首页 > 最新文献

Journal of Tissue Engineering and Regenerative Medicine最新文献

英文 中文
Ascorbic Acid 2-Phosphate-Releasing Supercritical Carbon Dioxide-Foamed Poly(L-Lactide-Co-epsilon-Caprolactone) Scaffolds Support Urothelial Cell Growth and Enhance Human Adipose-Derived Stromal Cell Proliferation and Collagen Production 抗坏血酸- 2-磷酸释放超临界二氧化碳泡沫聚(l -乳酸- co -epsilon-己内酯)支架支持尿路上皮细胞生长,促进人类脂肪来源的基质细胞增殖和胶原蛋白的产生
IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-03-04 DOI: 10.1155/2023/6404468
Alma Kurki, Kaarlo Paakinaho, Markus Hannula, Jari Hyttinen, Susanna Miettinen, Reetta Sartoneva

Tissue engineering can provide a novel approach for the reconstruction of large urethral defects, which currently lacks optimal repair methods. Cell-seeded scaffolds aim to prevent urethral stricture and scarring, as effective urothelium and stromal tissue regeneration is important in urethral repair. In this study, the aim was to evaluate the effect of the novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide-foamed poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds (scPLCLA2P) on the viability, proliferation, phenotype maintenance, and collagen production of human urothelial cell (hUC) and human adipose-derived stromal cell (hASC) mono- and cocultures. The scPLCLA2P scaffold supported hUC growth and phenotype both in monoculture and in coculture. In monocultures, the proliferation and collagen production of hASCs were significantly increased on the scPLCLA2P compared to scPLCL scaffolds without A2P, on which the hASCs formed nonproliferating cell clusters. Our findings suggest the A2P-releasing scPLCLA2P to be a promising material for urethral tissue engineering.

组织工程为尿道大面积缺损的修复提供了一种新的方法。细胞种子支架旨在防止尿道狭窄和瘢痕形成,因为有效的尿路上皮和间质组织再生在尿道修复中很重要。在这项研究中,目的是评估新型多孔抗坏血酸2-磷酸(A2P)释放超临界二氧化碳泡沫聚l -乳酸-co- α -己内酯(PLCL)支架(scPLCLA2P)对人尿路上皮细胞(hUC)和人脂肪源性基质细胞(hASC)单培养和共培养的活力、增殖、表型维持和胶原生成的影响。scPLCLA2P支架在单培养和共培养中均支持hUC生长和表型。在单次培养中,与不含A2P的scPLCL支架相比,scPLCLA2P支架上的hASCs增殖和胶原生成明显增加,hASCs在A2P支架上形成非增殖细胞团。我们的研究结果表明,释放a2p的scPLCLA2P是一种很有前途的尿道组织工程材料。
{"title":"Ascorbic Acid 2-Phosphate-Releasing Supercritical Carbon Dioxide-Foamed Poly(L-Lactide-Co-epsilon-Caprolactone) Scaffolds Support Urothelial Cell Growth and Enhance Human Adipose-Derived Stromal Cell Proliferation and Collagen Production","authors":"Alma Kurki,&nbsp;Kaarlo Paakinaho,&nbsp;Markus Hannula,&nbsp;Jari Hyttinen,&nbsp;Susanna Miettinen,&nbsp;Reetta Sartoneva","doi":"10.1155/2023/6404468","DOIUrl":"10.1155/2023/6404468","url":null,"abstract":"<div>\u0000 <p>Tissue engineering can provide a novel approach for the reconstruction of large urethral defects, which currently lacks optimal repair methods. Cell-seeded scaffolds aim to prevent urethral stricture and scarring, as effective urothelium and stromal tissue regeneration is important in urethral repair. In this study, the aim was to evaluate the effect of the novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide-foamed poly(L-lactide-co-<i>ε</i>-caprolactone) (PLCL) scaffolds (scPLCL<sub>A2P</sub>) on the viability, proliferation, phenotype maintenance, and collagen production of human urothelial cell (hUC) and human adipose-derived stromal cell (hASC) mono- and cocultures. The scPLCL<sub>A2P</sub> scaffold supported hUC growth and phenotype both in monoculture and in coculture. In monocultures, the proliferation and collagen production of hASCs were significantly increased on the scPLCL<sub>A2P</sub> compared to scPLCL scaffolds without A2P, on which the hASCs formed nonproliferating cell clusters. Our findings suggest the A2P-releasing scPLCL<sub>A2P</sub> to be a promising material for urethral tissue engineering.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2023 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/6404468","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42030571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Blood Cell-Inspired and Clot-Targeted Thrombolytic Therapies 血细胞激发和凝块靶向溶栓治疗的最新进展。
IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1155/2023/6117810
Anastasia Sheridan, Ashley C. Brown

