiño, Juan David Ramírez","doi":"10.1186/s13071-024-06445-9","DOIUrl":"https://doi.org/10.1186/s13071-024-06445-9","url":null,"abstract":"Chagas disease (CD), caused by Trypanosoma cruzi, poses a major global public health challenge. Although vector-borne transmission is the primary mode of infection, oral transmission is increasingly concerning. This study utilized long-amplicon-based sequencing (long-ABS), focusing on the 18S rRNA gene, to explore T. cruzi’s genetic diversity and transmission dynamics during an acute CD outbreak in Colombia, an area without domestic infestation. Analyzing samples from five patients and five T. cruzi-positive marsupial samples, we identified coinfections between T. cruzi and Trypanosoma rangeli, mixed T. cruzi DTUs, suggesting possible links between human and marsupial T. cruzi infections. Coexistence of TcI, TcIV and T. rangeli suggests marsupial secretions as the possible source of T. cruzi transmission. Our investigation revealed diversity loss in DTUs TcIV and T. rangeli in humans after infection and in marsupial samples after culture. These findings provide significant insights into T. cruzi dynamics, crucial for implementing control and prevention strategies. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1186/s13071-024-06333-2
Friday Maduka Chikezie, Francis Balunnaa Dhari Veriegh, Samuel Armoo, Daniel Adjei Boakye, Mark Taylor, Mike Yaw Osei-Atweneboana
Human onchocerciasis remains a public health problem in Ghana. Mass drug administration (MDA) with ivermectin (IVM) has reduced disease morbidity and prevalence, but the transmission of onchocerciasis remains ongoing in several endemic foci. We investigated parasite transmission in some endemic communities in Ghana that had received > 18 rounds of annual MDA with IVM and determined the species composition of black fly (Simulium damnosum) vectors in these areas. Adult female black flies were collected using human landing catches and identified as either forest or savanna species using morpho-taxonomic keys. The adult flies underwent dissection to determine their parity and detect any O. volvulus larvae, followed by the calculation of entomological indices. Simulium damnosum s.l. larvae were collected and preserved in freshly prepared Carnoy’s fixative and were later used for cytotaxonomic studies. A total of 9,983 adult flies were caught: 6,569 and 3,414 in the rainy and dry seasons respectively. Black fly biting activities over the study period showed bimodal or trimodal patterns. The highest monthly biting rate (MBR) of 10,578.75 bites/person/month was recorded in July in Beposo, while the highest monthly transmission potential of 100.69 infective bites/person/month was recorded in Asubende in August. Morphological analysis of 2,032 flies showed that 99.8% (2,028) of the flies were savanna species, with only 4 (0.2%) adult flies being of the forest species. Cytogenetic studies on 114 black fly larvae revealed three cytospecies (Simulium damnosum s.s., S. sirbanum and S. sanctipauli) in the study area. The present studies confirmed an ongoing transmission of onchocerciasis in the study communities except Abua-1. It also provides further information on biting behaviors and onchocerciasis transmission indices in the study communities. Further, our data confirmed the savanna species (S. damnosum s.s. and S. sirbanum) of the S. damnosum s.l. to be the major vectors of onchocerciasis in the study areas, with only an occasional influx of forest cytotypes.
{"title":"Ongoing transmission of onchocerciasis in the Pru District of Ghana after two decades of mass drug administration with ivermectin and comparative identification of members of the Simulium damnosum complex using cytological and morphological techniques","authors":"Friday Maduka Chikezie, Francis Balunnaa Dhari Veriegh, Samuel Armoo, Daniel Adjei Boakye, Mark Taylor, Mike Yaw Osei-Atweneboana","doi":"10.1186/s13071-024-06333-2","DOIUrl":"https://doi.org/10.1186/s13071-024-06333-2","url":null,"abstract":" Human onchocerciasis remains a public health problem in Ghana. Mass drug administration (MDA) with ivermectin (IVM) has reduced disease morbidity and prevalence, but the transmission of onchocerciasis remains ongoing in several endemic foci. We investigated parasite transmission in some endemic communities in Ghana that had received > 18 rounds of annual MDA with IVM and determined the species composition of black fly (Simulium damnosum) vectors in these areas. Adult female black flies were collected using human landing catches and identified as either forest or savanna species using morpho-taxonomic keys. The adult flies underwent dissection to determine their parity and detect any O. volvulus larvae, followed by the calculation of entomological indices. Simulium damnosum s.l. larvae were collected and preserved in freshly prepared Carnoy’s fixative and were later used for cytotaxonomic studies. A total of 9,983 adult flies were caught: 6,569 and 3,414 in the rainy and dry seasons respectively. Black fly biting activities over the study period showed bimodal or trimodal patterns. The highest monthly biting rate (MBR) of 10,578.75 bites/person/month was recorded in July in Beposo, while the highest monthly transmission potential of 100.69 infective bites/person/month was recorded in Asubende in August. Morphological analysis of 2,032 flies showed that 99.8% (2,028) of the flies were savanna species, with only 4 (0.2%) adult flies being of the forest species. Cytogenetic studies on 114 black fly larvae revealed three cytospecies (Simulium damnosum s.s., S. sirbanum and S. sanctipauli) in the study area. The present studies confirmed an ongoing transmission of onchocerciasis in the study communities except Abua-1. It also provides further information on biting behaviors and onchocerciasis transmission indices in the study communities. Further, our data confirmed the savanna species (S. damnosum s.s. and S. sirbanum) of the S. damnosum s.l. to be the major vectors of onchocerciasis in the study areas, with only an occasional influx of forest cytotypes. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1186/s13071-024-06471-7
