首页 > 最新文献

Journal of Tissue Engineering and Regenerative Medicine最新文献

英文 中文
A Novel Epidermis Model Using Primary Hidradenitis Suppurativa Keratinocytes 使用原发性化脓性角质形成细胞的新型表皮模型
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-27 DOI: 10.1155/2024/4363876
Isabel Haferland, Andreas Pinter, Tanja Rossmanith, Sandra Diehl, Claudia Buerger, Tanja Ickelsheimer, Roland Kaufmann, Anke Koenig

Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease. Patients can present with inflammatory nodules, abscesses up to fistulas, or sinus tracts in intertriginous body parts. Occlusion of the sebaceous gland unit leads to its rupture, with a subsequent exuberant immune response. Given there is still no causative therapy, to better understand HS and develop novel therapeutic concepts, research activities in the HS field are constantly growing. Primary skin cells, blood cells, and ex vivo explant cultures from HS patients have been previously used as HS cell culture models. In vitro reconstituted epidermal models are established to study inflammatory dermatoses, such as psoriasis or atopic dermatitis. For HS, the exploration of epidermis models would be an excellent addition, e.g., biomarkers or barrier function in testing new topic treatment options. We therefore established a stratified in vitro HS epidermis model based on primary cells from HS lesions. After isolating keratinocytes from lesional skin, we cultured them submerged in a transwell system. To induce differentiation, we then lifted them to the air-liquid interface. Immunohistochemical staining demonstrated that our HS-epidermis model meets the expected differentiation pattern. In addition, we detected the secretion of the inflammatory cytokines interleukin-1β and TNF-α.

化脓性扁平湿疹(HS)是一种慢性炎症性皮肤病。患者可出现炎性结节、脓肿直至瘘管,或身体三叉神经间的窦道。皮脂腺单位的闭塞导致其破裂,随之而来的是旺盛的免疫反应。鉴于目前尚无致病疗法,为了更好地了解皮脂腺增生症并开发新的治疗概念,皮脂腺增生症领域的研究活动不断增多。以前,人们曾将 HS 患者的原代皮肤细胞、血细胞和体外培养物用作 HS 细胞培养模型。建立体外重组表皮模型是为了研究银屑病或特应性皮炎等炎症性皮肤病。对于 HS 而言,表皮模型的探索将是一个很好的补充,例如,在测试新的专题治疗方案中的生物标记或屏障功能。因此,我们根据 HS 病变的原始细胞建立了分层的体外 HS 表皮模型。从病变皮肤中分离出角质形成细胞后,我们将其浸没在转孔系统中进行培养。为了诱导分化,我们将其提升到空气-液体界面。免疫组化染色表明,我们的 HS 表皮模型符合预期的分化模式。此外,我们还检测到了炎症细胞因子白细胞介素-1β和TNF-α的分泌。
{"title":"A Novel Epidermis Model Using Primary Hidradenitis Suppurativa Keratinocytes","authors":"Isabel Haferland,&nbsp;Andreas Pinter,&nbsp;Tanja Rossmanith,&nbsp;Sandra Diehl,&nbsp;Claudia Buerger,&nbsp;Tanja Ickelsheimer,&nbsp;Roland Kaufmann,&nbsp;Anke Koenig","doi":"10.1155/2024/4363876","DOIUrl":"10.1155/2024/4363876","url":null,"abstract":"<div>\u0000 <p>Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease. Patients can present with inflammatory nodules, abscesses up to fistulas, or sinus tracts in intertriginous body parts. Occlusion of the sebaceous gland unit leads to its rupture, with a subsequent exuberant immune response. Given there is still no causative therapy, to better understand HS and develop novel therapeutic concepts, research activities in the HS field are constantly growing. Primary skin cells, blood cells, and <i>ex vivo</i> explant cultures from HS patients have been previously used as HS cell culture models. <i>In vitro</i> reconstituted epidermal models are established to study inflammatory dermatoses, such as psoriasis or atopic dermatitis. For HS, the exploration of epidermis models would be an excellent addition, e.g., biomarkers or barrier function in testing new topic treatment options. We therefore established a stratified <i>in vitro</i> HS epidermis model based on primary cells from HS lesions. After isolating keratinocytes from lesional skin, we cultured them submerged in a transwell system. To induce differentiation, we then lifted them to the air-liquid interface. Immunohistochemical staining demonstrated that our HS-epidermis model meets the expected differentiation pattern. In addition, we detected the secretion of the inflammatory cytokines interleukin-1<i>β</i> and TNF-<i>α</i>.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2024 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4363876","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140426706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetically Engineered Macrophages Derived from iPSCs for Self-Regulating Delivery of Anti-Inflammatory Biologic Drugs 从 iPSCs 提取的基因工程巨噬细胞用于自调节抗炎生物药物的输送
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-01-06 DOI: 10.1155/2024/6201728
Molly Klimak, Farshid Guilak

In rheumatoid arthritis, dysregulated cytokine signaling has been implicated as a primary factor in chronic inflammation. Many antirheumatic and biological therapies are used to suppress joint inflammation, but despite these advances, effectiveness is not universal, and delivery is often at high doses, which can predispose patients to significant off-target effects. During chronic inflammation, the inappropriate regulation of signaling factors by macrophages accelerates the progression of disease by driving an imbalance of inflammatory cytokines, making macrophages an ideal cellular target. To develop a macrophage-based therapy to treat chronic inflammation, we engineered a novel induced pluripotent stem cell (iPSC)-derived macrophage capable of delivering soluble TNF receptor 1 (sTNFR1), an anti-inflammatory biologic inhibitor of tumor necrosis factor alpha (TNF-α), in an autoregulated manner in response to TNF-α. Murine iPSCs were differentiated into macrophages (iMACs) over a 17-day optimized protocol with continued successful differentiation confirmed at key timepoints. Varying inflammatory and immunomodulatory stimuli demonstrated traditional macrophage function and phenotypes. In response to TNF-α, therapeutic iMACs produced high levels of sTNFR1 in an autoregulated manner, which inhibited inflammatory signaling. This self-regulating iMAC system demonstrated the potential for macrophage-based drug delivery as a novel therapeutic approach for a variety of chronic inflammatory diseases.