Myocardial infarction, stroke, and pulmonary embolism are all deadly conditions associated with excessive thrombus formation. Standard treatment for these conditions involves systemic delivery of thrombolytic agents to break up clots and restore blood flow; however, this treatment can impact the hemostatic balance in other parts of the vasculature, which can lead to excessive bleeding. To avoid this potential danger, targeted thrombolytic treatments that can successfully target thrombi and release an effective therapeutic load are necessary. Because activated platelets and fibrin make up a large proportion of clots, these two components provide ample opportunities for targeting. This review will highlight potential thrombus targeting mechanisms as well as recent advances in thrombolytic therapies which utilize blood cells and clotting proteins to effectively target and lyse clots.

心肌梗死、中风和肺栓塞都是与过度血栓形成相关的致命疾病。这些疾病的标准治疗包括全身递送溶栓剂以打破血栓并恢复血液流动;然而,这种治疗会影响血管系统其他部位的止血平衡,从而导致过度出血。为了避免这种潜在的危险,有必要进行靶向溶栓治疗,以成功靶向血栓并释放有效的治疗负荷。由于活化的血小板和纤维蛋白在血栓中占很大比例,这两种成分提供了充足的靶向机会。这篇综述将重点介绍潜在的血栓靶向机制以及利用血细胞和凝血蛋白有效靶向和溶解血栓的溶栓疗法的最新进展。
{"title":"Recent Advances in Blood Cell-Inspired and Clot-Targeted Thrombolytic Therapies","authors":"Anastasia Sheridan,&nbsp;Ashley C. Brown","doi":"10.1155/2023/6117810","DOIUrl":"10.1155/2023/6117810","url":null,"abstract":"<div>\u0000 <p>Myocardial infarction, stroke, and pulmonary embolism are all deadly conditions associated with excessive thrombus formation. Standard treatment for these conditions involves systemic delivery of thrombolytic agents to break up clots and restore blood flow; however, this treatment can impact the hemostatic balance in other parts of the vasculature, which can lead to excessive bleeding. To avoid this potential danger, targeted thrombolytic treatments that can successfully target thrombi and release an effective therapeutic load are necessary. Because activated platelets and fibrin make up a large proportion of clots, these two components provide ample opportunities for targeting. This review will highlight potential thrombus targeting mechanisms as well as recent advances in thrombolytic therapies which utilize blood cells and clotting proteins to effectively target and lyse clots.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2023 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511217/pdf/nihms-1907106.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41093759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research Progress of Macrophages in Bone Regeneration 巨噬细胞在骨再生中的研究进展
IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-07 DOI: 10.1155/2023/1512966
Dingmei Zhang, Yi Dang, Renli Deng, Yaping Ma, Jing Wang, Jun Ao, Xin Wang

Bone tissue regeneration plays an increasingly important role in contemporary clinical treatment. The reconstruction of bone defects remains a huge challenge for clinicians. Bone regeneration is regulated by the immune system, in which inflammation is an important regulating factor in bone formation and remodeling. As the main cells involved in inflammation, macrophages play a key role in osteogenesis by polarizing into different phenotypes during different stages of bone regeneration. Considering this, this review mainly summarizes the function of macrophage in bone regeneration based on mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, and vascular cells. In conclusion, anti-inflammatory macrophages (M2) have a greater potentiality to promote bone regeneration than M0 and classically activated proinflammatory macrophages (M1). In the fracture and bone defect models, tissue engineering materials can induce the transition from M1 to M2, alter the bone microenvironment, and promote bone regeneration through interactions with bone-related cells and blood vessels. The review provides a further understanding of macrophage polarization behavior in the evolving field of bone immunology.