Ilaria Bellini, Daniela Scribano, Cecilia Ambrosi, Claudia Chiovoloni, Silvia Rondón, Annamaria Pronio, Anna Teresa Palamara, Agostina Pietrantoni, Anna Kashkanova, Vahid Sandoghdar, Stefano D’Amelio, Serena Cavallero
Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers. How Anisakis exerts its pathogenic potential through extracellular vesicles (EVs) and whether third-stage infective larvae may favor a tumorigenic microenvironment remain unclear. Here, we investigated the parasite's tumorigenic and immunomodulatory capabilities using comparative transcriptomics, qRT-PCR and protein analysis with multiplex ELISA on human intestinal organoids exposed to Anisakis EVs. Moreover, EVs were characterized in terms of shape, size and concentration using classic TEM, SEM and NTA analyses and advanced interferometric NTA. Anisakis EVs showed classic shape features and a median average diameter of around 100 nm, according to NTA and iNTA. Moreover, a refractive index of 5–20% of non-water content suggested their effective biological cargo. After treatment of human intestinal organoids with Anisakis EVs, an overall parasitic strategy based on mitigation of the immune and inflammatory response was observed. Anisakis EVs impacted gene expression of main cytokines, cell cycle regulation and protein products. Seven key genes related to cell cycle regulation and apoptosis were differentially expressed in organoids exposed to EVs. In particular, the downregulation of EPHB2 and LEFTY1 and upregulation of NUPR1 genes known to be associated with colorectal cancer were observed, suggesting their involvement in tumorigenic microenvironment. A statistically significant reduction in specific mediators of inflammation and cell-cycle regulation from the polarized epithelium as IL-33R, CD40 and CEACAM1 from the apical chambers and IL-1B, GM-CSF, IL-15 and IL-23 from both chambers were observed. The results here obtained unravel intestinal epithelium response to Anisakis EVs, impacting host’s anthelminthic strategies and revealing for the first time to our knowledge the host-parasite interactions in the niche environment of an emerging accidental zoonosis. Use of an innovative EV characterization approach may also be useful for study of other helminth EVs, since the knowledge in this field is very limited.
{"title":"Anisakis extracellular vesicles elicit immunomodulatory and potentially tumorigenic outcomes on human intestinal organoids","authors":"Ilaria Bellini, Daniela Scribano, Cecilia Ambrosi, Claudia Chiovoloni, Silvia Rondón, Annamaria Pronio, Anna Teresa Palamara, Agostina Pietrantoni, Anna Kashkanova, Vahid Sandoghdar, Stefano D’Amelio, Serena Cavallero","doi":"10.1186/s13071-024-06471-7","DOIUrl":"https://doi.org/10.1186/s13071-024-06471-7","url":null,"abstract":"Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers. How Anisakis exerts its pathogenic potential through extracellular vesicles (EVs) and whether third-stage infective larvae may favor a tumorigenic microenvironment remain unclear. Here, we investigated the parasite's tumorigenic and immunomodulatory capabilities using comparative transcriptomics, qRT-PCR and protein analysis with multiplex ELISA on human intestinal organoids exposed to Anisakis EVs. Moreover, EVs were characterized in terms of shape, size and concentration using classic TEM, SEM and NTA analyses and advanced interferometric NTA. Anisakis EVs showed classic shape features and a median average diameter of around 100 nm, according to NTA and iNTA. Moreover, a refractive index of 5–20% of non-water content suggested their effective biological cargo. After treatment of human intestinal organoids with Anisakis EVs, an overall parasitic strategy based on mitigation of the immune and inflammatory response was observed. Anisakis EVs impacted gene expression of main cytokines, cell cycle regulation and protein products. Seven key genes related to cell cycle regulation and apoptosis were differentially expressed in organoids exposed to EVs. In particular, the downregulation of EPHB2 and LEFTY1 and upregulation of NUPR1 genes known to be associated with colorectal cancer were observed, suggesting their involvement in tumorigenic microenvironment. A statistically significant reduction in specific mediators of inflammation and cell-cycle regulation from the polarized epithelium as IL-33R, CD40 and CEACAM1 from the apical chambers and IL-1B, GM-CSF, IL-15 and IL-23 from both chambers were observed. The results here obtained unravel intestinal epithelium response to Anisakis EVs, impacting host’s anthelminthic strategies and revealing for the first time to our knowledge the host-parasite interactions in the niche environment of an emerging accidental zoonosis. Use of an innovative EV characterization approach may also be useful for study of other helminth EVs, since the knowledge in this field is very limited. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1186/s13071-024-06465-5
Hyago Luiz Rique, Heverly Suzany Gouveia Menezes, Maria Alice Varjal Melo-Santos, Maria Helena Neves Lobo Silva-Filha
