Shaifali Mishra, Rajesh K Yadav, Dinesh K Mishra, Kuldeep Kumar, Navneet Kumar Gupta, Kuldeep Singh, Satyaveer Gothwal, Jin-OoK Baeg
Nicotinamide Adenine Dinucleotide Phosphate (NAD(P)H) plays an important role in numerous biologically significant redox reactions. The photochemical restoration of its oxidized form (NAD(P)+) under physiological conditions is intriguing in the context of integrated photo and catalysis. Herein, we report the functionalized graphitic carbon-based solar light active photocatalyst by doping boron and fluorine in the native graphitic carbon nitride (GCN) (nonfunctionalized) for the regeneration of enzymatically visible light active coenzyme and in photo-acetalization reactions. The metal-free functionalized photocatalyst systems such as BFGCN-x leads to higher yield NADH and NADPH regeneration. They are also capable of catalyzing acetal reactions in the absence of any Lewis and Bronsted acids. The current research endeavor provides the advancement and the application of functionalized GCN-based photocatalysts for NADH (61.89%), NADPH (59.84%) regeneration, and photo-acetalization reactions.
{"title":"Metal-free functionalized carbon nitride as a photocatalyst driven by sunlight for acetal synthesis and selective regeneration of NAD(P)H cofactor.","authors":"Shaifali Mishra, Rajesh K Yadav, Dinesh K Mishra, Kuldeep Kumar, Navneet Kumar Gupta, Kuldeep Singh, Satyaveer Gothwal, Jin-OoK Baeg","doi":"10.1111/php.14011","DOIUrl":"https://doi.org/10.1111/php.14011","url":null,"abstract":"<p><p>Nicotinamide Adenine Dinucleotide Phosphate (NAD(P)H) plays an important role in numerous biologically significant redox reactions. The photochemical restoration of its oxidized form (NAD(P)<sup>+</sup>) under physiological conditions is intriguing in the context of integrated photo and catalysis. Herein, we report the functionalized graphitic carbon-based solar light active photocatalyst by doping boron and fluorine in the native graphitic carbon nitride (GCN) (nonfunctionalized) for the regeneration of enzymatically visible light active coenzyme and in photo-acetalization reactions. The metal-free functionalized photocatalyst systems such as BFGCN-x leads to higher yield NADH and NADPH regeneration. They are also capable of catalyzing acetal reactions in the absence of any Lewis and Bronsted acids. The current research endeavor provides the advancement and the application of functionalized GCN-based photocatalysts for NADH (61.89%), NADPH (59.84%) regeneration, and photo-acetalization reactions.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ednei Luiz Antonio, Helenita Antonia de Oliveira, Gianna Móes Albuquerque-Pontes, Ighor Luiz Azevedo Teixeira, Amanda Pereira Yoshizaki, Luis Felipe Neves Dos Santos, Ernesto Cesar Pinto Leal-Junior, Paulo José Ferreira Tucci, Andrey Jorge Serra
Low-level laser therapy (LLLT) has been targeted as a promising tool that can mitigate post-infarction cardiac remodeling. However, there is no gold standard energy delivered to the heart and few studies have evaluated the impact of LLLT on cardiac performance. This study evaluated effects of repeated LLLT applications with different energies delivered to the infarcted myocardium. Echocardiography and hemodynamic measurements were applied to evaluate left ventricular (LV) performance in rats with large infarcts. ELISA, Western blot and biochemical assays were used to assess LV inflammation and oxidative stress. An 830-nm Laser Photon III semiconductor aluminum gallium arsenide diode (DMC, São Carlos, SP, Brazil) was applied transthoracically three times a week for 4 weeks based on the energy (i.e., 10J, 20J, and 40J; respectively). LLLT on 10J and 20J had a similar action in attenuating pulmonary congestion and myocardial fibrosis. Moreover, 10J and 20J attenuated LV end-diastolic pressure and improved +dP/dt and -dP/dt. All LLLT groups had lower levels of inflammatory mediators, but only the 10J group had normalized oxidative stress. All LLLT doses improved superoxide dismutase levels; however, only the 20J group showed a high content of the catalase. There was a lower level of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a in the infarcted myocardium, which it was normalized in the 20J and 40J groups. A higher phospholamban content was found in the 10J group. This study supports the beneficial LLLT role post-infarction. Apparently, the 10J and 20J doses show to be chosen for clinical translation.