在类风湿性关节炎中,细胞因子信号传导失调被认为是慢性炎症的主要因素。许多抗风湿疗法和生物疗法都被用于抑制关节炎症,但尽管取得了这些进展,其有效性并不普遍,而且通常都是大剂量给药,这可能会使患者遭受严重的脱靶效应。在慢性炎症过程中,巨噬细胞对信号因子的不当调节会导致炎症细胞因子失衡,从而加速疾病的发展,因此巨噬细胞是理想的细胞靶点。为了开发一种基于巨噬细胞的疗法来治疗慢性炎症,我们设计了一种新型诱导多能干细胞(iPSC)衍生的巨噬细胞,它能以自调节的方式释放可溶性 TNF 受体 1(sTNFR1),这是肿瘤坏死因子α(TNF-α)的一种抗炎生物抑制剂,能对 TNF-α 作出反应。小鼠 iPSCs 在 17 天的优化方案中分化成巨噬细胞(iMACs),并在关键时间点成功分化。不同的炎症和免疫调节刺激显示了传统的巨噬细胞功能和表型。针对 TNF-α,治疗性 iMAC 以自动调节的方式产生了高水平的 sTNFR1,从而抑制了炎症信号传导。这种自我调节的iMAC系统证明了以巨噬细胞为基础的药物递送作为治疗各种慢性炎症性疾病的新方法的潜力。
{"title":"Genetically Engineered Macrophages Derived from iPSCs for Self-Regulating Delivery of Anti-Inflammatory Biologic Drugs","authors":"Molly Klimak,&nbsp;Farshid Guilak","doi":"10.1155/2024/6201728","DOIUrl":"10.1155/2024/6201728","url":null,"abstract":"<div>\u0000 <p>In rheumatoid arthritis, dysregulated cytokine signaling has been implicated as a primary factor in chronic inflammation. Many antirheumatic and biological therapies are used to suppress joint inflammation, but despite these advances, effectiveness is not universal, and delivery is often at high doses, which can predispose patients to significant off-target effects. During chronic inflammation, the inappropriate regulation of signaling factors by macrophages accelerates the progression of disease by driving an imbalance of inflammatory cytokines, making macrophages an ideal cellular target. To develop a macrophage-based therapy to treat chronic inflammation, we engineered a novel induced pluripotent stem cell (iPSC)-derived macrophage capable of delivering soluble TNF receptor 1 (sTNFR1), an anti-inflammatory biologic inhibitor of tumor necrosis factor alpha (TNF-<i>α</i>), in an autoregulated manner in response to TNF-<i>α</i>. Murine iPSCs were differentiated into macrophages (iMACs) over a 17-day optimized protocol with continued successful differentiation confirmed at key timepoints. Varying inflammatory and immunomodulatory stimuli demonstrated traditional macrophage function and phenotypes. In response to TNF-<i>α</i>, therapeutic iMACs produced high levels of sTNFR1 in an autoregulated manner, which inhibited inflammatory signaling. This self-regulating iMAC system demonstrated the potential for macrophage-based drug delivery as a novel therapeutic approach for a variety of chronic inflammatory diseases.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2024 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6201728","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139380725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled Release of Mesenchymal Stem Cell-Conditioned Media from a Microsphere/Gel-Based Drug Delivery System for Wound Healing of Tympanic Membrane Perforations 微球/凝胶载药系统控制间充质干细胞调节培养基的释放,促进鼓膜穿孔的伤口愈合
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-31 DOI: 10.1155/2023/6039254
Liza A Bruk, Xin Fan, Jayde L. Resnick, Morgan V. DiLeo
Chronic tympanic membrane (TM) perforation increases patient susceptibility to infection, hearing loss, and other side effects. Current clinical treatment, surgical grafting, can result in detrimental side effects including nerve damage, dizziness, or hearing loss. Therefore, it is essential to develop novel therapeutic procedures that can induce or accelerate healing in minimally or noninvasive approaches. Cell-free therapies have safety advantages over stem cells and are logistically favorable for clinical use. The regenerative potential by mesenchymal stem cell-conditioned media (CM) has been promising. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres with CM encapsulated have been developed as a cell-free alternative regenerative treatment for TM perforation. The results suggest that the PLGA microspheres were capable of encapsulating and releasing CM for up to 21 days. The in vitro scratch wound proliferation assays showed increased wound healing ability of CM-loaded microspheres. In vivo guinea pig models treated with CM drops and CM-loaded microspheres using a thermoresponsive gel carrier demonstrated potential for wound healing in TM perforation. These studies provide a basis for further examination of the delivery of stem cell CM and investigation of time-dependent wound healing, long-term ototoxicity, and hearing restoration.