骨组织再生在当代临床治疗中发挥着越来越重要的作用。骨缺损的重建仍然是临床医生面临的巨大挑战。骨再生受免疫系统调节,其中炎症是骨形成和重塑的重要调节因子。巨噬细胞作为炎症的主要参与细胞,在骨再生的不同阶段极化成不同的表型,在成骨过程中起着关键作用。鉴于此,本文主要综述巨噬细胞在基于间充质干细胞(MSCs)、成骨细胞、破骨细胞和血管细胞的骨再生中的作用。综上所述,抗炎巨噬细胞(M2)比M0和经典活化的促炎巨噬细胞(M1)具有更大的促进骨再生的潜力。在骨折和骨缺损模型中,组织工程材料通过与骨相关细胞和血管的相互作用,诱导M1向M2转变,改变骨微环境,促进骨再生。这一综述为进一步了解巨噬细胞极化行为在骨免疫学领域的发展提供了依据。
{"title":"Research Progress of Macrophages in Bone Regeneration","authors":"Dingmei Zhang,&nbsp;Yi Dang,&nbsp;Renli Deng,&nbsp;Yaping Ma,&nbsp;Jing Wang,&nbsp;Jun Ao,&nbsp;Xin Wang","doi":"10.1155/2023/1512966","DOIUrl":"10.1155/2023/1512966","url":null,"abstract":"<div>\u0000 <p>Bone tissue regeneration plays an increasingly important role in contemporary clinical treatment. The reconstruction of bone defects remains a huge challenge for clinicians. Bone regeneration is regulated by the immune system, in which inflammation is an important regulating factor in bone formation and remodeling. As the main cells involved in inflammation, macrophages play a key role in osteogenesis by polarizing into different phenotypes during different stages of bone regeneration. Considering this, this review mainly summarizes the function of macrophage in bone regeneration based on mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, and vascular cells. In conclusion, anti-inflammatory macrophages (M2) have a greater potentiality to promote bone regeneration than M0 and classically activated proinflammatory macrophages (M1). In the fracture and bone defect models, tissue engineering materials can induce the transition from M1 to M2, alter the bone microenvironment, and promote bone regeneration through interactions with bone-related cells and blood vessels. The review provides a further understanding of macrophage polarization behavior in the evolving field of bone immunology.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2023 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/1512966","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136292881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osteogenesis of Human iPSC-Derived MSCs by PLLA/SF Nanofiber Scaffolds Loaded with Extracellular Matrix 负载细胞外基质的PLLA/SF纳米纤维支架对人iPSC衍生MSCs的成骨作用
IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-06 DOI: 10.1155/2023/5280613
Junming Zhang, Lingbin Che, Yunliang Wu, Lei Zhou, Li Liu, Yuanhang Yue, Dianwen Song, Xiangxin Lou

