Considering the importance of pain and stress, we decided to investigate the intra-anterior cingulate cortex (ACC) microinjection of histamine and mepyramine alone and concurrently on acute pain induced by hot plate following restraint stress in male rats. 24-gauge, 10 mm stainless steel guide cannula was implanted over the ACC in the incised scalp of 4 groups. Restraint stress in healthy rats produced a significant increase (p < .05) in the pain threshold. The simultaneous microinjection of 4 μg/side histamine and 8 μg/side mepyramine as a histaminergic system inverse agonist in healthy nonrestraint animals did not affect the pain threshold. Although Histamine decreased the threshold of pain meaningfully, mepyramine elevated it in a significant manner (p < .05). In the restrained animals, intra-ACC microinjection of histamine produced no significant impact on the pain threshold. However, intra-ACC microinjection of mepyramine before histamine, significantly (p < .01) altered the result and enhanced the threshold of pain. The results of our study demonstrated that histaminergic neurons have an important role in the processing of pain in the ACC following restraint stress.
We investigated the metabolism and disposition of vornorexant, a novel dual orexin receptor antagonist, in rats and dogs, and clarified in vitro metabolite profiles in humans. Furthermore, we investigated the pharmacokinetics of active metabolites in rats and dogs and their CNS distribution in rats to elucidate its contribution to drug efficacy. [14 C]vornorexant was rapidly and mostly absorbed after the oral administration in rats and dogs. The drug-derived radioactivity, including metabolites, was distributed to major organs such as the liver, kidneys in rats, and was almost eliminated within 24 h post-dose in both species. Metabolite profiling revealed that main clearance mechanism of vornorexant was metabolism via multiple pathways by oxidation. The major circulating components were the cleaved metabolites (M10, M12) in rats, and the unchanged form in dogs, followed by M1, and then M3. Incubation with human hepatocytes resulted in formation of metabolites, including M1, M3, M10, and M12. The metabolic pathways were similar in all tested species. Resulting from the PK and CNS distribution of active metabolites (M1 and M3) with weaker pharmacological activity, the concentration of the unchanged form was higher than that of active metabolites in rat CSF and dog plasma, suggesting that the unchanged form mainly contributed to the drug efficacy. These findings demonstrate that vornorexant is absorbed immediately after administration, and vornorexant and its metabolites are rapidly and completely eliminated in rats and dogs. Thus, vornorexant may have favorable pharmacokinetic profiles as a hypnotic drug to provide rapid onset of action and minimal next-day residual effects in humans.
Ulotaront (SEP-363856) is a TAAR1 agonist, with 5-HT1A agonist activity, currently in clinical development for the treatment of schizophrenia. In vitro studies indicate ulotaront is an OCT2-specific inhibitor with IC50 of 1.27 μM. The primary objective of this study is to determine if a single dose of ulotaront affects the PK of metformin, an index substrate of OCT2, in subjects with schizophrenia. In a randomized, single-blind, 2-period crossover study, 25 adults with schizophrenia received a single dose of metformin-HCl 850 mg (approximately 663 mg metformin) with and without coadministration of 100 mg ulotaront. The plasma samples were analyzed by fully validated LC-MS/MS methods. The primary PK endpoints for metformin were AUCinf, AUClast, Cmax, and tmax. The highest-anticipated clinical dose of ulotaront (100 mg) had no statistically significant effect on the PK of a single dose of metformin based on Cmax and AUCinf. Geometric least squares mean ratios were 89.98% and 110.63%, respectively, with the 90% confidential interval (CI) for each parameter contained within 80%-125%. Median tmax was comparable across the treatments. Ulotaront does not act as a perpetrator of OCT2-mediated DDI against metformin. Co-administration of ulotaront is not expected to require dose adjustment of metformin or other drugs cleared by OCT2.
Diabetic cardiomyopathy (DCM) is a condition characterized by myocardial dysfunction that occurs in individuals with diabetes, in the absence of coronary artery disease, valve disease, and other conventional cardiovascular risk factors such as hypertension and dyslipidemia. It is considered a significant and consequential complication of diabetes in the field of cardiovascular medicine. The primary pathological manifestations include myocardial hypertrophy, myocardial fibrosis, and impaired ventricular function, which can lead to widespread myocardial necrosis. Ultimately, this can progress to the development of heart failure, arrhythmias, and cardiogenic shock, with severe cases even resulting in sudden cardiac death. Despite several decades of both fundamental and clinical research conducted globally, there are currently no specific targeted therapies available for DCM in clinical practice, and the incidence and mortality rates of heart failure remain persistently high. Thus, this article provides an overview of the current treatment modalities and novel techniques pertaining to DCM, aiming to offer valuable insights and support to researchers dedicated to investigating this complex condition.
Our laboratory has shown that calpain-2 activation in the brain following acute injury is directly related to neuronal damage and the long-term functional consequences of the injury, while calpain-1 activation is generally neuroprotective and calpain-1 deletion exacerbates neuronal injury. We have also shown that a relatively selective calpain-2 inhibitor, referred to as C2I, enhanced long-term potentiation and learning and memory, and provided neuroprotection in the controlled cortical impact (CCI) model of traumatic brain injury (TBI) in mice. Using molecular dynamic simulation and Site Identification by Ligand Competitive Saturation (SILCS) software, we generated about 130 analogs of C2I and tested them in a number of in vitro and in vivo assays. These led to the identification of two interesting compounds, NA-112 and NA-184. Further analyses indicated that NA-184, (S)-2-(3-benzylureido)-N-((R,S)-1-((3-chloro-2-methoxybenzyl)amino)-1,2-dioxopentan-3-yl)-4-methylpentanamide, selectively and dose-dependent inhibited calpain-2 activity without evident inhibition of calpain-1 at the tested concentrations in mouse brain tissues and human cell lines. Like NA-112, NA-184 inhibited TBI-induced calpain-2 activation and cell death in mice and rats, both male and females. Pharmacokinetic and pharmacodynamic analyses indicated that NA-184 exhibited properties, including stability in plasma and liver and blood-brain barrier permeability, that make it a good clinical candidate for the treatment of TBI.
Changes in vascular biomechanics leading to increase in arterial stiffness play a pivotal role in circulatory dysfunction. Our objectives were to examine sex-specific pharmacological changes related to the biomechanics and any structural modifications in small resistance arteries of Dahl salt-sensitive male and female rats. The composite Young modulus (CYM) was determined using pressure myograph recordings, and immunohistochemistry was used for the evaluation of any structural changes in the third-order mesenteric arteries (n = 6). Animals on high-salt diet developed hypertension with significant elevation in central and peripheral blood pressures and pulse wave velocity compared to those on regular diet. There were no significant differences observed in the CYM between any of the groups (i.e., males and females) in vehicle-treated time-control studies. The presence of verapamil (0.3 μM) significantly reduced CYM in hypertensive males without changes within females compared to vehicle. This effect was abolished by phenylephrine (0.3 μM). BaCl2 (100 μM), ouabain (100 μM), and L-NAME (0.3 μM) combined significantly increased CYM in vessels from in normotensive males and females but not in hypertensive males compared to vehicle. The increase in CYM was abolished in the presence of phenylephrine. Sodium nitroprusside (0.3 μM), in the presence of phenylephrine, significantly reduced CYM in male normotensive versus hypertensive, with no differences within females. Significant differences were observed in immunohistochemical assessment of biomechanical markers of arterial stiffness between males and females. Our findings suggest sex possibly due to pressure differences to be responsible for adaptive changes in biomechanics, and varied pharmacological responses in hypertensive state.