慢性鼓膜(TM)穿孔会增加患者感染、听力损失和其他副作用的风险。目前的临床治疗方法--手术移植可能会导致有害的副作用,包括神经损伤、头晕或听力下降。因此,有必要开发新型治疗程序,以微创或无创方式诱导或加速愈合。与干细胞相比,无细胞疗法具有安全优势,而且在临床应用上也很方便。间充质干细胞调理介质(CM)的再生潜力很有希望。本研究开发了包裹间充质干细胞的聚乳酸-共聚乙醇酸(PLGA)微球,作为治疗颞下颌关节穿孔的无细胞替代再生疗法。结果表明,PLGA 微球能够包裹和释放 CM 长达 21 天。体外划痕伤口增殖试验表明,含有 CM 的微球能增强伤口愈合能力。使用 CM 滴剂和使用热致伸缩凝胶载体的 CM 负载微球治疗的体内豚鼠模型显示了 TM 穿孔伤口愈合的潜力。这些研究为进一步研究干细胞CM的输送、调查随时间变化的伤口愈合、长期耳毒性和听力恢复提供了基础。
{"title":"Controlled Release of Mesenchymal Stem Cell-Conditioned Media from a Microsphere/Gel-Based Drug Delivery System for Wound Healing of Tympanic Membrane Perforations","authors":"Liza A Bruk, Xin Fan, Jayde L. Resnick, Morgan V. DiLeo","doi":"10.1155/2023/6039254","DOIUrl":"https://doi.org/10.1155/2023/6039254","url":null,"abstract":"Chronic tympanic membrane (TM) perforation increases patient susceptibility to infection, hearing loss, and other side effects. Current clinical treatment, surgical grafting, can result in detrimental side effects including nerve damage, dizziness, or hearing loss. Therefore, it is essential to develop novel therapeutic procedures that can induce or accelerate healing in minimally or noninvasive approaches. Cell-free therapies have safety advantages over stem cells and are logistically favorable for clinical use. The regenerative potential by mesenchymal stem cell-conditioned media (CM) has been promising. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres with CM encapsulated have been developed as a cell-free alternative regenerative treatment for TM perforation. The results suggest that the PLGA microspheres were capable of encapsulating and releasing CM for up to 21 days. The in vitro scratch wound proliferation assays showed increased wound healing ability of CM-loaded microspheres. In vivo guinea pig models treated with CM drops and CM-loaded microspheres using a thermoresponsive gel carrier demonstrated potential for wound healing in TM perforation. These studies provide a basis for further examination of the delivery of stem cell CM and investigation of time-dependent wound healing, long-term ototoxicity, and hearing restoration.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"32 4","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139132491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applied Electric Fields Polarize Initiation and Growth of Endothelial Sprouts 外加电场极化内皮萌芽的启动和生长
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-23 DOI: 10.1155/2023/6331148
Anyesha Sarkar, Shanta M. Messerli, Md Moin Uddin Talukder, M. Messerli
Therapeutic electric fields (EFs) are applied to the epidermis to accelerate the healing of chronic epidermal wounds and promote skin transplantation. While research has emphasized understanding the role of EFs in polarizing the migration of superficial epidermal cells, there are no reports describing the effect of EFs on polarization of the underlying vasculature. We explored the effects of EFs on the growth of endothelial sprouts, precursors to functional blood vessels. We discovered that DC EFs of the same magnitude near wounded epidermis polarize initiation, growth, and turning of endothelial sprouts toward the anode. While EFs polarize sprouts, they do not change the frequency of primary sprout or branch formation. Unidirectional electrical pulses also polarize sprouts based on their time-averaged EF magnitude. Sprout polarization occurs antiparallel to the direction of electrically driven water flow (electro-osmosis) and is consistent with the direction of sprout polarization induced by pressure-driven flow. These results support the role of EFs in controlling the direction of neovascularization during the healing of soft tissues and tissue engineering.
治疗性电场(EF)被应用于表皮,以加速慢性表皮伤口的愈合并促进皮肤移植。虽然研究强调了解电场在极化表皮细胞迁移中的作用,但还没有报告描述电场对底层血管极化的影响。我们探讨了 EFs 对内皮芽(功能性血管的前体)生长的影响。我们发现,受伤表皮附近同等强度的直流环流可极化内皮萌芽的启动、生长和转向阳极。虽然直流电极化了萌芽,但并没有改变初级萌芽或分支形成的频率。单向电脉冲也会根据其时间平均 EF 幅值极化萌芽。萌芽极化与电驱动水流(电渗)的方向相反,与压力驱动水流诱导的萌芽极化方向一致。这些结果支持 EF 在软组织愈合和组织工程中控制新生血管方向的作用。
{"title":"Applied Electric Fields Polarize Initiation and Growth of Endothelial Sprouts","authors":"Anyesha Sarkar, Shanta M. Messerli, Md Moin Uddin Talukder, M. Messerli","doi":"10.1155/2023/6331148","DOIUrl":"https://doi.org/10.1155/2023/6331148","url":null,"abstract":"Therapeutic electric fields (EFs) are applied to the epidermis to accelerate the healing of chronic epidermal wounds and promote skin transplantation. While research has emphasized understanding the role of EFs in polarizing the migration of superficial epidermal cells, there are no reports describing the effect of EFs on polarization of the underlying vasculature. We explored the effects of EFs on the growth of endothelial sprouts, precursors to functional blood vessels. We discovered that DC EFs of the same magnitude near wounded epidermis polarize initiation, growth, and turning of endothelial sprouts toward the anode. While EFs polarize sprouts, they do not change the frequency of primary sprout or branch formation. Unidirectional electrical pulses also polarize sprouts based on their time-averaged EF magnitude. Sprout polarization occurs antiparallel to the direction of electrically driven water flow (electro-osmosis) and is consistent with the direction of sprout polarization induced by pressure-driven flow. These results support the role of EFs in controlling the direction of neovascularization during the healing of soft tissues and tissue engineering.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"55 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139162934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of Endothelial Cell-Polycaprolactone Interaction through Surface Modification via Aminolysis, Hydrolysis, and a Combined Approach 通过氨基溶解、水解和组合方法进行表面改性,改善内皮细胞与聚己内酯的相互作用
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-13 DOI: 10.1155/2023/5590725
Femke Bellen, Elisa Carbone, Pieter Baatsen, E. A. Jones, F. Kabirian, Ruth Heying
Polycaprolactone (PCL) is a promising material for the fabrication of alternatives to autologous grafts used in coronary bypass surgery. PCL biodegrades over time, allowing cells to infiltrate the polymeric matrix, replacing the biodegrading graft, and creating a fully functional vessel constituted of autologous tissue. However, the high hydrophobicity of PCL is associated with poor cell affinity. Surface modification of PCL can increase this cell affinity, making PCL an improved scaffold material for acellular vascular grafts. In this study, the surface of PCL films was modified by hydrolysis, aminolysis, and the combination thereof to introduce carboxyl, hydroxyl, and amino groups on the surface. Only the hydrolyzed films exhibited a significant increase in their hydrophilicity, although further testing showed that all aminolysis conditions had amino groups on the surface. Furthermore, in vitro experiments with human umbilical endothelial cells (HUVECs) were performed to assess changes in cell affinity for PCL due to the surface treatments. PCL treated with sodium hydroxide (NaOH), a hydrolysis reaction, showed a significant increase in endothelial cell adhesion after 24 hours with a significant increase in cell survival after 72 hours. Thus, NaOH treatment improves the biocompatibility and endothelialization of PCL, creating a competent candidate for artificial, acellular, biodegradable vascular grafts.
