Shear Alfvén wave parametric decay instability (PDI) provides a potential path toward significant wave dissipation and plasma heating. However, fundamental questions regarding how PDI is excited in a realistic three-dimensional (3D) open system and how the finite perpendicular wave scale—as found in both laboratory and space plasmas—affects the excitation remain poorly understood. Here, we present the first 3D, open-boundary, hybrid kinetic-fluid simulations of kinetic Alfvén wave PDI in low-beta plasmas. Key findings are that the PDI excitation is strongly limited by the wave damping present, including electron–ion collisional damping (represented by a constant resistivity) and geometrical attenuation associated with the finite-scale Alfvén wave, and ion Landau damping of the child acoustic wave. The perpendicular wave scale alone, however, plays no discernible role: waves of different perpendicular scales exhibit similar instability excitation as long as the magnitude of the parallel ponderomotive force remains unchanged. These findings are corroborated by theoretical analysis and estimates. This new understanding of 3D kinetic Alfvén wave PDI physics is essential for laboratory study of the basic plasma process and may also aid future evaluation of the relevance/role of PDI in low-beta space plasma.
{"title":"Effects of wave damping and finite perpendicular scale on three-dimensional Alfvén wave parametric decay in low-beta plasmas","authors":"Feiyu Li, Xiangrong Fu, Seth Dorfman","doi":"10.1063/5.0216871","DOIUrl":"https://doi.org/10.1063/5.0216871","url":null,"abstract":"Shear Alfvén wave parametric decay instability (PDI) provides a potential path toward significant wave dissipation and plasma heating. However, fundamental questions regarding how PDI is excited in a realistic three-dimensional (3D) open system and how the finite perpendicular wave scale—as found in both laboratory and space plasmas—affects the excitation remain poorly understood. Here, we present the first 3D, open-boundary, hybrid kinetic-fluid simulations of kinetic Alfvén wave PDI in low-beta plasmas. Key findings are that the PDI excitation is strongly limited by the wave damping present, including electron–ion collisional damping (represented by a constant resistivity) and geometrical attenuation associated with the finite-scale Alfvén wave, and ion Landau damping of the child acoustic wave. The perpendicular wave scale alone, however, plays no discernible role: waves of different perpendicular scales exhibit similar instability excitation as long as the magnitude of the parallel ponderomotive force remains unchanged. These findings are corroborated by theoretical analysis and estimates. This new understanding of 3D kinetic Alfvén wave PDI physics is essential for laboratory study of the basic plasma process and may also aid future evaluation of the relevance/role of PDI in low-beta space plasma.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"62 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya-Ze Wu, Fan Yang, Xu-Zhi Zhou, Anton V. Artemyev, Xin An, Zhi-Yang Liu, Shan Wang, Qiu-Gang Zong
Force-free current sheets, characterized by field-aligned electric currents and approximately uniform plasma pressures, have been widely observed in the planetary magnetosphere and throughout the heliosphere. Recent observations of force-free current sheets have clearly shown the presence of anisotropic electron distributions with different temperatures perpendicular and parallel to the local magnetic field. In most of the kinetic models for one-dimensional, force-free current sheets, however, the electron distributions are nearly isotropic, which necessitates the construction of new models accounting for the electron temperature anisotropy. In this paper, we develop a model for anisotropic force-free current sheets, by incorporating the magnetic moment as an additional invariant of motion into the nearly isotropic electron distribution function of a previous model. Despite the different electron distributions, the electromagnetic profiles of the new model are often close to those in the nearly isotropic model. The applicability of our model is then validated via a comparison to a typical force-free current sheet in the Jovian magnetodisk, which shows good agreement between the model and the observations.