Bone defects that arise from trauma, skeletal diseases, or tumor resections have become the commonest and most thorny problems in orthopedic clinics. Recently, biocomposite materials used as artificial bone repair materials have provided a promising approach for bone regeneration. In this study, poly (l-lactide acid) (PLLA) and silk fibroin (SF) were used to fabricate nanofiber scaffolds by electrospinning technology. In order to simulate a biomimetic osteoblast microenvironment, decellularized extracellular matrix from osteoblasts was loaded into the biocomposite scaffolds (O-ECM/PLLA/SF). It was found that the O-ECM/PLLA/SF scaffolds were nontoxic for L929 cells and had good cytocompatibility. Their effects on mesenchymal stem cells derived from human-induced pluripotent stem cell (iPSC-MSC) behavior were investigated. As a result, the scaffolds with the addition of O-ECM showed enhanced alizarin red S (ARS) activity. In addition, higher expression of osteogenic gene markers such as runt-related transcription factor 2 (Runx2), collagen type I (Col-1), and osteocalcin (OCN) as well as upregulated expression of osteogenic marker protein osteopontin (OPN) and Col-1 further substantiated the applicability of O-ECM/PLLA/SF scaffolds for osteogenesis. Furthermore, the in vivo study also indicated maximal new bone formation in the skull defect model of Sprague Dawley (SD) rats treated with the O-ECM/PLLA/SF carried by human iPSC-MSCs. Hence, this study suggests that O-ECM/PLLA/SF scaffolds have a potential application in bone tissue engineering.

由创伤、骨骼疾病或肿瘤切除引起的骨缺损已成为骨科诊所中最常见和最棘手的问题。近年来,生物复合材料作为人工骨修复材料为骨再生提供了一种很有前途的途径。本研究以聚乳酸(PLLA)和丝素蛋白(SF)为原料,采用静电纺丝技术制备了纳米纤维支架。为了模拟仿生成骨细胞微环境,将成骨细胞的脱细胞细胞外基质负载到生物复合支架(O-ECM/PLLA/SF)中。结果表明,O-ECM/PLLA/SF支架对L929细胞无毒,具有良好的细胞相容性。研究了它们对来源于人诱导多能干细胞(iPSC-MSC)行为的间充质干细胞的影响。结果,添加O-ECM的支架显示出增强的茜素红S(ARS)活性。此外,成骨基因标记物如runt相关转录因子2(Runx2)、I型胶原(Col-1)和骨钙素(OCN)的高表达,以及成骨标记蛋白骨桥蛋白(OPN)和Col-1的上调表达,进一步证实了O-ECM/PLLA/SF支架在成骨中的适用性。此外,体内研究还表明,在用人iPSC MSC携带的O-ECM/PLLA/SF处理的Sprague-Dawley(SD)大鼠颅骨缺损模型中,新骨形成最大。因此,本研究表明O-ECM/PLLA/SF支架在骨组织工程中具有潜在的应用前景。
{"title":"Osteogenesis of Human iPSC-Derived MSCs by PLLA/SF Nanofiber Scaffolds Loaded with Extracellular Matrix","authors":"Junming Zhang,&nbsp;Lingbin Che,&nbsp;Yunliang Wu,&nbsp;Lei Zhou,&nbsp;Li Liu,&nbsp;Yuanhang Yue,&nbsp;Dianwen Song,&nbsp;Xiangxin Lou","doi":"10.1155/2023/5280613","DOIUrl":"10.1155/2023/5280613","url":null,"abstract":"<div>\u0000 <p>Bone defects that arise from trauma, skeletal diseases, or tumor resections have become the commonest and most thorny problems in orthopedic clinics. Recently, biocomposite materials used as artificial bone repair materials have provided a promising approach for bone regeneration. In this study, poly (l-lactide acid) (PLLA) and silk fibroin (SF) were used to fabricate nanofiber scaffolds by electrospinning technology. In order to simulate a biomimetic osteoblast microenvironment, decellularized extracellular matrix from osteoblasts was loaded into the biocomposite scaffolds (O-ECM/PLLA/SF). It was found that the O-ECM/PLLA/SF scaffolds were nontoxic for L929 cells and had good cytocompatibility. Their effects on mesenchymal stem cells derived from human-induced pluripotent stem cell (iPSC-MSC) behavior were investigated. As a result, the scaffolds with the addition of O-ECM showed enhanced alizarin red S (ARS) activity. In addition, higher expression of osteogenic gene markers such as runt-related transcription factor 2 (Runx2), collagen type I (Col-1), and osteocalcin (OCN) as well as upregulated expression of osteogenic marker protein osteopontin (OPN) and Col-1 further substantiated the applicability of O-ECM/PLLA/SF scaffolds for osteogenesis. Furthermore, the <i>in vivo</i> study also indicated maximal new bone formation in the skull defect model of Sprague Dawley (SD) rats treated with the O-ECM/PLLA/SF carried by human iPSC-MSCs. Hence, this study suggests that O-ECM/PLLA/SF scaffolds have a potential application in bone tissue engineering.</p>\u0000 </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2023 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/5280613","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45733269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term passages of human clonal mesenchymal stromal cells can alleviate the disease in the rat model of collagen-induced arthritis resembling early passages of different heterogeneous cells 人克隆间充质间质细胞的长期传代可以减轻大鼠胶原性关节炎模型的疾病,类似于不同异质细胞的早期传代
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-11-27 DOI: 10.1002/term.3368
Mahnaz Babaahmadi, Behnoosh Tayebi, Nima Makvand Gholipour, Phillip Bendele, Jed Pheneger, Abolfazl Kheimeh, Amir Kamali, Mohammad Molazem, Hossein Baharvand, Mohamadreza Baghaban Eslaminejad, Ensiyeh Hajizadeh-Saffar, Seyedeh-Nafiseh Hassani