Microbial larvicides containing both LysiniBacillus sphaericus and Bacillus thuringiensis svar. israelensis (Bti) insecticidal crystals can display advantages for mosquito control. This includes a broader action against larvae that are refractory to the Binary (Bin) toxin from L. sphaericus, as Bin-resistant Culex quinquefasciatus and Aedes aegypti naturally refractory larvae, which often co-habit urban areas of endemic countries for arboviruses. Our principal goal was to assess the toxicity of a combined L. sphaericus/Bti larvicide (Vectomax FG™) to Cx. quinquefasciatus (susceptible CqS and Bin-resistant CqR) and Ae. aegypti (Rocke) and to determine its persistence in the breeding sites with those larvae. The toxicity of a combined L. sphaericus/Bti product (VectoMax FG™) to larvae was performed using bioassays, and persistence was evaluated in simulate field trials carried out under the shade, testing two label concentrations during 12 weeks. A laboratory strain SREC, established with CqS and CqR larvae, was kept during four generations to evaluate the ability of the L. sphaericus/Bti to eliminate resistant larvae. The L. sphaericus/Bti showed toxicity (mg/L) to larvae from all strains with a decreasing pattern for CqS (LC50 = 0.006, LC90 = 0.030), CqR (LC50 = 0.009, LC90 = 0.069), and Rocke (LC50 = 0.042, LC90 = 0.086). In a simulated field trial, the larvicide showed a persistence of 6 weeks and 8 weeks, controlling larvae from all strains in containers with 100 L of water, using 2 g or 4 g per container (100 L), respectively. The treatment of SREC larvae with L. sphaericus/Bti showed its capacity to eliminate the Bin-resistant individuals using suitable concentrations to target those larvae. Our results showed the high efficacy and persistence of the L. sphaericus/Bti larvicide to control Cx. quinquefasciatus and Ae. aegypti that might cohabit breeding sites. These findings demonstrated that such larvicides can be an effective tool for controlling those species in urban areas with a low potential for selecting resistance.
{"title":"Evaluation of a long-lasting microbial larvicide against Culex quinquefasciatus and Aedes aegypti under laboratory and a semi-field trial","authors":"Hyago Luiz Rique, Heverly Suzany Gouveia Menezes, Maria Alice Varjal Melo-Santos, Maria Helena Neves Lobo Silva-Filha","doi":"10.1186/s13071-024-06465-5","DOIUrl":"https://doi.org/10.1186/s13071-024-06465-5","url":null,"abstract":"Microbial larvicides containing both LysiniBacillus sphaericus and Bacillus thuringiensis svar. israelensis (Bti) insecticidal crystals can display advantages for mosquito control. This includes a broader action against larvae that are refractory to the Binary (Bin) toxin from L. sphaericus, as Bin-resistant Culex quinquefasciatus and Aedes aegypti naturally refractory larvae, which often co-habit urban areas of endemic countries for arboviruses. Our principal goal was to assess the toxicity of a combined L. sphaericus/Bti larvicide (Vectomax FG™) to Cx. quinquefasciatus (susceptible CqS and Bin-resistant CqR) and Ae. aegypti (Rocke) and to determine its persistence in the breeding sites with those larvae. The toxicity of a combined L. sphaericus/Bti product (VectoMax FG™) to larvae was performed using bioassays, and persistence was evaluated in simulate field trials carried out under the shade, testing two label concentrations during 12 weeks. A laboratory strain SREC, established with CqS and CqR larvae, was kept during four generations to evaluate the ability of the L. sphaericus/Bti to eliminate resistant larvae. The L. sphaericus/Bti showed toxicity (mg/L) to larvae from all strains with a decreasing pattern for CqS (LC50 = 0.006, LC90 = 0.030), CqR (LC50 = 0.009, LC90 = 0.069), and Rocke (LC50 = 0.042, LC90 = 0.086). In a simulated field trial, the larvicide showed a persistence of 6 weeks and 8 weeks, controlling larvae from all strains in containers with 100 L of water, using 2 g or 4 g per container (100 L), respectively. The treatment of SREC larvae with L. sphaericus/Bti showed its capacity to eliminate the Bin-resistant individuals using suitable concentrations to target those larvae. Our results showed the high efficacy and persistence of the L. sphaericus/Bti larvicide to control Cx. quinquefasciatus and Ae. aegypti that might cohabit breeding sites. These findings demonstrated that such larvicides can be an effective tool for controlling those species in urban areas with a low potential for selecting resistance. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1186/s13071-024-06477-1
Huizhu Nan, Xin Lu, Chao Zhang, Xin Yang, Zhu Ying, Lei Ma
Neospora caninum is a protozoan parasite in the Apicomplexa controlled by complex signaling pathways. Transcriptional control, an important way to regulate gene expression, has been almost absent in the N. caninum life process. However, to date, research on the transcriptional regulation of the AP2 family factors in N. caninum has been extremely limited. A prior study demonstrated that removing rhoptry protein 5 (ROP5), a significant virulence factor, resulted in abnormal expression levels of predicted NcAP2XII-4 in N. caninum, suggesting that the factor may regulate the function of ROP5. This study aimed to identify NcAP2XII-4 and its function in transcriptional regulation. The NcAP2XII-4 gene was identified by analyzing the N. caninum genome. A polyclonal antibody against the protein was prepared and purified, and its expression and localization in the parasite were detected using western blot (WB) and immunofluorescence assay (IFA). The ΔNcAP2XII-4 strain was constructed from the Nc1 strain using CRISPR/Cas9 to study its effect on the