{"title":"Kinetic model of anisotropic force-free current sheets","authors":"Ya-Ze Wu, Fan Yang, Xu-Zhi Zhou, Anton V. Artemyev, Xin An, Zhi-Yang Liu, Shan Wang, Qiu-Gang Zong","doi":"10.1063/5.0213897","DOIUrl":"https://doi.org/10.1063/5.0213897","url":null,"abstract":"Force-free current sheets, characterized by field-aligned electric currents and approximately uniform plasma pressures, have been widely observed in the planetary magnetosphere and throughout the heliosphere. Recent observations of force-free current sheets have clearly shown the presence of anisotropic electron distributions with different temperatures perpendicular and parallel to the local magnetic field. In most of the kinetic models for one-dimensional, force-free current sheets, however, the electron distributions are nearly isotropic, which necessitates the construction of new models accounting for the electron temperature anisotropy. In this paper, we develop a model for anisotropic force-free current sheets, by incorporating the magnetic moment as an additional invariant of motion into the nearly isotropic electron distribution function of a previous model. Despite the different electron distributions, the electromagnetic profiles of the new model are often close to those in the nearly isotropic model. The applicability of our model is then validated via a comparison to a typical force-free current sheet in the Jovian magnetodisk, which shows good agreement between the model and the observations.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"12 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For 3D magnetic reconnection to occur there must exist a volume within which the electric field component parallel to the magnetic field is non-zero. In numerical experiments, locations of non-zero parallel electric field indicate sites of 3D magnetic reconnection. If these experiments contain all types of topological feature (null points, separatrix surfaces, spines and separators), then comparing topological features with the reconnection sites reveals that all the reconnection sites are threaded by separators with the local maxima/minima of the integrated parallel electric along fieldlines coinciding with these separators. However, not all separators thread a reconnection site. Furthermore, there are different types of separator. Cluster separators are short arising within an individual weak magnetic field region and have little parallel electric field along them so are not associated with much reconnection. Intercluster separators connect a positive null point lying in one weak-field region to a negative null point that lies in a different weak-field region. Intercluster separators often thread enhanced regions of parallel electric field and are long. Since separators form the boundary between four globally significant topologically distinct domains, they are important sites of reconnection, which can result in the global restructuring of the magnetic field. By considering kinematic bifurcation models in which separators form, it is possible to understand the formation of cluster and intercluster separators and explain their key properties.
{"title":"On the importance of separators as sites of 3D magnetic reconnection","authors":"C. E. Parnell","doi":"10.1063/5.0189787","DOIUrl":"https://doi.org/10.1063/5.0189787","url":null,"abstract":"For 3D magnetic reconnection to occur there must exist a volume within which the electric field component parallel to the magnetic field is non-zero. In numerical experiments, locations of non-zero parallel electric field indicate sites of 3D magnetic reconnection. If these experiments contain all types of topological feature (null points, separatrix surfaces, spines and separators), then comparing topological features with the reconnection sites reveals that all the reconnection sites are threaded by separators with the local maxima/minima of the integrated parallel electric along fieldlines coinciding with these separators. However, not all separators thread a reconnection site. Furthermore, there are different types of separator. Cluster separators are short arising within an individual weak magnetic field region and have little parallel electric field along them so are not associated with much reconnection. Intercluster separators connect a positive null point lying in one weak-field region to a negative null point that lies in a different weak-field region. Intercluster separators often thread enhanced regions of parallel electric field and are long. Since separators form the boundary between four globally significant topologically distinct domains, they are important sites of reconnection, which can result in the global restructuring of the magnetic field. By considering kinematic bifurcation models in which separators form, it is possible to understand the formation of cluster and intercluster separators and explain their key properties.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"12 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charged particles interacting with electromagnetic waves have a portion of their energy tied up in wave-driven oscillations. When these waves are localized to the exhaust of linear magnetic confinement systems, this ponderomotive effect can be utilized to enhance particle confinement. The same effect can be derived for particles moving via an E×B drift into a region of a static perturbation to the electromagnetic fields which has a large wave vector component in the direction of the motion. In this work, we use a simplified slab model to self-consistently solve for the electromagnetic fields within the fluid flowing plasma of a static flute-like (k∥=0) perturbation and evaluate the resulting ponderomotive potential. We find that two types of perturbations can exist within the flowing plasma, which are an O wave and an X wave in the frame moving with the fluid. In the case of tenuous plasma, these perturbations are magnetostatic or electrostatic multipole-analog perpendicular to the guiding magnetic field in the lab frame, respectfully. For denser plasmas, the O wave-like perturbation is screened at the electron skin depth scale, and the X wave-like perturbation is a combination of a similar perpendicular electric perturbation and parallel magnetic perturbation. The ponderomotive potential generated in the X wave-like case is gyrofrequency-dependent and can be used as either potential barriers or potential wells, depending on the direction of the flow velocity.