{"title":"Examining the impact of varying low-level laser dose on cardiac failure.","authors":"Ednei Luiz Antonio, Helenita Antonia de Oliveira, Gianna Móes Albuquerque-Pontes, Ighor Luiz Azevedo Teixeira, Amanda Pereira Yoshizaki, Luis Felipe Neves Dos Santos, Ernesto Cesar Pinto Leal-Junior, Paulo José Ferreira Tucci, Andrey Jorge Serra","doi":"10.1111/php.14012","DOIUrl":"https://doi.org/10.1111/php.14012","url":null,"abstract":"<p><p>Low-level laser therapy (LLLT) has been targeted as a promising tool that can mitigate post-infarction cardiac remodeling. However, there is no gold standard energy delivered to the heart and few studies have evaluated the impact of LLLT on cardiac performance. This study evaluated effects of repeated LLLT applications with different energies delivered to the infarcted myocardium. Echocardiography and hemodynamic measurements were applied to evaluate left ventricular (LV) performance in rats with large infarcts. ELISA, Western blot and biochemical assays were used to assess LV inflammation and oxidative stress. An 830-nm Laser Photon III semiconductor aluminum gallium arsenide diode (DMC, São Carlos, SP, Brazil) was applied transthoracically three times a week for 4 weeks based on the energy (i.e., 10J, 20J, and 40J; respectively). LLLT on 10J and 20J had a similar action in attenuating pulmonary congestion and myocardial fibrosis. Moreover, 10J and 20J attenuated LV end-diastolic pressure and improved +dP/dt and -dP/dt. All LLLT groups had lower levels of inflammatory mediators, but only the 10J group had normalized oxidative stress. All LLLT doses improved superoxide dismutase levels; however, only the 20J group showed a high content of the catalase. There was a lower level of sarcoplasmic/endoplasmic reticulum Ca<sup>2+</sup> ATPase 2a in the infarcted myocardium, which it was normalized in the 20J and 40J groups. A higher phospholamban content was found in the 10J group. This study supports the beneficial LLLT role post-infarction. Apparently, the 10J and 20J doses show to be chosen for clinical translation.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lily M Guidry, Londyn A Bardash, Aylin Yigiter, Satyam Ravi, Barbara Marchetti, Tolga N V Karsili
Biogenic hydrocarbons are emitted into the Earth's atmosphere by terrestrial vegetation as by-products of photosynthesis. Isoprene is one such hydrocarbon and is the second most abundant volatile organic compound emitted into the atmosphere (after methane). Reaction with ozone represents an important atmospheric sink for isoprene removal, forming carbonyl oxides (Criegee intermediates) with extended conjugation. In this manuscript, we argue that the extended conjugation of these Criegee intermediates enables electronic excitation of these compounds, on timescales that are competitive with their slow unimolecular decay and bimolecular chemistry. We show that the complexation of methacrolein oxide with water enhances the absorption cross section of the otherwise dark S1 state, potentially revealing a new avenue for forming lower volatility compounds via tropospherically relevant photochemistry.