聚己内酯(PCL)是一种很有前途的材料,可用于制造冠状动脉搭桥手术中使用的自体移植物替代品。PCL 可随着时间的推移发生生物降解,使细胞渗入聚合物基质,取代生物降解的移植物,形成由自体组织构成的全功能血管。然而,PCL 的高疏水性与细胞亲和性差有关。对 PCL 进行表面改性可以提高细胞亲和性,从而使 PCL 成为一种用于非细胞血管移植物的改良支架材料。在本研究中,PCL 薄膜的表面通过水解、氨基溶解或两者结合的方式进行了改性,在表面引入了羧基、羟基和氨基。尽管进一步测试表明,所有氨解条件下的薄膜表面都有氨基,但只有水解薄膜的亲水性显著增加。此外,还对人脐带内皮细胞(HUVECs)进行了体外实验,以评估细胞对 PCL 的亲和力因表面处理而发生的变化。经氢氧化钠(NaOH)(一种水解反应)处理的 PCL 在 24 小时后显示出内皮细胞粘附力显著增强,72 小时后细胞存活率显著提高。因此,NaOH 处理可改善 PCL 的生物相容性和内皮化,从而成为人造、无细胞、可生物降解血管移植物的理想候选材料。
{"title":"Improvement of Endothelial Cell-Polycaprolactone Interaction through Surface Modification via Aminolysis, Hydrolysis, and a Combined Approach","authors":"Femke Bellen, Elisa Carbone, Pieter Baatsen, E. A. Jones, F. Kabirian, Ruth Heying","doi":"10.1155/2023/5590725","DOIUrl":"https://doi.org/10.1155/2023/5590725","url":null,"abstract":"Polycaprolactone (PCL) is a promising material for the fabrication of alternatives to autologous grafts used in coronary bypass surgery. PCL biodegrades over time, allowing cells to infiltrate the polymeric matrix, replacing the biodegrading graft, and creating a fully functional vessel constituted of autologous tissue. However, the high hydrophobicity of PCL is associated with poor cell affinity. Surface modification of PCL can increase this cell affinity, making PCL an improved scaffold material for acellular vascular grafts. In this study, the surface of PCL films was modified by hydrolysis, aminolysis, and the combination thereof to introduce carboxyl, hydroxyl, and amino groups on the surface. Only the hydrolyzed films exhibited a significant increase in their hydrophilicity, although further testing showed that all aminolysis conditions had amino groups on the surface. Furthermore, in vitro experiments with human umbilical endothelial cells (HUVECs) were performed to assess changes in cell affinity for PCL due to the surface treatments. PCL treated with sodium hydroxide (NaOH), a hydrolysis reaction, showed a significant increase in endothelial cell adhesion after 24 hours with a significant increase in cell survival after 72 hours. Thus, NaOH treatment improves the biocompatibility and endothelialization of PCL, creating a competent candidate for artificial, acellular, biodegradable vascular grafts.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"125 S179","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139006347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adult Bovine-Derived Small and Large Intestinal Organoids: In Vitro Development and Maintenance 成年牛源性小肠和大肠器官组织:体外发育和维护
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-27 DOI: 10.1155/2023/3095002
Minae Kawasaki, Gerald D. Dykstra, C. McConnel, C. Burbick, Y. Ambrosini
Recent progress in bovine intestinal organoid research has expanded opportunities for creating improved in vitro models to study intestinal physiology and pathology. However, the establishment of a culture condition capable of generating organoids from all segments of the cattle intestine has remained elusive. Although previous research has described the development of bovine jejunal, ileal, and colonic organoids, this study marks the first report of successful bovine duodenal and rectal organoid development. Maintenance of these organoids through serial passages and cryopreservation was achieved, with higher success rates observed in large intestinal organoids compared to their small intestinal counterparts. A novel approach involving the use of biopsy forceps during initial tissue sampling streamlined the subsequent tissue processing, simplifying the procedure compared to previously established protocols in cattle. In addition, our study introduced a more cost-effective culture medium based on advanced DMEM/F12, diverging from frequently used commercially available organoid culture media. This enhancement improves the accessibility to organoid technology by reducing culture costs. Crucially, the derived organoids from the jejunum, ileum, colon, and rectum faithfully preserved the structural, cellular, and genetic characteristics of the in vivo intestinal tissue. This research underscores the significant potential of adult bovine intestinal organoids as a physiologically and morphologically relevant in vitro model. Such organoids provide a renewable and sustainable resource for a broad spectrum of studies, encompassing investigations into normal intestinal physiology in cattle and the intricate host-pathogen interactions of clinically and economically significant enteric pathogens.