与电磁波相互作用的带电粒子,其部分能量会被波驱动的振荡所束缚。当这些波被定位到线性磁约束系统的排气装置上时,就可以利用这种思索动力效应来增强粒子约束。对于通过 E×B 漂移进入电磁场静态扰动区域的粒子来说,也可以得出同样的效应,因为电磁场在运动方向上有很大的波矢量分量。在这项工作中,我们使用一个简化的板坯模型来自洽地求解静态笛状(k∥=0)扰动的流体流动等离子体内的电磁场,并评估由此产生的思索动势。我们发现流动等离子体内可能存在两种扰动,在随流体运动的框架内分别是 O 波和 X 波。对于致密等离子体,这些扰动分别是垂直于实验室框架中引导磁场的磁静电或静电多极模拟。对于密度较大的等离子体,O 波状扰动在电子表皮深度尺度上被屏蔽,而 X 波状扰动是类似的垂直电扰动和平行磁扰动的组合。在 X 波样情况下产生的深思动势与陀螺频率有关,可根据流速方向用作势垒或势阱。
{"title":"Flowing plasma rearrangement in the presence of static perturbing fields","authors":"T. Rubin, I. E. Ochs, N. J. Fisch","doi":"10.1063/5.0222129","DOIUrl":"https://doi.org/10.1063/5.0222129","url":null,"abstract":"Charged particles interacting with electromagnetic waves have a portion of their energy tied up in wave-driven oscillations. When these waves are localized to the exhaust of linear magnetic confinement systems, this ponderomotive effect can be utilized to enhance particle confinement. The same effect can be derived for particles moving via an E×B drift into a region of a static perturbation to the electromagnetic fields which has a large wave vector component in the direction of the motion. In this work, we use a simplified slab model to self-consistently solve for the electromagnetic fields within the fluid flowing plasma of a static flute-like (k∥=0) perturbation and evaluate the resulting ponderomotive potential. We find that two types of perturbations can exist within the flowing plasma, which are an O wave and an X wave in the frame moving with the fluid. In the case of tenuous plasma, these perturbations are magnetostatic or electrostatic multipole-analog perpendicular to the guiding magnetic field in the lab frame, respectfully. For denser plasmas, the O wave-like perturbation is screened at the electron skin depth scale, and the X wave-like perturbation is a combination of a similar perpendicular electric perturbation and parallel magnetic perturbation. The ponderomotive potential generated in the X wave-like case is gyrofrequency-dependent and can be used as either potential barriers or potential wells, depending on the direction of the flow velocity.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"112 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work reports that Biermann self-generated magnetic fields of ≈200 MG and Hall parameters of ≈1.5 are produced in the stagnation phase of direct-drive cryogenic implosions at Omega. The magnetic fields produce a drop of 2.4% in fusion yield and 1% in ion temperature. A quantitative estimate of the effect of self-generated magnetic fields on yield and ion temperature is essential, since direct measurements of these fields are not available. Reconstructed simulations of the 50 Gbar implosions, with all the stagnation measurements reproduced simultaneously by a combination of mid- and low-mode asymmetries as degradation mechanisms [Bose et al., Phys. Plasmas 25, 062701 (2018)], are used to obtain the estimates. The magnetic fields cause a decrease in yield due to the Righi–Leduc heat flow, which exceeds any benefits from heat flow suppression due to magnetization. It is important to note that both direct-drive Omega-scale implosions and indirect-drive National Ignition Facility (NIF)-scale implosions [Walsh et al., Phys. Rev. Lett. 118, 155001 (2017)] produce similar estimates for the magnetic field strength, and both show a decrease in fusion yield, with the Righi–Leduc transport as the loss mechanism. However, the yield degradation at Omega is small and lower by ≈5× compared to the indirect-drive ignition-scale NIF estimate.