{"title":"The role of solar photolysis in the atmospheric removal of methacrolein oxide and the methacrolein oxide-water van-der Waals complex in pristine environments.","authors":"Lily M Guidry, Londyn A Bardash, Aylin Yigiter, Satyam Ravi, Barbara Marchetti, Tolga N V Karsili","doi":"10.1111/php.14007","DOIUrl":"https://doi.org/10.1111/php.14007","url":null,"abstract":"<p><p>Biogenic hydrocarbons are emitted into the Earth's atmosphere by terrestrial vegetation as by-products of photosynthesis. Isoprene is one such hydrocarbon and is the second most abundant volatile organic compound emitted into the atmosphere (after methane). Reaction with ozone represents an important atmospheric sink for isoprene removal, forming carbonyl oxides (Criegee intermediates) with extended conjugation. In this manuscript, we argue that the extended conjugation of these Criegee intermediates enables electronic excitation of these compounds, on timescales that are competitive with their slow unimolecular decay and bimolecular chemistry. We show that the complexation of methacrolein oxide with water enhances the absorption cross section of the otherwise dark S<sub>1</sub> state, potentially revealing a new avenue for forming lower volatility compounds via tropospherically relevant photochemistry.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shijing Wang, Letian Chen, Zheng Ma, Liting Zhao, Yueying Lu, Yuming Fu, Hong Liu
In recent years, studies have shown that low-dose supplemental infrared (IR) irradiation exhibits systemic anti-inflammatory effects. The gut microbiota is increasingly recognized as a potential mediator of these effects due to its role in regulating host metabolism and inflammatory responses. To investigate the role of gut microbiota diversity and metabolite changes in the mechanism of light-emitting diodes (LED) infrared's anti-inflammatory action, we conducted IR irradiation on mice. Serum inflammatory cytokines were measured using ELISA, and fecal samples were subjected to metagenomic, untargeted, and targeted metabolomic analyses. Our results demonstrated a significant increase in the anti-inflammatory cytokine IL-10 in the IR group, accompanied by a declining trend in pro-inflammatory cytokines. Gut microbiome analysis revealed distinct alterations in composition and functional genes between the groups, including the enrichment of beneficial bacteria like various species of Parabacteroides and Akkermansia muciniphila in the IR group. Notably, the IR group exhibited enrichment in carbohydrate metabolism pathways and a reduction in DNA damage and repair pathways. Furthermore, targeted metabolomic analysis highlighted a notable increase in short-chain fatty acids (SCFAs), including butyric acid and isobutyric acid, which positively correlated with the abundance of several beneficial bacteria. These findings suggest a potential interplay between gut microbiota-derived SCFAs and the anti-inflammatory response. In conclusion, our study provides comprehensive insights into the changes in gut microbiota species and functions associated with IR irradiation. Moreover, we emphasize the significance of altered SCFAs levels in the IR group, which may contribute to the observed anti-inflammatory effects. Our findings contribute valuable evidence supporting the role of low-dose infrared light irradiation as an anti-inflammatory therapy.
{"title":"Gut microbiota mediates the anti-inflammatory effects of supplemental infrared irradiation in mice.","authors":"Shijing Wang, Letian Chen, Zheng Ma, Liting Zhao, Yueying Lu, Yuming Fu, Hong Liu","doi":"10.1111/php.14008","DOIUrl":"https://doi.org/10.1111/php.14008","url":null,"abstract":"<p><p>In recent years, studies have shown that low-dose supplemental infrared (IR) irradiation exhibits systemic anti-inflammatory effects. The gut microbiota is increasingly recognized as a potential mediator of these effects due to its role in regulating host metabolism and inflammatory responses. To investigate the role of gut microbiota diversity and metabolite changes in the mechanism of light-emitting diodes (LED) infrared's anti-inflammatory action, we conducted IR irradiation on mice. Serum inflammatory cytokines were measured using ELISA, and fecal samples were subjected to metagenomic, untargeted, and targeted metabolomic analyses. Our results demonstrated a significant increase in the anti-inflammatory cytokine IL-10 in the IR group, accompanied by a declining trend in pro-inflammatory cytokines. Gut microbiome analysis revealed distinct alterations in composition and functional genes between the groups, including the enrichment of beneficial bacteria like various species of Parabacteroides and Akkermansia muciniphila in the IR group. Notably, the IR group exhibited enrichment in carbohydrate metabolism pathways and a reduction in DNA damage and repair pathways. Furthermore, targeted metabolomic analysis highlighted a notable increase in short-chain fatty acids (SCFAs), including butyric acid and isobutyric acid, which positively correlated with the abundance of several beneficial bacteria. These findings suggest a potential interplay between gut microbiota-derived SCFAs and the anti-inflammatory response. In conclusion, our study provides comprehensive insights into the changes in gut microbiota species and functions associated with IR irradiation. Moreover, we emphasize the significance of altered SCFAs levels in the IR group, which may contribute to the observed anti-inflammatory effects. Our findings contribute valuable evidence supporting the role of low-dose infrared light irradiation as an anti-inflammatory therapy.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In oncology, melanoma is a serious concern, often arising from DNA changes caused mainly by ultraviolet radiation. This cancer is known for its aggressive growth, highlighting the necessity of early detection. Our research introduces a novel deep learning framework for melanoma classification, trained and validated using the extensive SIIM-ISIC Melanoma Classification Challenge-ISIC-2020 dataset. The framework features three dilated convolution layers that extract critical feature vectors for classification. A key aspect of our model is incorporating the Off-policy Proximal Policy Optimization (Off-policy PPO) algorithm, which effectively handles data imbalance in the training set by rewarding the accurate classification of underrepresented samples. In this framework, the model is visualized as an agent making a series of decisions, where each sample represents a distinct state. Additionally, a Generative Adversarial Network (GAN) augments training data to improve generalizability, paired with a new regularization technique to stabilize GAN training and prevent mode collapse. The model achieved an F-measure of 91.836% and a geometric mean of 91.920%, surpassing existing models and demonstrating the model's practical utility in clinical environments. These results demonstrate its potential in enhancing early melanoma detection and informing more accurate treatment approaches, significantly advancing in combating this aggressive cancer.