牛肠道类器官研究的最新进展为建立改进的体外模型以研究肠道生理和病理提供了更多机会。然而,建立一种能从牛肠的所有节段产生类器官的培养条件仍是一个难题。尽管之前的研究已经描述了牛空肠、回肠和结肠类器官的发育,但本研究是首次成功发育牛十二指肠和直肠类器官的报告。通过连续传代和冷冻保存,这些类器官得以维持,与小肠类器官相比,大肠类器官的成功率更高。在最初的组织取样过程中使用活检钳的新方法简化了随后的组织处理过程,与之前在牛身上建立的方案相比简化了程序。此外,我们的研究还引入了一种基于高级 DMEM/F12 的更具成本效益的培养基,有别于市场上常用的类器官培养基。这一改进降低了培养成本,从而提高了类器官技术的可及性。最重要的是,从空肠、回肠、结肠和直肠衍生的类器官忠实地保留了体内肠组织的结构、细胞和遗传特征。这项研究强调了成年牛肠组织器官作为生理和形态相关的体外模型的巨大潜力。这种有机体为广泛的研究提供了可再生和可持续的资源,包括研究牛的正常肠道生理以及临床和经济上重要的肠道病原体的复杂宿主-病原体相互作用。
{"title":"Adult Bovine-Derived Small and Large Intestinal Organoids: In Vitro Development and Maintenance","authors":"Minae Kawasaki, Gerald D. Dykstra, C. McConnel, C. Burbick, Y. Ambrosini","doi":"10.1155/2023/3095002","DOIUrl":"https://doi.org/10.1155/2023/3095002","url":null,"abstract":"Recent progress in bovine intestinal organoid research has expanded opportunities for creating improved in vitro models to study intestinal physiology and pathology. However, the establishment of a culture condition capable of generating organoids from all segments of the cattle intestine has remained elusive. Although previous research has described the development of bovine jejunal, ileal, and colonic organoids, this study marks the first report of successful bovine duodenal and rectal organoid development. Maintenance of these organoids through serial passages and cryopreservation was achieved, with higher success rates observed in large intestinal organoids compared to their small intestinal counterparts. A novel approach involving the use of biopsy forceps during initial tissue sampling streamlined the subsequent tissue processing, simplifying the procedure compared to previously established protocols in cattle. In addition, our study introduced a more cost-effective culture medium based on advanced DMEM/F12, diverging from frequently used commercially available organoid culture media. This enhancement improves the accessibility to organoid technology by reducing culture costs. Crucially, the derived organoids from the jejunum, ileum, colon, and rectum faithfully preserved the structural, cellular, and genetic characteristics of the in vivo intestinal tissue. This research underscores the significant potential of adult bovine intestinal organoids as a physiologically and morphologically relevant in vitro model. Such organoids provide a renewable and sustainable resource for a broad spectrum of studies, encompassing investigations into normal intestinal physiology in cattle and the intricate host-pathogen interactions of clinically and economically significant enteric pathogens.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"38 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139232648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered Decellularized Tendon Matrix Putty Preserves Native Tendon Bioactivity to Promote Cell Proliferation and Enthesis Repair 工程化脱细胞肌腱基质腻子可保留原生肌腱的生物活性,促进细胞增殖和实体修复
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-16 DOI: 10.1155/2023/4665795
Anna-Laura Nelson, Kelsey M. O’Hara, Philip C. Nolte, N. Fukase, Yoichi Murata, Anna-Katharina Nolte, Johnny Huard, David L. Bernholt, Peter J. Millett, C. Bahney
Rotator cuff tears are a common soft tissue injury that can significantly decrease function of the shoulder and cause severe pain. Despite progress in surgical technique, rotator cuff repairs (RCRs) do not always heal efficiently. Many failures occur at the bone-tendon interface as a result of poor healing capacity of the tendon and failure to regenerate the native histological anatomy of the enthesis. While allografts are commercially available, clinical use is limited as they do not stimulate tissue regeneration and are associated with a structural failure of up to 40% in re-tear cases. Novel tissue engineering strategies are being developed with promise, but most involve addition of cells and/or growth factors which extends the timeline for clinical translation. Thus, there exists a significant unmet clinical need for easily translatable surgical augmentation approaches that can improve healing in RCR. Here we describe the development of a decellularized tendon matrix (DTM) putty that preserves native tendon bioactivity using a novel processing technique. In vitro, DTM promoted proliferation of tenocytes and adipose-derived stem cells with an increase in expression-specific transcription factors seen during enthesis development, Scleraxis and Sox9. When placed in a rabbit model of a chronic rotator cuff tear, DTM improved histological tissue repair by promoting calcification at the bone-tendon interface more similar to the normal fibrocartilaginous enthesis. Taken together, these data indicate that the engineered DTM putty retains a pro-regenerative bioactivity that presents a promising translational strategy for improving healing at the enthesis.
肩袖撕裂是一种常见的软组织损伤,可明显降低肩部功能并导致剧烈疼痛。尽管手术技术不断进步,但肩袖修复术(RCR)并非总能有效愈合。由于肌腱的愈合能力差以及无法再生出原生的组织解剖结构,许多修复失败都发生在骨与肌腱的交界处。虽然市场上有同种异体移植物,但由于其不能刺激组织再生,而且在再次撕裂的病例中,高达 40% 的结构性失败与同种异体移植物有关,因此临床应用受到限制。目前正在开发的新型组织工程策略前景广阔,但大多涉及细胞和/或生长因子的添加,从而延长了临床转化的时间。因此,对于能改善 RCR 愈合的、易于转化的手术增量方法,还存在着大量未得到满足的临床需求。在此,我们介绍了一种脱细胞肌腱基质(DTM)腻子的开发情况,这种腻子采用新颖的加工技术保留了原生肌腱的生物活性。在体外,DTM 促进了腱细胞和脂肪来源干细胞的增殖,并增加了在内膜发育过程中出现的特异性转录因子 Scleraxis 和 Sox9 的表达。当把 DTM 放入慢性肩袖撕裂的兔子模型中时,DTM 通过促进骨-肌腱界面的钙化,改善了组织修复,使其更接近正常的纤维软骨内膜。总之,这些数据表明,工程 DTM 粘合剂具有促进再生的生物活性,是一种很有前景的改善关节内愈合的转化策略。
