Pub Date : 2022-09-02eCollection Date: 2022-09-01DOI: 10.33073/pjm-2022-029
Sara H Arafa, Wafa A Alshehri, Sameer R Organji, Khaled Elbanna, Najla A Obaid, Mohammad S Aldosari, Fatimah H Asiri, Iqbal Ahmad, Hussein H Abulreesh
To explore the prevalence of multidrug-resistant community-associated uropathogenic Escherichia coli (UPEC) and their virulence factors in Western Saudi Arabia. A total of 1,000 urine samples were examined for the presence of E. coli by selective plating on MacConkey, CLED, and sheep blood agar. Antimicrobial susceptibility patterns were determined using Vitek® 2 Compact (MIC) and the disc diffusion method with Mueller-Hinton agar. Genes encoding virulence factors (kpsMTII, traT, sat, csgA, vat, and iutA) were detected by PCR. The overall prevalence of UTI-associated E. coli was low, and a higher prevalence was detected in samples of female origin. Many of the isolates exhibited resistance to norfloxacin, and 60% of the isolates showed resistance to ampicillin. No resistance to imipenem, meropenem, or ertapenem was detected. In general, half of the isolates showed multiple resistance patterns. UPEC exhibited a weak ability to form biofilms, where no correlation was observed between multidrug resistance and biofilm-forming ability. All uropathogenic E. coli isolates carried the kpsMTII, iutA, traT, and csgA genes, whereas the low number of the isolates harbored the sat and vat genes. The diversity of virulence factors harbored by community-associated UPEC may render them more virulent and further explain the recurrence/relapse cases among community-associated UITs. To the best of our knowledge, this study constitutes the first exploration of virulence, biofilm-forming ability, and its association with multidrug resistance among UPEC isolates in Saudi Arabia. Further investigations are needed to elucidate the epidemiology of community-associated UPEC in Saudi Arabia.
{"title":"Antimicrobial Resistance, Virulence Factor-Encoding Genes, and Biofilm-Forming Ability of Community-Associated Uropathogenic <i>Escherichia coli</i> in Western Saudi Arabia.","authors":"Sara H Arafa, Wafa A Alshehri, Sameer R Organji, Khaled Elbanna, Najla A Obaid, Mohammad S Aldosari, Fatimah H Asiri, Iqbal Ahmad, Hussein H Abulreesh","doi":"10.33073/pjm-2022-029","DOIUrl":"https://doi.org/10.33073/pjm-2022-029","url":null,"abstract":"<p><p>To explore the prevalence of multidrug-resistant community-associated uropathogenic <i>Escherichia coli</i> (UPEC) and their virulence factors in Western Saudi Arabia. A total of 1,000 urine samples were examined for the presence of <i>E. coli</i> by selective plating on MacConkey, CLED, and sheep blood agar. Antimicrobial susceptibility patterns were determined using Vitek<sup>®</sup> 2 Compact (MIC) and the disc diffusion method with Mueller-Hinton agar. Genes encoding virulence factors (<i>kpsMTII</i>, <i>traT</i>, <i>sat</i>, <i>csgA</i>, <i>vat</i>, and <i>iutA</i>) were detected by PCR. The overall prevalence of UTI-associated <i>E. coli</i> was low, and a higher prevalence was detected in samples of female origin. Many of the isolates exhibited resistance to norfloxacin, and 60% of the isolates showed resistance to ampicillin. No resistance to imipenem, meropenem, or ertapenem was detected. In general, half of the isolates showed multiple resistance patterns. UPEC exhibited a weak ability to form biofilms, where no correlation was observed between multidrug resistance and biofilm-forming ability. All uropathogenic <i>E. coli</i> isolates carried the <i>kpsMTII</i>, <i>iutA</i>, <i>traT</i>, and <i>csgA</i> genes, whereas the low number of the isolates harbored the <i>sat</i> and <i>vat</i> genes. The diversity of virulence factors harbored by community-associated UPEC may render them more virulent and further explain the recurrence/relapse cases among community-associated UITs. To the best of our knowledge, this study constitutes the first exploration of virulence, biofilm-forming ability, and its association with multidrug resistance among UPEC isolates in Saudi Arabia. Further investigations are needed to elucidate the epidemiology of community-associated UPEC in Saudi Arabia.</p>","PeriodicalId":20272,"journal":{"name":"Polish Journal of Microbiology","volume":"71 3","pages":"325-339"},"PeriodicalIF":2.1,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/88/b5/pjm-71-325.PMC9608162.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40337373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joanna Iwanicka, Tomasz Iwanicki, Marcin Kaczmarczyk, Włodzimierz Mazur
The rapidly spreading Coronavirus Disease 2019 (COVID-19) pandemic has led to a global health crisis and has left a deep mark on society, culture, and the global economy. Despite considerable efforts made to contain the disease, SARS-CoV-2 still poses a threat on a global scale. The current epidemiological situation caused an urgent need to understand the basic mechanisms of the virus transmission and COVID-19 severe course. This review summarizes current knowledge on clinical courses, diagnostics, treatment, and prevention of COVID-19. Moreover, we have included the latest research results on the genetic characterization of SARS-CoV-2 and genetic determinants of susceptibility and severity to infection.