在肿瘤学中,黑色素瘤是一个令人严重关切的问题,它通常是由主要由紫外线辐射引起的 DNA 变化引起的。这种癌症以其侵袭性生长而闻名,突出了早期检测的必要性。我们的研究介绍了一种用于黑色素瘤分类的新型深度学习框架,该框架利用广泛的 SIIM-ISIC 黑色素瘤分类挑战赛-ISIC-2020 数据集进行了训练和验证。该框架具有三个扩张卷积层,可提取关键特征向量用于分类。我们模型的一个关键方面是采用了非政策近端策略优化(Off-policy Proximal Policy Optimization,OPO)算法,通过奖励代表性不足样本的准确分类,有效地处理了训练集中的数据不平衡问题。在这个框架中,模型被可视化为一个做出一系列决策的代理,其中每个样本代表一个不同的状态。此外,生成式对抗网络(GAN)增加了训练数据以提高泛化能力,并搭配新的正则化技术来稳定 GAN 训练并防止模式崩溃。该模型的 F 测量值达到 91.836%,几何平均值达到 91.920%,超越了现有模型,证明了该模型在临床环境中的实用性。这些结果证明了该模型在加强早期黑色素瘤检测和提供更准确的治疗方法方面的潜力,极大地推动了抗击这种侵袭性癌症的进程。
{"title":"Melanoma classification using generative adversarial network and proximal policy optimization.","authors":"Xiangui Ju, Chi-Ho Lin, Suan Lee, Sizheng Wei","doi":"10.1111/php.14006","DOIUrl":"https://doi.org/10.1111/php.14006","url":null,"abstract":"<p><p>In oncology, melanoma is a serious concern, often arising from DNA changes caused mainly by ultraviolet radiation. This cancer is known for its aggressive growth, highlighting the necessity of early detection. Our research introduces a novel deep learning framework for melanoma classification, trained and validated using the extensive SIIM-ISIC Melanoma Classification Challenge-ISIC-2020 dataset. The framework features three dilated convolution layers that extract critical feature vectors for classification. A key aspect of our model is incorporating the Off-policy Proximal Policy Optimization (Off-policy PPO) algorithm, which effectively handles data imbalance in the training set by rewarding the accurate classification of underrepresented samples. In this framework, the model is visualized as an agent making a series of decisions, where each sample represents a distinct state. Additionally, a Generative Adversarial Network (GAN) augments training data to improve generalizability, paired with a new regularization technique to stabilize GAN training and prevent mode collapse. The model achieved an F-measure of 91.836% and a geometric mean of 91.920%, surpassing existing models and demonstrating the model's practical utility in clinical environments. These results demonstrate its potential in enhancing early melanoma detection and informing more accurate treatment approaches, significantly advancing in combating this aggressive cancer.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sun exposure induces major skin alterations, but its effects on skin metabolites and lipids remain largely unknown. Using an original reconstructed human epidermis (RHE) model colonized with human microbiota and supplemented with human sebum, we previously showed that a single dose of simulated solar radiation (SSR) significantly impacted the skin metabolome and microbiota. In this article, we further analyzed SSR-induced changes on skin metabolites and lipids in the same RHE model. Among the significantly altered metabolites (log2-fold changes with p ≤ 0.05), we found several natural moisturizing factors (NMFs): amino acids, lactate, glycerol, urocanic acid, pyrrolidone carboxylic acid and derivatives. Analyses of the stratum corneum lipids also showed that SSR induced lower levels of free fatty acids and higher levels of ceramides, cholesterols and its derivatives. An imbalance in NMFs and ceramides combined to an increase of proinflammatory lipids may participate in skin permeability barrier impairment, dehydration and inflammatory reaction to the sun. Our skin model also allowed the evaluation of an innovative ultraviolet/blue light (UV/BL) broad-spectrum sunscreen with a high sun protection factor (SPF50+). We found that using this sunscreen prior to SSR exposure could in part prevent SSR-induced alterations in NMFs and lipids in the skin ecosystem RHE model.