growth and development of N. caninum, and DAP-Seq and electrophoretic mobility shift assay (EMSA) were used to verify the transcriptional regulatory functions of the gene. Bioinformatic analysis showed that NcAP2XII-4 consists of 11,976 bp and encodes 3991 amino acids, with a predicted molecular mass of 410 kDa. The protein has two AP2 domains, 1207aa-1251aa and 3453aa-3500aa, and is predicted to be located in the nucleus. The results of PCR, WB, and IFA were in accordance with the bioinformatics analysis. ΔNcAP2XII-4 was successfully constructed, but the strain could not be released and ultimately succumbed within parasitophorous vacuoles (PVs). Plaque assays demonstrated that parasites lacking this gene could not form plaques. One motif was successfully identified using DAP-Seq technique. Two prokaryotic expression vectors containing the AP2 domain of NcAP2XII-4 were successfully constructed, and two prokaryotic expression proteins, AP2-D1 and AP2-D2, and ROP5 biotinylated probes were prepared. Using EMSA, NcAP2XII-4 was shown to regulate ROP5 transcription by binding to its promoter. NcAP2XII-4 is an essential gene in N. caninum. This study provides a foundation for further research on transcriptional regulation in N. caninum and identifies a new candidate factor for the development of vaccines against N. caninum.
{"title":"Identification and function characterization of NcAP2XII-4 in Neospora caninum","authors":"Huizhu Nan, Xin Lu, Chao Zhang, Xin Yang, Zhu Ying, Lei Ma","doi":"10.1186/s13071-024-06477-1","DOIUrl":"https://doi.org/10.1186/s13071-024-06477-1","url":null,"abstract":"Neospora caninum is a protozoan parasite in the Apicomplexa controlled by complex signaling pathways. Transcriptional control, an important way to regulate gene expression, has been almost absent in the N. caninum life process. However, to date, research on the transcriptional regulation of the AP2 family factors in N. caninum has been extremely limited. A prior study demonstrated that removing rhoptry protein 5 (ROP5), a significant virulence factor, resulted in abnormal expression levels of predicted NcAP2XII-4 in N. caninum, suggesting that the factor may regulate the function of ROP5. This study aimed to identify NcAP2XII-4 and its function in transcriptional regulation. The NcAP2XII-4 gene was identified by analyzing the N. caninum genome. A polyclonal antibody against the protein was prepared and purified, and its expression and localization in the parasite were detected using western blot (WB) and immunofluorescence assay (IFA). The ΔNcAP2XII-4 strain was constructed from the Nc1 strain using CRISPR/Cas9 to study its effect on the growth and development of N. caninum, and DAP-Seq and electrophoretic mobility shift assay (EMSA) were used to verify the transcriptional regulatory functions of the gene. Bioinformatic analysis showed that NcAP2XII-4 consists of 11,976 bp and encodes 3991 amino acids, with a predicted molecular mass of 410 kDa. The protein has two AP2 domains, 1207aa-1251aa and 3453aa-3500aa, and is predicted to be located in the nucleus. The results of PCR, WB, and IFA were in accordance with the bioinformatics analysis. ΔNcAP2XII-4 was successfully constructed, but the strain could not be released and ultimately succumbed within parasitophorous vacuoles (PVs). Plaque assays demonstrated that parasites lacking this gene could not form plaques. One motif was successfully identified using DAP-Seq technique. Two prokaryotic expression vectors containing the AP2 domain of NcAP2XII-4 were successfully constructed, and two prokaryotic expression proteins, AP2-D1 and AP2-D2, and ROP5 biotinylated probes were prepared. Using EMSA, NcAP2XII-4 was shown to regulate ROP5 transcription by binding to its promoter. NcAP2XII-4 is an essential gene in N. caninum. This study provides a foundation for further research on transcriptional regulation in N. caninum and identifies a new candidate factor for the development of vaccines against N. caninum. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1186/s13071-024-06460-w
Líbia Zé-Zé, Inês Campos Freitas, Manuel Silva, Patrícia Soares, Maria João Alves, Hugo Costa Osório
Aedes albopictus, commonly known as the Asian tiger mosquito, has become one of the most invasive mosquito species. Over the last 5 decades, it has been introduced and established in various tropical and temperate regions worldwide. First reported in Europe in 1979 in Albania and later in Italy in 1990, the species is now established in 13 European Union (EU)/European Economic Area (EEA) countries and 337 regions (2023). In Portugal, Ae. albopictus was first detected in the Algarve and Penafiel regions in 2017, followed by Alentejo in 2022 and Lisbon in 2023. This mosquito species poses a significant public health risk as a vector for numerous pathogenic viruses, including dengue, Zika, and chikungunya. Aedes albopictus collected in Lisbon in 2023 were analyzed using cytochrome c oxidase I (COX) gene sequencing to understand their genetic relationships. Our data indicate that the Ae. albopictus mosquito populations detected in three locations in Lisbon in 2023 correspond to recent but distinct introduction events. Although there has been no local transmission of Aedes-transmitted viruses in mainland Portugal to date, the spread of the mosquito and increased international travel increase the risk of Aedes-borne disease outbreaks. The ongoing spread of Ae. albopictus in the country and the confirmed multiple introductions in new locations raise awareness of the need to monitor mosquito vectors to control and prevent autochthonous Aedes-borne disease outbreaks.