{"title":"Self-generated magnetic fields in the hot spot of direct-drive cryogenic implosions at Omega","authors":"C. A. Frank, A. Bose","doi":"10.1063/5.0211922","DOIUrl":"https://doi.org/10.1063/5.0211922","url":null,"abstract":"This work reports that Biermann self-generated magnetic fields of ≈200 MG and Hall parameters of ≈1.5 are produced in the stagnation phase of direct-drive cryogenic implosions at Omega. The magnetic fields produce a drop of 2.4% in fusion yield and 1% in ion temperature. A quantitative estimate of the effect of self-generated magnetic fields on yield and ion temperature is essential, since direct measurements of these fields are not available. Reconstructed simulations of the 50 Gbar implosions, with all the stagnation measurements reproduced simultaneously by a combination of mid- and low-mode asymmetries as degradation mechanisms [Bose et al., Phys. Plasmas 25, 062701 (2018)], are used to obtain the estimates. The magnetic fields cause a decrease in yield due to the Righi–Leduc heat flow, which exceeds any benefits from heat flow suppression due to magnetization. It is important to note that both direct-drive Omega-scale implosions and indirect-drive National Ignition Facility (NIF)-scale implosions [Walsh et al., Phys. Rev. Lett. 118, 155001 (2017)] produce similar estimates for the magnetic field strength, and both show a decrease in fusion yield, with the Righi–Leduc transport as the loss mechanism. However, the yield degradation at Omega is small and lower by ≈5× compared to the indirect-drive ignition-scale NIF estimate.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"7 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The plasma jet wind tunnel, as a ground simulation device for studying the electromagnetic properties of near-space vehicle sheaths, can help people conduct several studies, such as communications and electronic parameter diagnostics. The plasma produced by a plasma generator has time-dependent variations due to the influence of power supply oscillations, turbulence, and other aspects of the device. To accurately define the experimental state of plasma, it is necessary to carefully analyze the three-dimensional (3D) time-varying characteristics of the plasma jet accurately since the distribution is non-uniform. This paper uses volume tomography technology to reconstruct the time series of the 3D emission field of the plasma jet with high-speed cameras. Then, the time–frequency characteristics, overall instability of the emission intensity, central axis position, and shape of the plasma jet are analyzed. The following characteristics are mainly observed: First, the plasma generator ejects plasma intermittently, which then spirals forward away from the nozzle. Second, the intensity, the radius of central axis movement, and the shape of the plasma jet vary with time at the same low frequency. The magnitude of this frequency is mainly related to the rate of change of the jet's air pressure difference with the vacuum chamber. Third, the overall instability of the plasma jet increases along the axial direction away from the nozzle and radially away from the center of the jet.
{"title":"Analysis of three-dimensional time-varying characteristics of subsonic plasma jet","authors":"Fei Ding, Yanming Liu, Jing Jia, Yixuan Li, Leiqin He, Weifeng Deng","doi":"10.1063/5.0218607","DOIUrl":"https://doi.org/10.1063/5.0218607","url":null,"abstract":"The plasma jet wind tunnel, as a ground simulation device for studying the electromagnetic properties of near-space vehicle sheaths, can help people conduct several studies, such as communications and electronic parameter diagnostics. The plasma produced by a plasma generator has time-dependent variations due to the influence of power supply oscillations, turbulence, and other aspects of the device. To accurately define the experimental state of plasma, it is necessary to carefully analyze the three-dimensional (3D) time-varying characteristics of the plasma jet accurately since the distribution is non-uniform. This paper uses volume tomography technology to reconstruct the time series of the 3D emission field of the plasma jet with high-speed cameras. Then, the time–frequency characteristics, overall instability of the emission intensity, central axis position, and shape of the plasma jet are analyzed. The following characteristics are mainly observed: First, the plasma generator ejects plasma intermittently, which then spirals forward away from the nozzle. Second, the intensity, the radius of central axis movement, and the shape of the plasma jet vary with time at the same low frequency. The magnitude of this frequency is mainly related to the rate of change of the jet's air pressure difference with the vacuum chamber. Third, the overall instability of the plasma jet increases along the axial direction away from the nozzle and radially away from the center of the jet.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"25 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electromagnetic plasma propulsion is generated by the linear plasma propulsion (LPP) apparatus. The LPP device is upgraded to operate and simulate at a maximum energy of 5.4 kJ. The cathode's cylindrical upper portion is changed into a hemispherical shape as part of the upgrading process to boost the current sheath (CS) acceleration. According to the model, the CS moves in the z-direction with a linear velocity while moving in the θ-direction with an angular velocity. When the plasma is squeezed and compressed, it is driven through the extension tube. The model describes the CS motion, its characteristics, and the propelled plasma using four phases: an axial, an angular radial, a reflected, and an expansion phases. The simulated Ith and experimental Iex current signals were compared to prove the validity of the model assumption, where the values of Ith and Iex were 89.7 and 88 kA, respectively. According to the results, as the motion angle increases in the angular radial phase, the CS compresses, elongates, and is forced into the extension tube. The results showed that the peaks of both plasma inductance, velocity, temperature, and propelled plasma length were 36.3 nH, 6.36 cm/μs, 6.72 eV, and 3.22 cm, respectively.