阳光照射会诱发皮肤的重大改变,但其对皮肤代谢物和脂质的影响在很大程度上仍不为人所知。我们曾使用一个原始的重建人体表皮(RHE)模型,该模型定植了人体微生物群并补充了人体皮脂,结果表明单剂量模拟太阳辐射(SSR)会显著影响皮肤代谢组和微生物群。在本文中,我们进一步分析了在相同的 RHE 模型中,SSR 引起的皮肤代谢物和脂质的变化。在明显改变的代谢物中(p ≤ 0.05 的对数倍变化),我们发现了几种天然保湿因子(NMFs):氨基酸、乳酸、甘油、尿囊酸、吡咯烷酮羧酸及其衍生物。对角质层脂质的分析也表明,SSR 能降低游离脂肪酸的含量,提高神经酰胺、胆固醇及其衍生物的含量。NMFs 和神经酰胺的失衡加上促炎脂质的增加可能会导致皮肤渗透屏障受损、脱水和对阳光的炎症反应。我们的皮肤模型还允许对一种创新的紫外线/蓝光(UV/BL)广谱防晒霜进行评估,该防晒霜具有很高的防晒系数(SPF50+)。我们发现,在暴露于 SSR 之前使用这种防晒霜可以在一定程度上防止 SSR 引起的皮肤生态系统 RHE 模型中 NMFs 和脂质的改变。
{"title":"Multi-omics analysis to evaluate the effects of solar exposure and a broad-spectrum SPF50+ sunscreen on markers of skin barrier function in a skin ecosystem model.","authors":"Carine Jacques, Emilien L Jamin, Anais Noustens, Christophe Lauze, Isabelle Jouanin, Gautier Doat, Laurent Debrauwer, Sandrine Bessou-Touya, Eggert Stockfleth, Hélène Duplan","doi":"10.1111/php.14001","DOIUrl":"https://doi.org/10.1111/php.14001","url":null,"abstract":"<p><p>Sun exposure induces major skin alterations, but its effects on skin metabolites and lipids remain largely unknown. Using an original reconstructed human epidermis (RHE) model colonized with human microbiota and supplemented with human sebum, we previously showed that a single dose of simulated solar radiation (SSR) significantly impacted the skin metabolome and microbiota. In this article, we further analyzed SSR-induced changes on skin metabolites and lipids in the same RHE model. Among the significantly altered metabolites (log2-fold changes with p ≤ 0.05), we found several natural moisturizing factors (NMFs): amino acids, lactate, glycerol, urocanic acid, pyrrolidone carboxylic acid and derivatives. Analyses of the stratum corneum lipids also showed that SSR induced lower levels of free fatty acids and higher levels of ceramides, cholesterols and its derivatives. An imbalance in NMFs and ceramides combined to an increase of proinflammatory lipids may participate in skin permeability barrier impairment, dehydration and inflammatory reaction to the sun. Our skin model also allowed the evaluation of an innovative ultraviolet/blue light (UV/BL) broad-spectrum sunscreen with a high sun protection factor (SPF50+). We found that using this sunscreen prior to SSR exposure could in part prevent SSR-induced alterations in NMFs and lipids in the skin ecosystem RHE model.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priyanka Joshi, Jennifer M Soares, Guilherme M Martins, Leandro H Zucolotto Cocca, Leonardo De Boni, Kleber T de Oliveira, Vanderlei S Bagnato, Kate C Blanco
Curcumin serves as a photosensitizer (PS) in the context of microbial inactivation when subjected to light exposure, to produce reactive oxygen species, which exhibit efficacy in eradicating microorganisms. This remarkable property underscores the growing potential of antimicrobial photodynamic therapy (aPDT) in the ongoing fight against bacterial infections. Considering this, we investigate the efficacy of various in vitro curcumin formulations within a PDT protocol designed to target Staphylococcus aureus. Specifically, we conduct a comparative analysis involving synthetic curcumin (Cur-Syn) and curcumin derivatives modified with chlorine (Cl), selenium (Se), and iodine (I) (Cur-Cl, Cur-Se, Cur-I). To assess the impact of aPDT, we subject S. aureus to incubation with curcumin, followed by irradiation at 450 nm with energy doses of 3.75, 7.5, and 15 J/cm2. Our investigation encompasses an evaluation of PS uptake and photobleaching across the various curcumin variants. Notably, all three modifications (Cur-Cl, Cur-Se, Cur-I) induce a significant reduction in bacterial viability, approximately achieving a 3-log reduction. Interestingly, the uptake kinetics of Cur-Syn and Cur-Se exhibit similarities, reaching saturation after 20 min. Our findings suggest that modifications to curcumin have a discernible impact on the photodynamic properties of the PS molecule.