{"title":"Engineered Decellularized Tendon Matrix Putty Preserves Native Tendon Bioactivity to Promote Cell Proliferation and Enthesis Repair","authors":"Anna-Laura Nelson, Kelsey M. O’Hara, Philip C. Nolte, N. Fukase, Yoichi Murata, Anna-Katharina Nolte, Johnny Huard, David L. Bernholt, Peter J. Millett, C. Bahney","doi":"10.1155/2023/4665795","DOIUrl":"https://doi.org/10.1155/2023/4665795","url":null,"abstract":"Rotator cuff tears are a common soft tissue injury that can significantly decrease function of the shoulder and cause severe pain. Despite progress in surgical technique, rotator cuff repairs (RCRs) do not always heal efficiently. Many failures occur at the bone-tendon interface as a result of poor healing capacity of the tendon and failure to regenerate the native histological anatomy of the enthesis. While allografts are commercially available, clinical use is limited as they do not stimulate tissue regeneration and are associated with a structural failure of up to 40% in re-tear cases. Novel tissue engineering strategies are being developed with promise, but most involve addition of cells and/or growth factors which extends the timeline for clinical translation. Thus, there exists a significant unmet clinical need for easily translatable surgical augmentation approaches that can improve healing in RCR. Here we describe the development of a decellularized tendon matrix (DTM) putty that preserves native tendon bioactivity using a novel processing technique. In vitro, DTM promoted proliferation of tenocytes and adipose-derived stem cells with an increase in expression-specific transcription factors seen during enthesis development, Scleraxis and Sox9. When placed in a rabbit model of a chronic rotator cuff tear, DTM improved histological tissue repair by promoting calcification at the bone-tendon interface more similar to the normal fibrocartilaginous enthesis. Taken together, these data indicate that the engineered DTM putty retains a pro-regenerative bioactivity that presents a promising translational strategy for improving healing at the enthesis.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"14 3","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139269084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lymphatic Drainage-Promoting Effects by Engraftment of Artificial Lymphatic Vascular Tissue Based on Human Adipose Tissue-Derived Mesenchymal Stromal Cells in Mice 基于人脂肪组织源性间充质基质细胞的人工淋巴血管组织移植对小鼠淋巴引流的促进作用
3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-06 DOI: 10.1155/2023/7626767
Yoshiya Asano, Hiroshi Shimoda, Daisuke Okano, Michiya Matsusaki, Mitsuru Akashi
Regenerative medicine using lymphatic vascular engineering is a promising approach for treating lymphedema. However, its development lags behind that of artificial blood vascular tissue for ischemic diseases. In this study, we constructed artificial 3D lymphatic vascular tissue, termed ASCLT, by co-cultivation of ECM-nanofilm-coated human adipose tissue-derived mesenchymal stromal cells (hASCs) and human dermal lymphatic endothelial cells (HDLECs). The effect of hASCs in lymphatic vessel network formation was evaluated by comparison with the tissue based on fibroblasts, termed FbLT. Our results showed that the density of lymphatic vascular network in ASCLT was higher than that in FbLT, demonstrating a promoting effect of hASCs on lymphatic vascular formation. This result was also supported by higher levels of lymphangiogenesis-promoting factors, such as bFGF, HGF, and VEGF-A in ASCLT than in FbLT. To evaluate the therapeutic effects, FbLTs and ASCLTs were subcutaneously transplanted to mouse hindlimb lymphatic drainage interruption models by removal of popliteal and subiliac lymph nodes. Despite the restricted engraftment of lymphatic vessels, ASCLT promoted regeneration of irregular and diverse lymphatic drainage in the skin, as visualized by indocyanine green imaging. Moreover, transplantation of ASCLT to the popliteal lymph node resection area also resulted in lymphatic drainage regeneration. Histological analysis of the generated drainage visualized by FITC-dextran injection revealed that the drainage was localized in the subcutaneous area shallower than the dermal muscle. These findings demonstrate that ASCLT promotes lymphatic drainage in vivo and that hASCs can serve as an autologous source for treatment of secondary lymphedema by tissue engineering.
利用淋巴血管工程进行再生医学是治疗淋巴水肿的一种很有前途的方法。但其发展滞后于用于缺血性疾病的人工血管组织。在这项研究中,我们通过共同培养ecm纳米膜包裹的人脂肪组织来源的间充质基质细胞(hASCs)和人真皮淋巴内皮细胞(HDLECs),构建了人工三维淋巴血管组织,称为ASCLT。通过与基于成纤维细胞的组织(称为FbLT)进行比较,评估了hASCs在淋巴管网络形成中的作用。我们的研究结果显示,ASCLT的淋巴血管网络密度高于FbLT,表明hASCs对淋巴血管形成有促进作用。与FbLT相比,ASCLT中更高水平的淋巴管生成促进因子(如bFGF、HGF和VEGF-A)也支持了这一结果。为了评估治疗效果,我们将fblt和asclt通过去除腘窝和髂下淋巴结皮下移植到小鼠后肢淋巴引流中断模型中。尽管淋巴管的植入受到限制,ASCLT促进了皮肤不规则和多样化淋巴引流的再生,如吲哚菁绿成像所示。此外,将ASCLT移植到腘窝淋巴结切除区也能实现淋巴引流再生。fitc -葡聚糖注射显示的组织学分析显示,引流位于比真皮肌浅的皮下区域。这些发现表明,ASCLT促进体内淋巴引流,hASCs可以作为组织工程治疗继发性淋巴水肿的自体来源。
{"title":"Lymphatic Drainage-Promoting Effects by Engraftment of Artificial Lymphatic Vascular Tissue Based on Human Adipose Tissue-Derived Mesenchymal Stromal Cells in Mice","authors":"Yoshiya Asano, Hiroshi Shimoda, Daisuke Okano, Michiya Matsusaki, Mitsuru Akashi","doi":"10.1155/2023/7626767","DOIUrl":"https://doi.org/10.1155/2023/7626767","url":null,"abstract":"Regenerative medicine using lymphatic vascular engineering is a promising approach for treating lymphedema. However, its development lags behind that of artificial blood vascular tissue for ischemic diseases. In this study, we constructed artificial 3D lymphatic vascular tissue, termed ASCLT, by co-cultivation of ECM-nanofilm-coated human adipose tissue-derived mesenchymal stromal cells (hASCs) and human dermal lymphatic endothelial cells (HDLECs). The effect of hASCs in lymphatic vessel network formation was evaluated by comparison with the tissue based on fibroblasts, termed FbLT. Our results showed that the density of lymphatic vascular network in ASCLT was higher than that in FbLT, demonstrating a promoting effect of hASCs on lymphatic vascular formation. This result was also supported by higher levels of lymphangiogenesis-promoting factors, such as bFGF, HGF, and VEGF-A in ASCLT than in FbLT. To evaluate the therapeutic effects, FbLTs and ASCLTs were subcutaneously transplanted to mouse hindlimb lymphatic drainage interruption models by removal of popliteal and subiliac lymph nodes. Despite the restricted engraftment of lymphatic vessels, ASCLT promoted regeneration of irregular and diverse lymphatic drainage in the skin, as visualized by indocyanine green imaging. Moreover, transplantation of ASCLT to the popliteal lymph node resection area also resulted in lymphatic drainage regeneration. Histological analysis of the generated drainage visualized by FITC-dextran injection revealed that the drainage was localized in the subcutaneous area shallower than the dermal muscle. These findings demonstrate that ASCLT promotes lymphatic drainage in vivo and that hASCs can serve as an autologous source for treatment of secondary lymphedema by tissue engineering.