{"title":"Clinical and Genetic Characteristics of Coronaviruses with Particular Emphasis on SARS-CoV-2 Virus.","authors":"Joanna Iwanicka, Tomasz Iwanicki, Marcin Kaczmarczyk, Włodzimierz Mazur","doi":"10.33073/pjm-2022-022","DOIUrl":"https://doi.org/10.33073/pjm-2022-022","url":null,"abstract":"<p><p>The rapidly spreading Coronavirus Disease 2019 (COVID-19) pandemic has led to a global health crisis and has left a deep mark on society, culture, and the global economy. Despite considerable efforts made to contain the disease, SARS-CoV-2 still poses a threat on a global scale. The current epidemiological situation caused an urgent need to understand the basic mechanisms of the virus transmission and COVID-19 severe course. This review summarizes current knowledge on clinical courses, diagnostics, treatment, and prevention of COVID-19. Moreover, we have included the latest research results on the genetic characterization of SARS-CoV-2 and genetic determinants of susceptibility and severity to infection.</p>","PeriodicalId":20272,"journal":{"name":"Polish Journal of Microbiology","volume":"71 2","pages":"141-159"},"PeriodicalIF":2.1,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ed/ba/pjm-71-141.PMC9252140.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9180833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Zhao, Lijie Yuan, Dongli Zhu, Banghao Sun, Juan Du, Jingyuan Wang
Abstract To explore the role of gut microbiota in Graves’ disease (GD) and Hashimoto’s thyroiditis (HT). Seventy fecal samples were collected, including 27 patients with GD, 27 with HT, and 16 samples from healthy volunteers. Chemiluminescence was used to detect thyroid function and autoantibodies (FT3, FT4, TSH, TRAb, TGAb, and TPOAb); thyroid ultrasound and 16S sequencing were used to analyze the bacteria in fecal samples; KEGG (Kyoto Encyclopedia of Genes and Genomes) and COG (Clusters of Orthologous Groups) were used to analyze the functional prediction and pathogenesis. The overall structure of gut microbiota in the GD and HT groups was significantly different from the healthy control group. Proteobacteria and Actinobacteria contents were the highest in the HT group. Compared to the control group, the GD and HT groups had a higher abundance of Erysipelotrichia, Cyanobacteria, and Ruminococcus_2 and lower levels of Bacillaceae and Megamonas. Further analysis of KEGG found that the “ABC transporter” metabolic pathway was highly correlated with the occurrence of GD and HT. COG analysis showed that the GD and HT groups were enriched in carbohydrate transport and metabolism compared to the healthy control group but not in amino acid transport and metabolism. Our data suggested that Bacillus, Blautia, and Ornithinimicrobium could be used as potential markers to distinguish GD and HT from the healthy population and that “ABC transporter” metabolic pathway may be involved in the pathogenesis of GD and HT.