{"title":"Enhancing the efficacy of antimicrobial photodynamic therapy through curcumin modifications.","authors":"Priyanka Joshi, Jennifer M Soares, Guilherme M Martins, Leandro H Zucolotto Cocca, Leonardo De Boni, Kleber T de Oliveira, Vanderlei S Bagnato, Kate C Blanco","doi":"10.1111/php.14000","DOIUrl":"https://doi.org/10.1111/php.14000","url":null,"abstract":"<p><p>Curcumin serves as a photosensitizer (PS) in the context of microbial inactivation when subjected to light exposure, to produce reactive oxygen species, which exhibit efficacy in eradicating microorganisms. This remarkable property underscores the growing potential of antimicrobial photodynamic therapy (aPDT) in the ongoing fight against bacterial infections. Considering this, we investigate the efficacy of various in vitro curcumin formulations within a PDT protocol designed to target Staphylococcus aureus. Specifically, we conduct a comparative analysis involving synthetic curcumin (Cur-Syn) and curcumin derivatives modified with chlorine (Cl), selenium (Se), and iodine (I) (Cur-Cl, Cur-Se, Cur-I). To assess the impact of aPDT, we subject S. aureus to incubation with curcumin, followed by irradiation at 450 nm with energy doses of 3.75, 7.5, and 15 J/cm<sup>2</sup>. Our investigation encompasses an evaluation of PS uptake and photobleaching across the various curcumin variants. Notably, all three modifications (Cur-Cl, Cur-Se, Cur-I) induce a significant reduction in bacterial viability, approximately achieving a 3-log reduction. Interestingly, the uptake kinetics of Cur-Syn and Cur-Se exhibit similarities, reaching saturation after 20 min. Our findings suggest that modifications to curcumin have a discernible impact on the photodynamic properties of the PS molecule.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insufficient exposure to sunlight increases the risk of cardiovascular diseases. Hypertensive left ventricular (LV) hypertrophy exacerbates the risks of myocardial ischemia, ventricular arrhythmias, sudden cardiac death, and heart failure. This study aimed to determine the effects of ultraviolet (UV) irradiation on LV hypertrophy and mitochondrial morphology. Eighteen 7-week-old Dahl salt-sensitive (Dahl S) rats were categorized into three groups (n = 6 each) and fed sodium chloride (NaCl) diets, as follows: UV-irradiated [UVB+A (+), 8% NaCl], non-UV-irradiated [UV (-), 8% NaCl], and control [UV (-), 0.3% NaCl]. UV irradiation was administered at a low intensity of 100 mJ/cm2 for 6 days per week. Echocardiography and mitochondrial analyses were performed to evaluate LV hypertrophy and cardiomyocytes, and skin tissues were stained with hematoxylin and eosin to assess the pathological abnormalities at 12 weeks of age. LV mass was significantly reduced in the UVB+A (+) and control groups compared to that in the UV (-) group. Mitochondrial structural abnormalities in cardiomyocytes were observed only in the UV (-) group, but not in the UVB+A (+) or control group. Pathological skin abnormalities were not observed in any of the three groups. These findings suggest the potential benefits of UV irradiation in hypertensive models.