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"27 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acetylsalicylic Acid Promotes Osteogenic Differentiation of Human Dental Pulp Mesenchymal Stem Cells and Regeneration of Alveolar Bone in Experimental Periodontitis Rats 乙酰水杨酸促进实验性牙周炎大鼠牙髓间充质干细胞成骨分化和牙槽骨再生
3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-11-03 DOI: 10.1155/2023/3077814
Aishi Song, Wei Wang, Yuying Zhang, Peng Zhou, Jiaxing Li, Jean de Dieu Habimana, Omar Mukama, Wei Xie, Sihao Deng, Shusheng Zhang, Ming Li, Bin Ni, Yabing Tang, Xiao-Xin Yan, Jufang Huang, Zhiyuan Li
Background. Periodontitis is characterized by bone resorption and periodontal tissue destruction owing to oral microbiota, mechanical stress, and systemic diseases such as diabetes mellitus. Human dental pulp mesenchymal stem cells (hDPMSCs) were analyzed as potential candidates for periodontal tissue regeneration. Acetylsalicylic acid (ASA), also known as aspirin, has been shown to promote osteogenic differentiation of mesenchymal stem cells. We investigated the effect of ASA pretreatment on periodontitis in order to achieve a more appealing prognosis of bone resorption. Methods. The effect of ASA on cell proliferation was detected by the CCK-8 assay, and alkaline phosphatase (ALP) staining, alizarin red staining (ARS), and western blot were used to investigate the effect of different ASA concentrations on hDPMSCs’ osteogenic differentiation and possible signaling pathways. Periodontitis was induced for 4 weeks. Stem cells pretreated with 50 µg/mL of ASA were transplanted into six-week-old male Sprague-Dawley rats by local and systemic injection once a week for two weeks. Four weeks after cell therapy, the rats were sacrificed for sampling to complete the molecular and morphological experiments. Results. In vitro experiments revealed that 50 µg/mL of ASA had a significant effect on cell osteogenic differentiation. That is, when ASA was administered, the MAPK signaling pathway was activated. Notably, further vivo experiments revealed that ASA-hDPMSCs increased the area of bone regeneration and the OPG/RANKL ratio, suppressed TNF-α and IL-1 expression, and promote alveolar bone repair. Conclusion. Our study extends the findings of previous research, firstly demonstrating that the use of ASA-pretreated hDPMSCs offers a novel therapy for the treatment of periodontitis for future clinical application.
背景。牙周炎的特点是由于口腔微生物群、机械应力和糖尿病等全身性疾病引起的骨吸收和牙周组织破坏。人牙髓间充质干细胞(hDPMSCs)作为牙周组织再生的潜在候选者进行了分析。乙酰水杨酸(ASA),也被称为阿司匹林,已被证明可以促进间充质干细胞的成骨分化。为了获得更好的骨吸收预后,我们研究了ASA预处理对牙周炎的影响。方法。采用CCK-8法检测ASA对细胞增殖的影响,采用碱性磷酸酶(ALP)染色、茜素红染色(ARS)和western blot检测不同浓度ASA对hDPMSCs成骨分化的影响及可能的信号通路。牙周炎诱导4周。将经50µg/mL ASA预处理的干细胞移植至6周龄雄性Sprague-Dawley大鼠体内,每周局部和全身注射1次,连续2周。细胞治疗4周后处死大鼠取样,完成分子形态学实验。结果。体外实验显示,50µg/mL的ASA对细胞成骨分化有显著影响。也就是说,当给予ASA时,MAPK信号通路被激活。值得注意的是,进一步的体内实验表明,ASA-hDPMSCs增加了骨再生面积和OPG/RANKL比值,抑制了TNF-α和IL-1的表达,促进了牙槽骨修复。结论。我们的研究扩展了先前的研究结果,首先证明了使用asa预处理的hDPMSCs为治疗牙周炎提供了一种新的治疗方法,为未来的临床应用提供了可能。
{"title":"Acetylsalicylic Acid Promotes Osteogenic Differentiation of Human Dental Pulp Mesenchymal Stem Cells and Regeneration of Alveolar Bone in Experimental Periodontitis Rats","authors":"Aishi Song, Wei Wang, Yuying Zhang, Peng Zhou, Jiaxing Li, Jean de Dieu Habimana, Omar Mukama, Wei Xie, Sihao Deng, Shusheng Zhang, Ming Li, Bin Ni, Yabing Tang, Xiao-Xin Yan, Jufang Huang, Zhiyuan Li","doi":"10.1155/2023/3077814","DOIUrl":"https://doi.org/10.1155/2023/3077814","url":null,"abstract":"Background. Periodontitis is characterized by bone resorption and periodontal tissue destruction owing to oral microbiota, mechanical stress, and systemic diseases such as diabetes mellitus. Human dental pulp mesenchymal stem cells (hDPMSCs) were analyzed as potential candidates for periodontal tissue regeneration. Acetylsalicylic acid (ASA), also known as aspirin, has been shown to promote osteogenic differentiation of mesenchymal stem cells. We investigated the effect of ASA pretreatment on periodontitis in order to achieve a more appealing prognosis of bone resorption. Methods. The effect of ASA on cell proliferation was detected by the CCK-8 assay, and alkaline phosphatase (ALP) staining, alizarin red staining (ARS), and western blot were used to investigate the effect of different ASA concentrations on hDPMSCs’ osteogenic differentiation and possible signaling pathways. Periodontitis was induced for 4 weeks. Stem cells pretreated with 50 µg/mL of ASA were transplanted into six-week-old male Sprague-Dawley rats by local and systemic injection once a week for two weeks. Four weeks after cell therapy, the rats were sacrificed for sampling to complete the molecular and morphological experiments. Results. In vitro experiments revealed that 50 µg/mL of ASA had a significant effect on cell osteogenic differentiation. That is, when ASA was administered, the MAPK signaling pathway was activated. Notably, further vivo experiments revealed that ASA-hDPMSCs increased the area of bone regeneration and the OPG/RANKL ratio, suppressed TNF-α and IL-1 expression, and promote alveolar bone repair. Conclusion. Our study extends the findings of previous research, firstly demonstrating that the use of ASA-pretreated hDPMSCs offers a novel therapy for the treatment of periodontitis for future clinical application.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"12 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135818342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epiretinal Amniotic Membrane Influences the Cellular Behavior of Profibrotic Dedifferentiated Cells of Proliferative Vitreoretinopathy In Vitro 视网膜上羊膜对增生性玻璃体视网膜病变纤维化去分化细胞行为的影响