探讨肠道菌群在Graves病(GD)和桥本甲状腺炎(HT)中的作用。收集了70份粪便样本,其中GD患者27例,HT患者27例,健康志愿者16例。化学发光法检测甲状腺功能及自身抗体(FT3、FT4、TSH、TRAb、TGAb、TPOAb);采用甲状腺超声和16S测序对粪便样品进行细菌分析;利用京都基因与基因组百科全书(KEGG)和COG (Clusters of Orthologous Groups)对其功能预测和发病机制进行分析。GD组和HT组的肠道菌群总体结构与健康对照组有显著差异。变形菌群和放线菌群含量以HT组最高。与对照组相比,GD和HT组丹毒毛菌、蓝藻菌和瘤胃球菌的丰度较高,杆菌科和巨单胞菌的丰度较低。进一步分析KEGG发现,“ABC转运体”代谢途径与GD和HT的发生高度相关。COG分析显示,与健康对照组相比,GD和HT组碳水化合物运输和代谢富集,但氨基酸运输和代谢不富集。我们的数据提示芽孢杆菌、Blautia和ornithinimicroum可以作为区分GD和HT与健康人群的潜在标志物,“ABC转运体”代谢途径可能参与了GD和HT的发病机制。
{"title":"Alterations and Mechanism of Gut Microbiota in Graves’ Disease and Hashimoto’s Thyroiditis","authors":"Hong Zhao, Lijie Yuan, Dongli Zhu, Banghao Sun, Juan Du, Jingyuan Wang","doi":"10.33073/pjm-2022-016","DOIUrl":"https://doi.org/10.33073/pjm-2022-016","url":null,"abstract":"Abstract To explore the role of gut microbiota in Graves’ disease (GD) and Hashimoto’s thyroiditis (HT). Seventy fecal samples were collected, including 27 patients with GD, 27 with HT, and 16 samples from healthy volunteers. Chemiluminescence was used to detect thyroid function and autoantibodies (FT3, FT4, TSH, TRAb, TGAb, and TPOAb); thyroid ultrasound and 16S sequencing were used to analyze the bacteria in fecal samples; KEGG (Kyoto Encyclopedia of Genes and Genomes) and COG (Clusters of Orthologous Groups) were used to analyze the functional prediction and pathogenesis. The overall structure of gut microbiota in the GD and HT groups was significantly different from the healthy control group. Proteobacteria and Actinobacteria contents were the highest in the HT group. Compared to the control group, the GD and HT groups had a higher abundance of Erysipelotrichia, Cyanobacteria, and Ruminococcus_2 and lower levels of Bacillaceae and Megamonas. Further analysis of KEGG found that the “ABC transporter” metabolic pathway was highly correlated with the occurrence of GD and HT. COG analysis showed that the GD and HT groups were enriched in carbohydrate transport and metabolism compared to the healthy control group but not in amino acid transport and metabolism. Our data suggested that Bacillus, Blautia, and Ornithinimicrobium could be used as potential markers to distinguish GD and HT from the healthy population and that “ABC transporter” metabolic pathway may be involved in the pathogenesis of GD and HT.","PeriodicalId":20272,"journal":{"name":"Polish Journal of Microbiology","volume":"71 1","pages":"173 - 189"},"PeriodicalIF":2.1,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46814938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kishani N Naligama, Kavindi E. Weerasinghe, A. Halmillawewa
Abstract Exploring untapped microbial potentials in previously uncharted environments has become crucial in discovering novel secondary metabolites and enzymes for biotechnological applications. Among prokaryotes, actinomycetes are well recognized for producing a vast range of secondary metabolites and extracellular enzymes. In the present study, we have used surface sediments from ‘Kadolkele’ mangrove ecosystem located in the Negombo lagoon area, Sri Lanka, to isolate actinomycetes with bioactive potentials. A total of six actinomycetes were isolated on modified-starch casein agar and characterized. The isolates were evaluated for their antibacterial activity against four selected bacterial strains and to produce extracellular enzymes: cellulase, amylase, protease, and lipase. Three out of the six isolates exhibited antibacterial activity against Staphylococcus aureus, Escherichia coli, and Bacillus cereus, but not against Listeria monocytogenes. Five strains could produce extracellular cellulase, while all six isolates exhibited amylase activity. Only three of the six isolates were positive for protease and lipase assays separately. Ac-1, Ac-2, and Ac-9, identified as Streptomyces spp. with the 16S rRNA gene sequencing, were used for pigment extraction using four different solvents. Acetone-extracted crude pigments of Ac-1 and Ac-2 were further used in well-diffusion assays, and growth inhibition of test bacteria was observed only with the crude pigment extract of Ac-2. Further, six different commercially available fabrics were dyed with crude pigments of Ac-1. The dyed fabrics retained the yellow color after acid, alkaline, and cold-water treatments suggesting the potential of the Ac-1 pigment to be used in biotechnological applications.