{"title":"The spread of the invasive mosquito Aedes albopictus (Diptera: Culicidae) in Portugal: a first genetic analysis","authors":"Líbia Zé-Zé, Inês Campos Freitas, Manuel Silva, Patrícia Soares, Maria João Alves, Hugo Costa Osório","doi":"10.1186/s13071-024-06460-w","DOIUrl":"https://doi.org/10.1186/s13071-024-06460-w","url":null,"abstract":"Aedes albopictus, commonly known as the Asian tiger mosquito, has become one of the most invasive mosquito species. Over the last 5 decades, it has been introduced and established in various tropical and temperate regions worldwide. First reported in Europe in 1979 in Albania and later in Italy in 1990, the species is now established in 13 European Union (EU)/European Economic Area (EEA) countries and 337 regions (2023). In Portugal, Ae. albopictus was first detected in the Algarve and Penafiel regions in 2017, followed by Alentejo in 2022 and Lisbon in 2023. This mosquito species poses a significant public health risk as a vector for numerous pathogenic viruses, including dengue, Zika, and chikungunya. Aedes albopictus collected in Lisbon in 2023 were analyzed using cytochrome c oxidase I (COX) gene sequencing to understand their genetic relationships. Our data indicate that the Ae. albopictus mosquito populations detected in three locations in Lisbon in 2023 correspond to recent but distinct introduction events. Although there has been no local transmission of Aedes-transmitted viruses in mainland Portugal to date, the spread of the mosquito and increased international travel increase the risk of Aedes-borne disease outbreaks. The ongoing spread of Ae. albopictus in the country and the confirmed multiple introductions in new locations raise awareness of the need to monitor mosquito vectors to control and prevent autochthonous Aedes-borne disease outbreaks. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1186/s13071-024-06464-6
Marina Papaiakovou, Rubén O. Cimino, Nils Pilotte, Julia Dunn, D. Timothy J. Littlewood, Steven A. Williams, Alejandro J. Krolewiecki, Rojelio Mejia
Soil-transmitted helminths infect an estimated 18% of the world’s population, causing a significant health burden. Microscopy has been the primary tool for diagnosing eggs from fecal samples, but its sensitivity drops in low-prevalence settings. Quantitative real-time polymerase chain reaction (qPCR) is slowly increasing in research and clinical settings. However, there is still no consensus on preferred qPCR targets. We aimed to compare soil-transmitted helminth (STH) DNA detection methods by testing naïve stool samples spiked with known quantities of STH eggs and larvae. DNA extracts from spiked samples were tested using independent quantitative realtime PCR (qPCR) assays targeting ribosomal or putative non-protein coding satellite sequences. For Trichuris trichiura, there was a strong correlation between egg/larvae counts and qPCR results using either qPCR method (0.86 and 0.87, respectively). Strong correlations also existed for A. lumbricoides (0.60 and 0.63, respectively), but weaker correlations were found for Ancylostoma duodenale (0.41 for both assays) and Strongyloides stercoralis (0.48 and 0.65, respectively). No correlation for Necator americanus was observed when testing with either qPCR assay. Both assays had fair-to-moderate agreement across targets when using field-collected stool samples (0.28–0.45, for all STHs), except for S. stercoralis (0.12) with slight agreement. There is a strong correlation between qPCR results and egg/larvae counts. Our study confirms that qPCR is an effective diagnostic tool, even with low-intensity infections, regardless of the DNA-based diagnostic marker used. However, the moderate agreement between the two different qPCR assays when testing field samples highlights the need to understand the role of these targets in the genome so that the parasite burden can be quantified more accurately and consistently by qPCR.