{"title":"Simulation of hemispherical cathode-based linear plasma propulsion device upgrade","authors":"M. E. Abdel-kader","doi":"10.1063/5.0191580","DOIUrl":"https://doi.org/10.1063/5.0191580","url":null,"abstract":"Electromagnetic plasma propulsion is generated by the linear plasma propulsion (LPP) apparatus. The LPP device is upgraded to operate and simulate at a maximum energy of 5.4 kJ. The cathode's cylindrical upper portion is changed into a hemispherical shape as part of the upgrading process to boost the current sheath (CS) acceleration. According to the model, the CS moves in the z-direction with a linear velocity while moving in the θ-direction with an angular velocity. When the plasma is squeezed and compressed, it is driven through the extension tube. The model describes the CS motion, its characteristics, and the propelled plasma using four phases: an axial, an angular radial, a reflected, and an expansion phases. The simulated Ith and experimental Iex current signals were compared to prove the validity of the model assumption, where the values of Ith and Iex were 89.7 and 88 kA, respectively. According to the results, as the motion angle increases in the angular radial phase, the CS compresses, elongates, and is forced into the extension tube. The results showed that the peaks of both plasma inductance, velocity, temperature, and propelled plasma length were 36.3 nH, 6.36 cm/μs, 6.72 eV, and 3.22 cm, respectively.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper has established a relatively comprehensive model for ultra-low frequency (ULF) current induced by thermal pressure gradients and its propagation. In the ULF current excitation model, we decomposed the current into a constant term unaffected by altitude and a product with a function significantly influenced by altitude. Combining this with the EISCAT background, we determined that for modulation frequencies below 5 Hz, the optimal height for ULF current excitation corresponds to the critical frequency height. We calculated the ionospheric currents at heating altitudes of 332 km for modulation frequencies of 5 Hz; the corresponding maximum currents were 1.03 × 10−10 A·m−2. By incorporating the current into the ULF waves propagation model based on magnetoionic theory, we found that the electromagnetic field energy is mainly concentrated in the horizontal direction, indicating that the energy primarily propagates outward through magnetosonic waves. The dominant components are the electric field component Ey and the magnetic field component Bz, whose maximum values reached 1.1 μV·m−1 and 1.5 pT. Unfortunately, magnetosonic waves cannot propagate downward due to the sharp variation in the real part of the refractive index between 200 and 300 km. However, the shear Alfvén waves component By can propagate downward, and there is still an intensity of approximately 0.1 pT at the bottom of the ionosphere, which is because the refractive index of shear Alfvén waves is most uniform in the parallel magnetic field direction, allowing By to propagate parallel to the magnetic field effectively.