{"title":"Characterization of Bioactive Actinomycetes Isolated from Kadolkele Mangrove Sediments, Sri Lanka","authors":"Kishani N Naligama, Kavindi E. Weerasinghe, A. Halmillawewa","doi":"10.33073/pjm-2022-017","DOIUrl":"https://doi.org/10.33073/pjm-2022-017","url":null,"abstract":"Abstract Exploring untapped microbial potentials in previously uncharted environments has become crucial in discovering novel secondary metabolites and enzymes for biotechnological applications. Among prokaryotes, actinomycetes are well recognized for producing a vast range of secondary metabolites and extracellular enzymes. In the present study, we have used surface sediments from ‘Kadolkele’ mangrove ecosystem located in the Negombo lagoon area, Sri Lanka, to isolate actinomycetes with bioactive potentials. A total of six actinomycetes were isolated on modified-starch casein agar and characterized. The isolates were evaluated for their antibacterial activity against four selected bacterial strains and to produce extracellular enzymes: cellulase, amylase, protease, and lipase. Three out of the six isolates exhibited antibacterial activity against Staphylococcus aureus, Escherichia coli, and Bacillus cereus, but not against Listeria monocytogenes. Five strains could produce extracellular cellulase, while all six isolates exhibited amylase activity. Only three of the six isolates were positive for protease and lipase assays separately. Ac-1, Ac-2, and Ac-9, identified as Streptomyces spp. with the 16S rRNA gene sequencing, were used for pigment extraction using four different solvents. Acetone-extracted crude pigments of Ac-1 and Ac-2 were further used in well-diffusion assays, and growth inhibition of test bacteria was observed only with the crude pigment extract of Ac-2. Further, six different commercially available fabrics were dyed with crude pigments of Ac-1. The dyed fabrics retained the yellow color after acid, alkaline, and cold-water treatments suggesting the potential of the Ac-1 pigment to be used in biotechnological applications.","PeriodicalId":20272,"journal":{"name":"Polish Journal of Microbiology","volume":"71 1","pages":"191 - 204"},"PeriodicalIF":2.1,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43576260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huixia Chen, Huizhong Xie, Dong Shao, Lijun Chen, Siyu Chen, Lin Wang, Xiao Han
Abstract The oral cavity serves as another reservoir for gastric Helicobacter pylori and may contribute to the failure of gastric H. pylori eradication therapy. However, changes to the oral microbial composition after gastric H. pylori eradication therapy has not yet been identified. This study aims to dissect whether the oral microbiota is involved and which bacterium mediates the clinic failure in H. pylori eradication. In the present study, the oral microorganisms from patients who had received the gastric H. pylori eradication treatment were analyzed by a high-throughput 16S rRNA deep sequencing. We found that the β diversity and composition of oral microbiota were remarkably changed in the patients who had experienced successful gastric H. pylori eradication treatment (SE group) compared to the failure group (FE group). Significantly enriched families, including Prevotellaceae, Streptococcaceae, Caulobacteraceae, and Lactobacillaceae, were detected in the SE group. In contrast, the bacterial families, such as Weeksellaceae, Neisseriaceae, Peptostreptococcaceae, Spirochaetaceae, and Veillonellaceae, were abundantly expressed in the FE group. Five operational taxonomic units (OTUs) were positively correlated with DOB values, while two OTUs exhibited negative trends. These different enriched OTUs were extensively involved in the 20 metabolic pathways. These results suggest that a balanced environment in the oral microbiota contributes to H. pylori eradication and metabolic homeostasis in humans. Our data demonstrated that the changes in oral microbiota might contribute to the therapeutic effects of antibiotic therapy. Therefore, a different therapy on the detrimental oral microbiota will increase the therapeutic efficacy of antibiotics on H. pylori infection.