{"title":"Comparison of multi-parallel quantitative real-time PCRs targeting different DNA regions and detecting soil-transmitted helminths in stool","authors":"Marina Papaiakovou, Rubén O. Cimino, Nils Pilotte, Julia Dunn, D. Timothy J. Littlewood, Steven A. Williams, Alejandro J. Krolewiecki, Rojelio Mejia","doi":"10.1186/s13071-024-06464-6","DOIUrl":"https://doi.org/10.1186/s13071-024-06464-6","url":null,"abstract":"Soil-transmitted helminths infect an estimated 18% of the world’s population, causing a significant health burden. Microscopy has been the primary tool for diagnosing eggs from fecal samples, but its sensitivity drops in low-prevalence settings. Quantitative real-time polymerase chain reaction (qPCR) is slowly increasing in research and clinical settings. However, there is still no consensus on preferred qPCR targets. We aimed to compare soil-transmitted helminth (STH) DNA detection methods by testing naïve stool samples spiked with known quantities of STH eggs and larvae. DNA extracts from spiked samples were tested using independent quantitative realtime PCR (qPCR) assays targeting ribosomal or putative non-protein coding satellite sequences. For Trichuris trichiura, there was a strong correlation between egg/larvae counts and qPCR results using either qPCR method (0.86 and 0.87, respectively). Strong correlations also existed for A. lumbricoides (0.60 and 0.63, respectively), but weaker correlations were found for Ancylostoma duodenale (0.41 for both assays) and Strongyloides stercoralis (0.48 and 0.65, respectively). No correlation for Necator americanus was observed when testing with either qPCR assay. Both assays had fair-to-moderate agreement across targets when using field-collected stool samples (0.28–0.45, for all STHs), except for S. stercoralis (0.12) with slight agreement. There is a strong correlation between qPCR results and egg/larvae counts. Our study confirms that qPCR is an effective diagnostic tool, even with low-intensity infections, regardless of the DNA-based diagnostic marker used. However, the moderate agreement between the two different qPCR assays when testing field samples highlights the need to understand the role of these targets in the genome so that the parasite burden can be quantified more accurately and consistently by qPCR. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1186/s13071-024-06468-2
Harish Kumar Shah, P. A. Fathima, Jose Jicksy, Prasanta Saini
Western Ghats is a biodiversity treasure trove with reports of indigenous leishmaniasis cases. Hence, systematic sand fly surveillance was carried out among the tribal population. The present study reports a novel sand fly species, Phlebotomus (Anaphlebotomus) ajithii n. sp. (Diptera: Psychodidae), discovered in the Western Ghats of India. A comprehensive sand fly survey was conducted across the Kollam, Thrissur, Idukki, Kasaragod and Malappuram districts of Kerala, India. The survey spanned both indoor and outdoor habitats using standard collection methods over a 3-year, 3-month period. DNA barcoding of samples was performed targeting mitochondrial cytochrome c oxidase subunit I (COI) gene, and the sequence generated was subjected to phylogenetic analysis. Phlebotomus (Anaphlebotomus) ajithii, a new sand fly species, is recorded and described in this communication. The morphological relationship of the new species to other members of the subgenus Anaphlebotomus is discussed. Mitochondrial COI barcode followed by phylogenetic analysis confirmed that specimens of Ph. ajithii belong to the same taxonomic group, while a genetic distance of 11.7% from congeners established it as a distinct species. The Western Ghats, known for its rich biodiversity, has lacked systematic entomological surveys focusing on sand flies. This study aims to fill this gap and reports and describes a new species of sand fly.
西高止山脉是一个生物多样性宝库,据报告有本地利什曼病病例。因此,在部落人口中开展了系统的沙蝇监测。本研究报告了在印度西高止山发现的一种新型沙蝇--Phlebotomus (Anaphlebotomus) ajithii n. sp.(双翅目:Psychodidae)。在印度喀拉拉邦的 Kollam、Thrissur、Idukki、Kasaragod 和 Malappuram 地区进行了一次全面的沙蝇调查。调查采用标准采集方法,历时 3 年 3 个月,涵盖室内和室外栖息地。针对线粒体细胞色素 c 氧化酶亚单位 I(COI)基因对样本进行了 DNA 条形编码,并对生成的序列进行了系统进化分析。本通讯记录并描述了沙蝇新种 Phlebotomus (Anaphlebotomus) ajithii。文中讨论了该新种与 Anaphlebotomus 亚属其他成员的形态学关系。线粒体 COI 条形码和系统进化分析证实 Ph. ajithii 的标本属于同一分类群,而与同属种之间 11.7% 的遗传距离则将其确定为一个独特的物种。西高止山以其丰富的生物多样性而闻名,但一直缺乏以沙蝇为重点的系统昆虫学调查。本研究旨在填补这一空白,报告并描述了沙蝇的一个新物种。
{"title":"Report of a new species of sand fly, Phlebotomus (Anaphlebotomus) ajithii n. sp. (Diptera: Psychodidae), from Western Ghats, India","authors":"Harish Kumar Shah, P. A. Fathima, Jose Jicksy, Prasanta Saini","doi":"10.1186/s13071-024-06468-2","DOIUrl":"https://doi.org/10.1186/s13071-024-06468-2","url":null,"abstract":"Western Ghats is a biodiversity treasure trove with reports of indigenous leishmaniasis cases. Hence, systematic sand fly surveillance was carried out among the tribal population. The present study reports a novel sand fly species, Phlebotomus (Anaphlebotomus) ajithii n. sp. (Diptera: Psychodidae), discovered in the Western Ghats of India. A comprehensive sand fly survey was conducted across the Kollam, Thrissur, Idukki, Kasaragod and Malappuram districts of Kerala, India. The survey spanned both indoor and outdoor habitats using standard collection methods over a 3-year, 3-month period. DNA barcoding of samples was performed targeting mitochondrial cytochrome c oxidase subunit I (COI) gene, and the sequence generated was subjected to phylogenetic analysis. Phlebotomus (Anaphlebotomus) ajithii, a new sand fly species, is recorded and described in this communication. The morphological relationship of the new species to other members of the subgenus Anaphlebotomus is discussed. Mitochondrial COI barcode followed by phylogenetic analysis confirmed that specimens of Ph. ajithii belong to the same taxonomic group, while a genetic distance of 11.7% from congeners established it as a distinct species. The Western Ghats, known for its rich biodiversity, has lacked systematic entomological surveys focusing on sand flies. This study aims to fill this gap and reports and describes a new species of sand fly. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1186/s13071-024-06373-8