{"title":"Artificial excitation and propagation of ultra-low frequency signals in the polar ionosphere","authors":"Yong Li, Hui Li, Jian Wu, Xingbao Lyu, Yan Chai, Chengxun Yuan, Zhongxiang Zhou","doi":"10.1063/5.0202317","DOIUrl":"https://doi.org/10.1063/5.0202317","url":null,"abstract":"This paper has established a relatively comprehensive model for ultra-low frequency (ULF) current induced by thermal pressure gradients and its propagation. In the ULF current excitation model, we decomposed the current into a constant term unaffected by altitude and a product with a function significantly influenced by altitude. Combining this with the EISCAT background, we determined that for modulation frequencies below 5 Hz, the optimal height for ULF current excitation corresponds to the critical frequency height. We calculated the ionospheric currents at heating altitudes of 332 km for modulation frequencies of 5 Hz; the corresponding maximum currents were 1.03 × 10−10 A·m−2. By incorporating the current into the ULF waves propagation model based on magnetoionic theory, we found that the electromagnetic field energy is mainly concentrated in the horizontal direction, indicating that the energy primarily propagates outward through magnetosonic waves. The dominant components are the electric field component Ey and the magnetic field component Bz, whose maximum values reached 1.1 μV·m−1 and 1.5 pT. Unfortunately, magnetosonic waves cannot propagate downward due to the sharp variation in the real part of the refractive index between 200 and 300 km. However, the shear Alfvén waves component By can propagate downward, and there is still an intensity of approximately 0.1 pT at the bottom of the ionosphere, which is because the refractive index of shear Alfvén waves is most uniform in the parallel magnetic field direction, allowing By to propagate parallel to the magnetic field effectively.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"34 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Gonzalez-Izquierdo, P. Fischer, M. Touati, J. Hartmann, M. Speicher, V. Scutelnic, D. E. Rivas, G. Bodini, A. Fazzini, M. M. Günther, A. K. Härle, K. Kenney, E. Schork, S. Bruce, M. Spinks, H. J. Quevedo, A. Helal, M. Medina, E. Gaul, H. Ruhl, M. Schollmeier, S. Steinke, G. Korn
Efficient laser-driven plasma acceleration of ion beams requires precision control of the target–plasma profile, which is crucial to optimize the laser energy transfer. Along the laser propagation direction, this can be achieved by tailoring the temporal structure of the laser pulse. We show for the first time that frequency-doubling of a short pulse (hundreds-femtosecond range) petawatt-class mixed-glass laser system, which results in temporal intensity contrast enhancement, enables surface and volumetric laser–energy coupling, and the acceleration of proton beams from few-nanometer-thick foil targets. Experimentally, maximum ion energies and laser-to-proton energy conversion efficiencies were found to be both maximized at optimum laser and target conditions manifested when the normalized target density nearly equalizes the normalized laser vector potential, which is in agreement with theory and simulations. These signatures are recognized as a unique indication of the interaction between ultra-intense laser pulses with high temporal intensity contrast and ultra-thin nanometer-scale targets. Transverse modulations of accelerated proton beams in the form of bubble- and ring-like structures measured in the thinnest targets provide additional evidence of volumetric laser-driven particle acceleration regimes and transitional features in ultra-thin foil targets specific to laser–plasma interactions characterized by a high temporal intensity contrast. These results open avenues in the generation of high contrast laser pulses from short-pulse-femtosecond petawatt mixed-glass laser systems and demonstrate the feasibility of this technique for applications requiring high laser intensity contrast with high efficiency.