{"title":"Oral Microbiota, a Potential Determinant for the Treatment Efficacy of Gastric Helicobacter Pylori Eradication in Humans","authors":"Huixia Chen, Huizhong Xie, Dong Shao, Lijun Chen, Siyu Chen, Lin Wang, Xiao Han","doi":"10.33073/pjm-2022-020","DOIUrl":"https://doi.org/10.33073/pjm-2022-020","url":null,"abstract":"Abstract The oral cavity serves as another reservoir for gastric Helicobacter pylori and may contribute to the failure of gastric H. pylori eradication therapy. However, changes to the oral microbial composition after gastric H. pylori eradication therapy has not yet been identified. This study aims to dissect whether the oral microbiota is involved and which bacterium mediates the clinic failure in H. pylori eradication. In the present study, the oral microorganisms from patients who had received the gastric H. pylori eradication treatment were analyzed by a high-throughput 16S rRNA deep sequencing. We found that the β diversity and composition of oral microbiota were remarkably changed in the patients who had experienced successful gastric H. pylori eradication treatment (SE group) compared to the failure group (FE group). Significantly enriched families, including Prevotellaceae, Streptococcaceae, Caulobacteraceae, and Lactobacillaceae, were detected in the SE group. In contrast, the bacterial families, such as Weeksellaceae, Neisseriaceae, Peptostreptococcaceae, Spirochaetaceae, and Veillonellaceae, were abundantly expressed in the FE group. Five operational taxonomic units (OTUs) were positively correlated with DOB values, while two OTUs exhibited negative trends. These different enriched OTUs were extensively involved in the 20 metabolic pathways. These results suggest that a balanced environment in the oral microbiota contributes to H. pylori eradication and metabolic homeostasis in humans. Our data demonstrated that the changes in oral microbiota might contribute to the therapeutic effects of antibiotic therapy. Therefore, a different therapy on the detrimental oral microbiota will increase the therapeutic efficacy of antibiotics on H. pylori infection.","PeriodicalId":20272,"journal":{"name":"Polish Journal of Microbiology","volume":"71 1","pages":"227 - 239"},"PeriodicalIF":2.1,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47730543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Breast cancer (BC) and benign breast lesions (BBLs) are common diseases in women worldwide. The gut microbiota plays a vital role in regulating breast diseases’ formation, progression, and therapy response. Hence, we explored the structure and function of gut microflora in patients with BC and BBLs. A cohort of 66 subjects was enrolled in the study. Twenty-six subjects had BC, 20 subjects had BBLs, and 20 matched healthy controls. High throughput 16S ribosomal RNA (16S rRNA) gene sequencing technology was used to determine the microbial community structure. Compared with healthy individuals, BC patients had significantly lower alpha diversity indices (Sobs index, p = 0.019; Chao1 index, p = 0.033). Sobs and Chao1 indices were also lower in patients with BBLs than healthy individuals, without statistical significance (p = 0.279, p = 0.314, respectively). Both unweighted and weighted UniFrac analysis showed that beta diversity differed significantly among the three groups (p = 3.376e–14, p < 0.001, respectively). Compared with healthy individuals, the levels of Porphyromonas and Peptoniphilus were higher in BC patients (p = 0.004, p = 0.007, respectively), whereas Escherichia and Lactobacillus were more enriched in the benign breast lesion group (p < 0.001, p = 0.011, respectively). Our study indicates that patients with BC and BBLs may undergo significant changes in intestinal microbiota. These findings can help elucidate the role of intestinal flora in BC and BBLs patients.
{"title":"Analysis of Gut Microbiota in Patients with Breast Cancer and Benign Breast Lesions","authors":"Zhijun Ma, Ma Qu, Xiaowu Wang","doi":"10.33073/pjm-2022-019","DOIUrl":"https://doi.org/10.33073/pjm-2022-019","url":null,"abstract":"Abstract Breast cancer (BC) and benign breast lesions (BBLs) are common diseases in women worldwide. The gut microbiota plays a vital role in regulating breast diseases’ formation, progression, and therapy response. Hence, we explored the structure and function of gut microflora in patients with BC and BBLs. A cohort of 66 subjects was enrolled in the study. Twenty-six subjects had BC, 20 subjects had BBLs, and 20 matched healthy controls. High throughput 16S ribosomal RNA (16S rRNA) gene sequencing technology was used to determine the microbial community structure. Compared with healthy individuals, BC patients had significantly lower alpha diversity indices (Sobs index, p = 0.019; Chao1 index, p = 0.033). Sobs and Chao1 indices were also lower in patients with BBLs than healthy individuals, without statistical significance (p = 0.279, p = 0.314, respectively). Both unweighted and weighted UniFrac analysis showed that beta diversity differed significantly among the three groups (p = 3.376e–14, p < 0.001, respectively). Compared with healthy individuals, the levels of Porphyromonas and Peptoniphilus were higher in BC patients (p = 0.004, p = 0.007, respectively), whereas Escherichia and Lactobacillus were more enriched in the benign breast lesion group (p < 0.001, p = 0.011, respectively). Our study indicates that patients with BC and BBLs may undergo significant changes in intestinal microbiota. These findings can help elucidate the role of intestinal flora in BC and BBLs patients.","PeriodicalId":20272,"journal":{"name":"Polish Journal of Microbiology","volume":"71 