Woo Jun Bang, Ara Seol, Seunggwan Shin
Certain mosquitoes are known as dominant vectors worldwide, and transmit infectious diseases. The expansion of mosquito habitats due to climate change and increased human activities poses a significant health threat by facilitating the spread of various non-native infectious diseases. This study focused on the detection of the Southeast Asian mosquito species, Aedes (Mucidus) laniger (Wiedemann, 1820) on Jeju Island, the southernmost region of the Republic of Korea (ROK), highlighting the potential risks associated with the spread of vector-borne diseases, particularly emphasizing the elevated likelihood of invasion by Southeast Asian mosquitoes. Field surveys were conducted in August 2023 on Jeju Island. Adult mosquitoes were collected using BG-sentinel traps and identified to the species level using taxonomic keys. Morphological and molecular analyses were employed to confirm species designations. Molecular data, including mitochondrial and nuclear genes, were used for phylogenetic analysis, which was performed to compare and identify among recorded subgenera in ROK. Species distribution modeling for Ae. laniger was performed to predict potential habitats using R package ‘BIOMOD2’. The two specimens of Ae. laniger were collected for the first time on Jeju Island. Morphological and molecular analyses confirmed the identity of this species within the subgenus Mucidus and validated the first record of this species in the ROK. We employed a simple multigene phylogenetic analysis to confirm a new mosquito record at the genus and subgenus levels, finally validating the consistency between morphological identification and molecular phylogenetic outcomes. Furthermore, we have updated the taxonomic keys for the genus Aedes in the ROK, and revised mosquito lists for Jeju Island, incorporating the inclusion of Ae. laniger. On the basis of species distribution modeling, the area of suitable habitat for Ae. laniger is expected to expand due to climate change, but this change did not appear to be meaningful in East Asia. This case offers the first report of the Southeast Asian mosquito, Ae. laniger, in the ROK. The detection of this species on Jeju Island suggests the potential establishment of a breeding population their habitat and raises concerns about further expansion into the Korean Peninsula. Considering the annual occurrence of mosquito-borne disease cases in the Southeast Asia, it is essential to conduct monitoring not only in Jeju Island, where Ae. laniger has been identified, but also across the entire Korean Peninsula.
{"title":"Insights from multigene analysis: first report of a Southeast Asian Mosquito, Aedes (Mucidus) laniger (Diptera: Culicidae) on Jeju Island from Korea","authors":"Woo Jun Bang, Ara Seol, Seunggwan Shin","doi":"10.1186/s13071-024-06373-8","DOIUrl":"https://doi.org/10.1186/s13071-024-06373-8","url":null,"abstract":"Certain mosquitoes are known as dominant vectors worldwide, and transmit infectious diseases. The expansion of mosquito habitats due to climate change and increased human activities poses a significant health threat by facilitating the spread of various non-native infectious diseases. This study focused on the detection of the Southeast Asian mosquito species, Aedes (Mucidus) laniger (Wiedemann, 1820) on Jeju Island, the southernmost region of the Republic of Korea (ROK), highlighting the potential risks associated with the spread of vector-borne diseases, particularly emphasizing the elevated likelihood of invasion by Southeast Asian mosquitoes. Field surveys were conducted in August 2023 on Jeju Island. Adult mosquitoes were collected using BG-sentinel traps and identified to the species level using taxonomic keys. Morphological and molecular analyses were employed to confirm species designations. Molecular data, including mitochondrial and nuclear genes, were used for phylogenetic analysis, which was performed to compare and identify among recorded subgenera in ROK. Species distribution modeling for Ae. laniger was performed to predict potential habitats using R package ‘BIOMOD2’. The two specimens of Ae. laniger were collected for the first time on Jeju Island. Morphological and molecular analyses confirmed the identity of this species within the subgenus Mucidus and validated the first record of this species in the ROK. We employed a simple multigene phylogenetic analysis to confirm a new mosquito record at the genus and subgenus levels, finally validating the consistency between morphological identification and molecular phylogenetic outcomes. Furthermore, we have updated the taxonomic keys for the genus Aedes in the ROK, and revised mosquito lists for Jeju Island, incorporating the inclusion of Ae. laniger. On the basis of species distribution modeling, the area of suitable habitat for Ae. laniger is expected to expand due to climate change, but this change did not appear to be meaningful in East Asia. This case offers the first report of the Southeast Asian mosquito, Ae. laniger, in the ROK. The detection of this species on Jeju Island suggests the potential establishment of a breeding population their habitat and raises concerns about further expansion into the Korean Peninsula. Considering the annual occurrence of mosquito-borne disease cases in the Southeast Asia, it is essential to conduct monitoring not only in Jeju Island, where Ae. laniger has been identified, but also across the entire Korean Peninsula. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1186/s13071-024-06469-1