{"title":"Efficient laser-driven proton acceleration from a petawatt contrast-enhanced second harmonic mixed-glass laser system","authors":"B. Gonzalez-Izquierdo, P. Fischer, M. Touati, J. Hartmann, M. Speicher, V. Scutelnic, D. E. Rivas, G. Bodini, A. Fazzini, M. M. Günther, A. K. Härle, K. Kenney, E. Schork, S. Bruce, M. Spinks, H. J. Quevedo, A. Helal, M. Medina, E. Gaul, H. Ruhl, M. Schollmeier, S. Steinke, G. Korn","doi":"10.1063/5.0191366","DOIUrl":"https://doi.org/10.1063/5.0191366","url":null,"abstract":"Efficient laser-driven plasma acceleration of ion beams requires precision control of the target–plasma profile, which is crucial to optimize the laser energy transfer. Along the laser propagation direction, this can be achieved by tailoring the temporal structure of the laser pulse. We show for the first time that frequency-doubling of a short pulse (hundreds-femtosecond range) petawatt-class mixed-glass laser system, which results in temporal intensity contrast enhancement, enables surface and volumetric laser–energy coupling, and the acceleration of proton beams from few-nanometer-thick foil targets. Experimentally, maximum ion energies and laser-to-proton energy conversion efficiencies were found to be both maximized at optimum laser and target conditions manifested when the normalized target density nearly equalizes the normalized laser vector potential, which is in agreement with theory and simulations. These signatures are recognized as a unique indication of the interaction between ultra-intense laser pulses with high temporal intensity contrast and ultra-thin nanometer-scale targets. Transverse modulations of accelerated proton beams in the form of bubble- and ring-like structures measured in the thinnest targets provide additional evidence of volumetric laser-driven particle acceleration regimes and transitional features in ultra-thin foil targets specific to laser–plasma interactions characterized by a high temporal intensity contrast. These results open avenues in the generation of high contrast laser pulses from short-pulse-femtosecond petawatt mixed-glass laser systems and demonstrate the feasibility of this technique for applications requiring high laser intensity contrast with high efficiency.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"26 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parker J. Roberts, Vernon H. Chaplin, Benjamin A. Jorns
The azimuthal dynamics of ions along the inner pole of a Hall thruster with a centrally mounted cathode and a magnetic shielding topography are experimentally investigated. A time-averaged laser-induced fluorescence diagnostic is implemented to characterize the azimuthal ion velocity distribution, and its moments are computed numerically to infer bulk rotation speed and ion temperature. It is found that the time-averaged ion swirl velocity grows to 2 km/s in the near-pole region, and the cathode ions exhibit ion temperatures in the azimuthal direction approaching 8 eV. Both of these quantities exceed the speeds and temperatures anticipated from classical acceleration and heating. Time-resolved laser-induced fluorescence is then employed to investigate the role of plasma fluctuations in driving the time-averaged ion properties. Semicoherent fluctuations at 90 kHz are observed in the ion velocity distribution and its associated moments. These oscillations are correlated with the gradient-driven anti-drift wave, which propagates azimuthally in the near-field cathode plume. Quasilinear theory is used to construct a 1D model for acceleration and heating of the ion population as a result of the anti-drift mode. This approach demonstrates qualitative agreement with the time-averaged ion velocity and temperature, suggesting that the anti-drift mode may be a dominant driver of azimuthal ion acceleration and heating in front of the cathode keeper and the inner half of the inner front pole cover. These results are discussed in terms of their relevance to the erosion of thruster surfaces in the near-field cathode plume.
{"title":"Azimuthal ion dynamics at the inner pole of an axisymmetric Hall thruster","authors":"Parker J. Roberts, Vernon H. Chaplin, Benjamin A. Jorns","doi":"10.1063/5.0214477","DOIUrl":"https://doi.org/10.1063/5.0214477","url":null,"abstract":"The azimuthal dynamics of ions along the inner pole of a Hall thruster with a centrally mounted cathode and a magnetic shielding topography are experimentally investigated. A time-averaged laser-induced fluorescence diagnostic is implemented to characterize the azimuthal ion velocity distribution, and its moments are computed numerically to infer bulk rotation speed and ion temperature. It is found that the time-averaged ion swirl velocity grows to 2 km/s in the near-pole region, and the cathode ions exhibit ion temperatures in the azimuthal direction approaching 8 eV. Both of these quantities exceed the speeds and temperatures anticipated from classical acceleration and heating. Time-resolved laser-induced fluorescence is then employed to investigate the role of plasma fluctuations in driving the time-averaged ion properties. Semicoherent fluctuations at 90 kHz are observed in the ion velocity distribution and its associated moments. These oscillations are correlated with the gradient-driven anti-drift wave, which propagates azimuthally in the near-field cathode plume. Quasilinear theory is used to construct a 1D model for acceleration and heating of the ion population as a result of the anti-drift mode. This approach demonstrates qualitative agreement with the time-averaged ion velocity and temperature, suggesting that the anti-drift mode may be a dominant driver of azimuthal ion acceleration and heating in front of the cathode keeper and the inner half of the inner front pole cover. These results are discussed in terms of their relevance to the erosion of thruster surfaces in the near-field cathode plume.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"38 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}