1","pages":"217 - 226"},"PeriodicalIF":2.1,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49631645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Drug-resistant Mycobacterium tuberculosis (DR-MTB) is a major health threat to human beings. This study aimed to evaluate the prevalence and drug resistance profile of MTB. Data were collected from 2,296 newly diagnosed, and 246 retreated tuberculosis (TB) patients who attended the Advisory Clinic for Chest Diseases and Respiratory in Basra province from January 2016 to December 2020. Both new diagnostic and retreated TB cases showed that DR-MTB cases were significantly higher at age 15–34 years, pulmonary TB, and urban residents but with no significant difference regarding gender. The drugs resistance was significantly higher among the retreated cases compared with the new diagnostic patients (20.3% vs. 2.4%, p < 0.0001), with the percentage of the resistance to first-line drugs in primary and secondary cases including isoniazid (1% and 17.1%), rifampicin (0.78% and 15.8%), ethambutol (0.56% and 8.5%), streptomycin (1.3% and 9.75%). Notice that the most common drug resistance was against streptomycin with 1.3% in new patients and against isoniazid (17.1%) in retreated patients. The rate of total drug-resistant TB, multi-drug resistant TB, mono-drug resistant TB, and rifampicin-resistant TB among new tuberculosis cases increased in this period from 2.2 to 6.7%, 0.17 to 1.6%, 0.85 to 4%, and 0.17 to 4%, with a percentage change of 204.54, 841.17, 370.58, 22.5%, respectively. The rates of poly drug-resistant TB and ethambutol-resistant-TB dropped in this period by 15.96%, and 0.7%, with a decrease from 1.19 to 1% and from 1 to 0.3%, respectively. Similarly, the increase of drug-resistant TB among secondary cases has also occurred. In conclusion, the temporal trend showed an increase in the rate of drug resistance of M. tuberculosis since 2016, with a predominant multi-drug-resistant TB and isoniazid-resistant TB.
{"title":"Prevalence and Drug Resistance Pattern of Mycobacterium Tuberculosis Isolated from Tuberculosis Patients in Basra, Iraq","authors":"K. Mohammed, Ghorob S. Khudhair, D. Al-Rabeai","doi":"10.33073/pjm-2022-018","DOIUrl":"https://doi.org/10.33073/pjm-2022-018","url":null,"abstract":"Abstract Drug-resistant Mycobacterium tuberculosis (DR-MTB) is a major health threat to human beings. This study aimed to evaluate the prevalence and drug resistance profile of MTB. Data were collected from 2,296 newly diagnosed, and 246 retreated tuberculosis (TB) patients who attended the Advisory Clinic for Chest Diseases and Respiratory in Basra province from January 2016 to December 2020. Both new diagnostic and retreated TB cases showed that DR-MTB cases were significantly higher at age 15–34 years, pulmonary TB, and urban residents but with no significant difference regarding gender. The drugs resistance was significantly higher among the retreated cases compared with the new diagnostic patients (20.3% vs. 2.4%, p < 0.0001), with the percentage of the resistance to first-line drugs in primary and secondary cases including isoniazid (1% and 17.1%), rifampicin (0.78% and 15.8%), ethambutol (0.56% and 8.5%), streptomycin (1.3% and 9.75%). Notice that the most common drug resistance was against streptomycin with 1.3% in new patients and against isoniazid (17.1%) in retreated patients. The rate of total drug-resistant TB, multi-drug resistant TB, mono-drug resistant TB, and rifampicin-resistant TB among new tuberculosis cases increased in this period from 2.2 to 6.7%, 0.17 to 1.6%, 0.85 to 4%, and 0.17 to 4%, with a percentage change of 204.54, 841.17, 370.58, 22.5%, respectively. The rates of poly drug-resistant TB and ethambutol-resistant-TB dropped in this period by 15.96%, and 0.7%, with a decrease from 1.19 to 1% and from 1 to 0.3%, respectively. Similarly, the increase of drug-resistant TB among secondary cases has also occurred. In conclusion, the temporal trend showed an increase in the rate of drug resistance of M. tuberculosis since 2016, with a predominant multi-drug-resistant TB and isoniazid-resistant TB.","PeriodicalId":20272,"journal":{"name":"Polish Journal of Microbiology","volume":"71 1","pages":"205 - 215"},"PeriodicalIF":2.1,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44539175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Spaceflight missions affect the behavior of microbes that are inevitably introduced into space environments and may impact astronauts’ health. Current studies have mainly focused on the biological characteristics and molecular mechanisms of microbes after short-term or long-term spaceflight, but few have compared the impact of various lengths of spaceflight missions on the characteristics of microbes. Researchers generally agree that microgravity (MG) is the most critical factor influencing microbial physiology in space capsules during flight missions. This study compared the growth behavior and transcriptome profile of Proteus mirabilis cells exposed to long-term simulated microgravity (SMG) with those exposed to short-term SMG. The results showed that long-term SMG decreased the growth rate, depressed biofilm formation ability, and affected several transcriptomic profiles, including stress response, membrane transportation, metal ion transportation, biological adhesion, carbohydrate metabolism, and lipid metabolism in contrast to short-term SMG. This study improved the understanding of long-term versus short-term SMG effects on P. mirabilis behavior and provided relevant references for analyzing the influence of P. mirabilis on astronaut health during spaceflights.