Javier Gandasegui, Pedro E. Fleitas, Paula Petrone, Berta Grau-Pujol, Valdemiro Novela, Elisa Rubio, Osvaldo Muchisse, Anélsio Cossa, José Carlos Jamine, Charfudin Sacoor, Eric A. T. Brienen, Lisette van Lieshout, José Muñoz, Climent Casals-Pascual
Soil-transmitted helminth (STH) infections account for a significant global health burden, necessitating mass drug administration with benzimidazole-class anthelmintics, such as albendazole (ALB), for morbidity control. However, ALB efficacy shows substantial variability, presenting challenges for achieving consistent treatment outcomes. We have explored the potential impact of the baseline gut microbiota on ALB efficacy in hookworm-infected individuals through microbiota profiling and machine learning (ML) techniques. Our investigation included 89 stool samples collected from hookworm-infected individuals that were analyzed by microscopy and quantitative PCR (qPCR). Of these, 44 were negative by microscopy for STH infection using the Kato-Katz method and qPCR 21 days after treatment, which entails a cure rate of 49.4%. Microbiota characterization was based on amplicon sequencing of the V3–V4 16S ribosomal RNA gene region. Alpha and beta diversity analyses revealed no significant differences between participants who were cured and those who were not cured, suggesting that baseline microbiota diversity does not influence ALB treatment outcomes. Furthermore, differential abundance analysis at the phylum, family and genus levels yielded no statistically significant associations between bacterial communities and ALB efficacy. Utilizing supervised ML models failed to predict treatment response accurately. Our investigation did not provide conclusive insights into the relationship between gut microbiota and ALB efficacy. However, the results highlight the need for future research to incorporate longitudinal studies that monitor changes in the gut microbiota related to the infection and the cure with ALB, as well as functional metagenomics to better understand the interaction of the microbiome with the drug, and its role, if there is any, in modulating anthelmintic treatment outcomes in STH infections. Interdisciplinary approaches integrating microbiology, pharmacology, genetics and data science will be pivotal in advancing our understanding of STH infections and optimizing treatment strategies globally.
{"title":"Baseline gut microbiota diversity and composition and albendazole efficacy in hookworm-infected individuals","authors":"Javier Gandasegui, Pedro E. Fleitas, Paula Petrone, Berta Grau-Pujol, Valdemiro Novela, Elisa Rubio, Osvaldo Muchisse, Anélsio Cossa, José Carlos Jamine, Charfudin Sacoor, Eric A. T. Brienen, Lisette van Lieshout, José Muñoz, Climent Casals-Pascual","doi":"10.1186/s13071-024-06469-1","DOIUrl":"https://doi.org/10.1186/s13071-024-06469-1","url":null,"abstract":"Soil-transmitted helminth (STH) infections account for a significant global health burden, necessitating mass drug administration with benzimidazole-class anthelmintics, such as albendazole (ALB), for morbidity control. However, ALB efficacy shows substantial variability, presenting challenges for achieving consistent treatment outcomes. We have explored the potential impact of the baseline gut microbiota on ALB efficacy in hookworm-infected individuals through microbiota profiling and machine learning (ML) techniques. Our investigation included 89 stool samples collected from hookworm-infected individuals that were analyzed by microscopy and quantitative PCR (qPCR). Of these, 44 were negative by microscopy for STH infection using the Kato-Katz method and qPCR 21 days after treatment, which entails a cure rate of 49.4%. Microbiota characterization was based on amplicon sequencing of the V3–V4 16S ribosomal RNA gene region. Alpha and beta diversity analyses revealed no significant differences between participants who were cured and those who were not cured, suggesting that baseline microbiota diversity does not influence ALB treatment outcomes. Furthermore, differential abundance analysis at the phylum, family and genus levels yielded no statistically significant associations between bacterial communities and ALB efficacy. Utilizing supervised ML models failed to predict treatment response accurately. Our investigation did not provide conclusive insights into the relationship between gut microbiota and ALB efficacy. However, the results highlight the need for future research to incorporate longitudinal studies that monitor changes in the gut microbiota related to the infection and the cure with ALB, as well as functional metagenomics to better understand the interaction of the microbiome with the drug, and its role, if there is any, in modulating anthelmintic treatment outcomes in STH infections. Interdisciplinary approaches integrating microbiology, pharmacology, genetics and data science will be pivotal in advancing our understanding of STH infections and optimizing treatment strategies globally. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}