{"title":"Ultraviolet irradiation benefits left ventricular hypertrophy and mitochondrial morphology of cardiomyocytes in hypertensive rats.","authors":"Hiroki Shibata, Akiko Noda, Yuji Nishizawa, Atsuki Ito, Takahiro Okumura, Katsunori Hashimoto, Kozue Takeda, Kimiaki Katanosaka, Fumihiko Yasuma, Shiyong Wu","doi":"10.1111/php.14002","DOIUrl":"https://doi.org/10.1111/php.14002","url":null,"abstract":"<p><p>Insufficient exposure to sunlight increases the risk of cardiovascular diseases. Hypertensive left ventricular (LV) hypertrophy exacerbates the risks of myocardial ischemia, ventricular arrhythmias, sudden cardiac death, and heart failure. This study aimed to determine the effects of ultraviolet (UV) irradiation on LV hypertrophy and mitochondrial morphology. Eighteen 7-week-old Dahl salt-sensitive (Dahl S) rats were categorized into three groups (n = 6 each) and fed sodium chloride (NaCl) diets, as follows: UV-irradiated [UVB+A (+), 8% NaCl], non-UV-irradiated [UV (-), 8% NaCl], and control [UV (-), 0.3% NaCl]. UV irradiation was administered at a low intensity of 100 mJ/cm<sup>2</sup> for 6 days per week. Echocardiography and mitochondrial analyses were performed to evaluate LV hypertrophy and cardiomyocytes, and skin tissues were stained with hematoxylin and eosin to assess the pathological abnormalities at 12 weeks of age. LV mass was significantly reduced in the UVB+A (+) and control groups compared to that in the UV (-) group. Mitochondrial structural abnormalities in cardiomyocytes were observed only in the UV (-) group, but not in the UVB+A (+) or control group. Pathological skin abnormalities were not observed in any of the three groups. These findings suggest the potential benefits of UV irradiation in hypertensive models.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ewan Eadie, Paul O'Mahoney, Sally H Ibbotson, C Cameron Miller, Kenneth Wood
In 2015, a study showed that Krypton-Chloride (KrCl) excimer lamps could induce erythema and basal layer DNA damage in human skin. Later studies found that filtering out longer wavelength emissions from these lamps resulted in no acute skin effects. However, there is a limited understanding of how much to reduce unwanted emissions and which wavelengths are important. Accurate spectral irradiance data is therefore crucial for safety, as variance in optical filtering significantly affects the weighted irradiance of a lamp. To simplify the risk assessment process for Far-UVC lamps, we highlight the usefulness of the lamp exposure limit (HLEL) and present this in the context of spectral emission data for 14 commercially available Far-UVC lamps. Our results demonstrate that relying solely on a radiometric measurement and a single-wavelength exposure limit at 222 nm could lead to over-exposure. The HLEL is a practical metric which can be utilized to determine the exposure time before reaching the exposure limit. It can also be used in the determination of the minimum ceiling height for compliance with standards like UL 8802. Manufacturers are urged to provide HLEL for their products; installers should adhere to HLEL; and standards and regulatory bodies should insist on this information in new guidance.
2015 年,一项研究表明,氯化氪(KrCl)准分子灯可诱发人体皮肤红斑和基底层 DNA 损伤。后来的研究发现,过滤掉这些灯的长波长辐射不会对皮肤产生急性影响。然而,人们对如何减少不必要的辐射以及哪些波长是重要波长的了解还很有限。因此,准确的光谱辐照度数据对安全至关重要,因为光学过滤的差异会显著影响灯管的加权辐照度。为了简化远紫外灯的风险评估过程,我们强调了灯管暴露极限(HLEL)的实用性,并结合 14 种市售远紫外灯的光谱辐射数据进行了介绍。我们的研究结果表明,仅仅依靠辐射测量和 222 纳米的单一波长曝光极限可能会导致曝光过度。HLEL 是一个实用的指标,可用于确定达到曝光极限前的曝光时间。它还可用于确定符合 UL 8802 等标准的最低天花板高度。我们敦促制造商为其产品提供 HLEL;安装人员应遵守 HLEL;标准和监管机构应坚持在新指南中提供此类信息。
{"title":"Far-UVC: The impact of optical filters on real-world deployment.","authors":"Ewan Eadie, Paul O'Mahoney, Sally H Ibbotson, C Cameron Miller, Kenneth Wood","doi":"10.1111/php.14005","DOIUrl":"https://doi.org/10.1111/php.14005","url":null,"abstract":"<p><p>In 2015, a study showed that Krypton-Chloride (KrCl) excimer lamps could induce erythema and basal layer DNA damage in human skin. Later studies found that filtering out longer wavelength emissions from these lamps resulted in no acute skin effects. However, there is a limited understanding of how much to reduce unwanted emissions and which wavelengths are important. Accurate spectral irradiance data is therefore crucial for safety, as variance in optical filtering significantly affects the weighted irradiance of a lamp. To simplify the risk assessment process for Far-UVC