{"title":"Growth Behavior and Transcriptome Profile Analysis of Proteus Mirabilis Strain Under Long- Versus Short-Term Simulated Microgravity Environment","authors":"Bin Zhang, P. Bai, Dapeng Wang","doi":"10.33073/pjm-2022-015","DOIUrl":"https://doi.org/10.33073/pjm-2022-015","url":null,"abstract":"Abstract Spaceflight missions affect the behavior of microbes that are inevitably introduced into space environments and may impact astronauts’ health. Current studies have mainly focused on the biological characteristics and molecular mechanisms of microbes after short-term or long-term spaceflight, but few have compared the impact of various lengths of spaceflight missions on the characteristics of microbes. Researchers generally agree that microgravity (MG) is the most critical factor influencing microbial physiology in space capsules during flight missions. This study compared the growth behavior and transcriptome profile of Proteus mirabilis cells exposed to long-term simulated microgravity (SMG) with those exposed to short-term SMG. The results showed that long-term SMG decreased the growth rate, depressed biofilm formation ability, and affected several transcriptomic profiles, including stress response, membrane transportation, metal ion transportation, biological adhesion, carbohydrate metabolism, and lipid metabolism in contrast to short-term SMG. This study improved the understanding of long-term versus short-term SMG effects on P. mirabilis behavior and provided relevant references for analyzing the influence of P. mirabilis on astronaut health during spaceflights.","PeriodicalId":20272,"journal":{"name":"Polish Journal of Microbiology","volume":"71 1","pages":"161 - 171"},"PeriodicalIF":2.1,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43416630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to clarified characteristics and function of internalin G (inlG) in Listeria monocytogenes ATCC®19111 (1/2a) (LM), the immune protection of the inlG was evaluated in mice, the homologous recombination was used to construct inlG deletion strains, and their biological characteristics were studied by the transcriptomics analysis. As a result, the immunization of mice with the purified protein achieved a protective effect against bacterial infection. The deletion strain LM-AinlG was successfully constructed with genetic stability. The mouse infection test showed that the virulence of LM was decreased after the deletion of the inlG gene. The deletion strain showed enhanced adhesion to and invasion of Caco-2 cells. Compared to the wild strain, 18 genes were up-regulated, and 24 genes were down-regulated in the LM-AinlG. This study has laid a foundation for further research on the function of inlG and the pathogenesis of LM. In this study, immunization of mice with the purified inlG protein achieved a protective effect against Listeria monocytogenes infection. The virulence of LM-ΔinlG was decreased by mouse infection. However, the adhesion and invasion ability to Caco-2 cell were enhanced. Compared to the wild strain, 18 genes were up-regulated, and 24 genes were down-regulated in the LM-ΔinlG. This study has laid a foundation for further study of the function of the inlG and the listeriosis.
{"title":"The Characteristics and Function of Internalin G in <i>Listeria monocytogenes</i>.","authors":"Huitian Gou, Yuanyuan Liu, Wenjing Shi, Jinyu Nan, Chuan Wang, Yanan Sun, Qihang Cao, Huilin Wei, Chen Song, Changqing Tian, Yanquan Wei, Huiwen Xue","doi":"10.33073/pjm-2022-009","DOIUrl":"https://doi.org/10.33073/pjm-2022-009","url":null,"abstract":"<p><p>In order to clarified characteristics and function of internalin G (inlG) in <i>Listeria monocytogenes</i> ATCC<sup>®</sup>19111 (1/2a) (LM), the immune protection of the inlG was evaluated in mice, the homologous recombination was used to construct <i>inlG</i> deletion strains, and their biological characteristics were studied by the transcriptomics analysis. As a result, the immunization of mice with the purified protein achieved a protective effect against bacterial infection. The deletion strain LM-AinlG was successfully constructed with genetic stability. The mouse infection test showed that the virulence of LM was decreased after the deletion of the <i>inlG</i> gene. The deletion strain showed enhanced adhesion to and invasion of Caco-2 cells. Compared to the wild strain, 18 genes were up-regulated, and 24 genes were down-regulated in the LM-AinlG. This study has laid a foundation for further research on the function of <i>inlG</i> and the pathogenesis of LM. In this study, immunization of mice with the purified inlG protein achieved a protective effect against <i>Listeria monocytogenes</i> infection. The virulence of LM-ΔinlG was decreased by mouse infection. However, the adhesion and invasion ability to Caco-2 cell were enhanced. Compared to the wild strain, 18 genes were up-regulated, and 24 genes were down-regulated in the LM-ΔinlG. This study has laid a foundation for further study of the function of the inlG and the listeriosis.