3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-10-18 DOI: 10.1155/2023/8820844
Anna Hillenmayer, Laura D. Strehle, Christina Hilterhaus, Andreas Ohlmann, Christian M. Wertheimer, Armin Wolf
Proliferative vitreoretinopathy (PVR) as a rare fibrotic ocular disease is the main reason for failure of retinal detachment surgery and a reduced prognosis following surgery. Amniotic membrane (AM) is a versatile surgical tool for tissue stabilization, antifibrotic properties, and regeneration. Initial clinical case studies now demonstrated intravitreal tolerance as well as good anatomical and functional results for degenerative retinal diseases. Due to its diverse wound healing properties, AM could have promoting, suppressive, or no effects on PVR. To illuminate the potential of epiretinal AM transplantation in complex retinal detachment cases, we investigated its influence on human primary PVR (hPVR) cells in vitro. In our cell culture study, hPVR cells were isolated from surgically removed PVR membranes. Following incubation with AM for 48 h, AM-incubated hPVR showed significantly reduced proliferation (BrdU-ELISA; p < 0.001 ), migration (Boyden chamber, scratch assay; p = 0.003 and p < 0.001 ), and cell adhesion ( p = 0.005). Collagen contraction was nearly unaffected ( p = 0.04), and toxicity (histone-complexed DNA ELISA, WST-1 assay, and life/dead staining) was excluded. Next, immunofluorescence showed a myofibroblastic phenotype with reduced expression of fibrosis markers in AM-incubated cells, which was confirmed by Western blot analysis. In the proteomics assay, AM significantly regulated proteins by a more than 2-fold increase in expression which were related to the cytoskeleton, lipid metabolism, cell-matrix contraction, and protein folding. In conclusion, this in vitro work suggests no induction of fibrosis and other key steps in the pathogenesis of PVR through AM but rather inhibiting properties of profibrotic cell behavior, making it a possible candidate for suppression of PVR. Further clinical studies are necessary to evaluate the therapeutic relevance.
增殖性玻璃体视网膜病变(PVR)是一种罕见的纤维化眼病,是导致视网膜脱离手术失败和术后预后降低的主要原因。羊膜(AM)是一种多功能的手术工具,用于组织稳定,抗纤维化特性和再生。最初的临床病例研究现在证明了玻璃体内耐受性以及对退行性视网膜疾病的良好解剖和功能结果。由于其不同的伤口愈合特性,AM可能对PVR有促进、抑制或无影响。为了阐明AM移植治疗复杂视网膜脱离的潜力,我们在体外研究了AM移植对人原代PVR (hPVR)细胞的影响。在我们的细胞培养研究中,从手术切除的PVR膜中分离出hPVR细胞。AM孵育48小时后,AM孵育的hPVR增殖显著降低(BrdU-ELISA;p & lt;0.001),迁移(Boyden室,划痕试验;P = 0.003和P <0.001),细胞粘附(p = 0.005)。胶原蛋白收缩几乎不受影响(p = 0.04),毒性(组蛋白复合DNA ELISA, WST-1测定和生命/死亡染色)被排除。接下来,免疫荧光显示肌成纤维细胞表型,am培养细胞中纤维化标志物表达减少,Western blot分析证实了这一点。在蛋白质组学分析中,AM通过将与细胞骨架、脂质代谢、细胞基质收缩和蛋白质折叠相关的蛋白质表达增加2倍以上来显著调节蛋白质。总之,这项体外研究表明,AM并没有通过诱导纤维化等PVR发病的关键步骤,而是通过抑制纤维化细胞行为的特性,使其成为抑制PVR的可能候选药物。需要进一步的临床研究来评估其治疗意义。
{"title":"Epiretinal Amniotic Membrane Influences the Cellular Behavior of Profibrotic Dedifferentiated Cells of Proliferative Vitreoretinopathy In Vitro","authors":"Anna Hillenmayer, Laura D. Strehle, Christina Hilterhaus, Andreas Ohlmann, Christian M. Wertheimer, Armin Wolf","doi":"10.1155/2023/8820844","DOIUrl":"https://doi.org/10.1155/2023/8820844","url":null,"abstract":"Proliferative vitreoretinopathy (PVR) as a rare fibrotic ocular disease is the main reason for failure of retinal detachment surgery and a reduced prognosis following surgery. Amniotic membrane (AM) is a versatile surgical tool for tissue stabilization, antifibrotic properties, and regeneration. Initial clinical case studies now demonstrated intravitreal tolerance as well as good anatomical and functional results for degenerative retinal diseases. Due to its diverse wound healing properties, AM could have promoting, suppressive, or no effects on PVR. To illuminate the potential of epiretinal AM transplantation in complex retinal detachment cases, we investigated its influence on human primary PVR (hPVR) cells in vitro. In our cell culture study, hPVR cells were isolated from surgically removed PVR membranes. Following incubation with AM for 48 h, AM-incubated hPVR showed significantly reduced proliferation (BrdU-ELISA; <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi>p</mi> <mo><</mo> <mn>0.001</mn> </math> ), migration (Boyden chamber, scratch assay; <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mi>p</mi> </math> = 0.003 and <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <mi>p</mi> <mo><</mo> <mn>0.001</mn> </math> ), and cell adhesion ( <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <mi>p</mi> </math> = 0.005). Collagen contraction was nearly unaffected ( <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"> <mi>p</mi> </math> = 0.04), and toxicity (histone-complexed DNA ELISA, WST-1 assay, and life/dead staining) was excluded. Next, immunofluorescence showed a myofibroblastic phenotype with reduced expression of fibrosis markers in AM-incubated cells, which was confirmed by Western blot analysis. In the proteomics assay, AM significantly regulated proteins by a more than 2-fold increase in expression which were related to the cytoskeleton, lipid metabolism, cell-matrix contraction, and protein folding. In conclusion, this in vitro work suggests no induction of fibrosis and other key steps in the pathogenesis of PVR through AM but rather inhibiting properties of profibrotic cell behavior, making it a possible candidate for suppression of PVR. Further clinical studies are necessary to evaluate the therapeutic relevance.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135825128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Tissue Engineering and Regenerative Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1