lamps, we highlight the usefulness of the lamp exposure limit (H<sub>LEL</sub>) and present this in the context of spectral emission data for 14 commercially available Far-UVC lamps. Our results demonstrate that relying solely on a radiometric measurement and a single-wavelength exposure limit at 222 nm could lead to over-exposure. The H<sub>LEL</sub> is a practical metric which can be utilized to determine the exposure time before reaching the exposure limit. It can also be used in the determination of the minimum ceiling height for compliance with standards like UL 8802. Manufacturers are urged to provide H<sub>LEL</sub> for their products; installers should adhere to H<sub>LEL</sub>; and standards and regulatory bodies should insist on this information in new guidance.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shiva Shirazian, Atieh Mohseni, Sara Pourshahidi, Mojgan Alaeddini, Shahroo Etemad-Moghadam, Mehdi Vatanpour
Oral mucositis is a complication of chemo/radiotherapy. To assess the impact of various power levels of diode-laser on the survival and expression of apoptosis-related genes in oral cancer cells, it is crucial to consider the potential existence of malignant cells within the treatment region and the reliance of laser effectiveness on its specific characteristics. Cal-27 cells were cultivated and exposed to a 660 nm-diode-laser at power levels of 20, 40, and 80 mW, alongside non-irradiated control cells. Viability and expression of Bax and Bcl-2 mRNA were assessed with Methyl Thiazolyl Tetrazolium (MTT) and Real-time Polymerase Chain Reaction (RT-PCR), respectively. The results were analyzed using one-way ANOVA and Tukey post-hoc test (p < 0.05). A significant reduction in viability was found only in the 20 mW group compared to controls (p = 0.001). Cell survival was significantly lower in cells receiving 20 mW laser than those treated with 40 and 80 mW (p < 0.05). None of the laser groups showed significant changes in BcL-2, but Bax was significantly lower in cells receiving 40 and 80 mW (p < 0.05), compared to controls. Laser irradiation at 660 nm (2 J/cm2, 30 s) significantly reduced the viability of oral cancer cells when using 20 mW power. These specifications align with the recommendation that the lowest possible laser dose should be applied for treating cancer patients. The exact mechanism of cell death following laser therapy with these specifications requires further investigation.
{"title":"The effect of different parameters of low-level laser used in the treatment of oral mucositis, on the viability and apoptosis of oral squamous cell carcinoma cells: In vitro study.","authors":"Shiva Shirazian, Atieh Mohseni, Sara Pourshahidi, Mojgan Alaeddini, Shahroo Etemad-Moghadam, Mehdi Vatanpour","doi":"10.1111/php.13997","DOIUrl":"https://doi.org/10.1111/php.13997","url":null,"abstract":"<p><p>Oral mucositis is a complication of chemo/radiotherapy. To assess the impact of various power levels of diode-laser on the survival and expression of apoptosis-related genes in oral cancer cells, it is crucial to consider the potential existence of malignant cells within the treatment region and the reliance of laser effectiveness on its specific characteristics. Cal-27 cells were cultivated and exposed to a 660 nm-diode-laser at power levels of 20, 40, and 80 mW, alongside non-irradiated control cells. Viability and expression of Bax and Bcl-2 mRNA were assessed with Methyl Thiazolyl Tetrazolium (MTT) and Real-time Polymerase Chain Reaction (RT-PCR), respectively. The results were analyzed using one-way ANOVA and Tukey post-hoc test (p < 0.05). A significant reduction in viability was found only in the 20 mW group compared to controls (p = 0.001). Cell survival was significantly lower in cells receiving 20 mW laser than those treated with 40 and 80 mW (p < 0.05). None of the laser groups showed significant changes in BcL-2, but Bax was significantly lower in cells receiving 40 and 80 mW (p < 0.05), compared to controls. Laser irradiation at 660 nm (2 J/cm<sup>2</sup>, 30 s) significantly reduced the viability of oral cancer cells when using 20 mW power. These specifications align with the recommendation that the lowest possible laser dose should be applied for treating cancer patients. The exact mechanism of cell death following laser therapy with these specifications requires further investigation.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}