</p>","PeriodicalId":20272,"journal":{"name":"Polish Journal of Microbiology","volume":"71 1","pages":"63-71"},"PeriodicalIF":2.1,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/f2/pjm-71-063.PMC9152910.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10618903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil salinity and alkalization limit plant growth and agricultural productivity worldwide. The application of salt-tolerant plant growth-promoting rhizobacteria (PGPR) effectively improved plant tolerance to saline-alkali stress. To obtain the beneficial actinomyces resources with salt tolerance, thirteen isolates were isolated from rhizosphere saline and alkaline soil of Phragmites communis. Among these isolates, D2-8 was moderately halophilic to NaCl and showed 120 mmol soda saline-alkali solution tolerance. Moreover, the plant growth-promoting test demonstrated that D2-8 produced siderophore, IAA, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), and organic acids. D2-8 showed 99.4% homology with the type strain Streptomyces paradoxus NBRC 14887T and shared the same branch, and, therefore, it was designated S. paradoxus D2-8. Its genome was sequenced to gain insight into the mechanism of growth-promoting and saline-alkali tolerance of D2-8. IAA and siderophore biosynthesis pathway, genes encoding ACC deaminase, together with six antibiotics biosynthesis gene clusters with antifungal or antibacterial activity, were identified. The compatible solute ectoine biosynthesis gene cluster, production, and uptake of choline and glycine betaine cluster in the D2-8 genome may contribute to the saline-alkali tolerance of the strain. Furthermore, D2-8 significantly promoted the seedling growth even under soda saline-alkali stress, and seed coating with D2-8 isolate increased by 5.88% of the soybean yield in the field. These results imply its significant potential to improve soybean soda saline-alkali tolerance and promote crop health in alkaline soil.
{"title":"A Salt-Tolerant <i>Streptomyces paradoxus</i> D2-8 from Rhizosphere Soil of <i>Phragmites communis</i> Augments Soybean Tolerance to Soda Saline-Alkali Stress.","authors":"Yamei Gao, Yiqiang Han, Xin Li, Mingyang Li, Chunxu Wang, Zhiwen Li, Yanjie Wang, Weidong Wang","doi":"10.33073/pjm-2022-006","DOIUrl":"10.33073/pjm-2022-006","url":null,"abstract":"<p><p>Soil salinity and alkalization limit plant growth and agricultural productivity worldwide. The application of salt-tolerant plant growth-promoting rhizobacteria (PGPR) effectively improved plant tolerance to saline-alkali stress. To obtain the beneficial actinomyces resources with salt tolerance, thirteen isolates were isolated from rhizosphere saline and alkaline soil of <i>Phragmites communis</i>. Among these isolates, D2-8 was moderately halophilic to NaCl and showed 120 mmol soda saline-alkali solution tolerance. Moreover, the plant growth-promoting test demonstrated that D2-8 produced siderophore, IAA, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), and organic acids. D2-8 showed 99.4% homology with the type strain <i>Streptomyces paradoxus</i> NBRC 14887<sup>T</sup> and shared the same branch, and, therefore, it was designated <i>S</i>. <i>paradoxus</i> D2-8. Its genome was sequenced to gain insight into the mechanism of growth-promoting and saline-alkali tolerance of D2-8. IAA and siderophore biosynthesis pathway, genes encoding ACC deaminase, together with six antibiotics biosynthesis gene clusters with antifungal or antibacterial activity, were identified. The compatible solute ectoine biosynthesis gene cluster, production, and uptake of choline and glycine betaine cluster in the D2-8 genome may contribute to the saline-alkali tolerance of the strain. Furthermore, D2-8 significantly promoted the seedling growth even under soda saline-alkali stress, and seed coating with D2-8 isolate increased by 5.88% of the soybean yield in the field. These results imply its significant potential to improve soybean soda saline-alkali tolerance and promote crop health in alkaline soil.</p>","PeriodicalId":20272,"journal":{"name":"Polish Journal of Microbiology","volume":"71 1","pages":"43-53"},"PeriodicalIF":2.1,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41731386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}