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of unknown cause. The interaction of immune system cells and the secretion of inflammatory cytokines with synovial cells leads to severe inflammation in the affected joints. Currently, medications, including non-steroidal anti-inflammatory drugs, glucocorticoids, and more recently, disease-modifying anti-rheumatic drugs, are used to reduce inflammation. However, long-term use of these drugs causes adverse effects or resistance in a considerable number of RA patients. Recent findings revealed the safety and efficacy of mesenchymal stromal cells (MSCs)-based therapies both in RA animal models and clinical trials. Here, the beneficial effects of bone marrow-derived heterogeneous MSCs (BM-hMSCs) and Wharton jelly-derived MSCs (WJ-MSCs) at early passages were compared to BM-derived clonal MSCs (BM-cMSCs) at high passage number on a rat model of collagen-induced arthritis. Results showed that systemic delivery of MSCs significantly reversed adverse changes in body weight, paw swelling, and arthritis score in all MSC-treated groups. Radiological images and histological evaluation demonstrated the therapeutic effects of MSCs. There was a decrease in serum level of anti-collagen type II immunoglobulin G and the inflammatory cytokines interleukin (IL)-1β, IL-6, IL-17, and tumor necrosis factor-α in all MSC-treated groups. In contrast, an increase in inhibitory cytokines transforming growth factor-β and IL-10 was seen. Notably, the long-term passages of BM-cMSCs could alleviate RA symptoms similar to the early passages of WJ-MSCs and BM-hMSCs. The importance of BM-cMSCs is the potential to establish cell banks with billions of cells derived from a single donor that could be a competitive cell-based therapy to treat RA.

类风湿性关节炎(RA)是一种病因不明的慢性全身自身免疫性疾病。免疫系统细胞和炎性细胞因子的分泌与滑膜细胞的相互作用导致受影响关节的严重炎症。目前,包括非甾体抗炎药、糖皮质激素和最近的疾病缓解抗风湿药在内的药物被用于减轻炎症。然而,在相当数量的RA患者中,长期使用这些药物会引起不良反应或耐药性。最近的研究结果显示,在RA动物模型和临床试验中,以间充质基质细胞(MSCs)为基础的治疗方法的安全性和有效性。本研究比较了早期传代时骨髓源性异质间充质干细胞(BM-hMSCs)和沃顿胶源性间充质干细胞(WJ-MSCs)与高传代时骨髓源性克隆间充质干细胞(BM-cMSCs)对大鼠胶原诱导关节炎模型的有益作用。结果显示,在所有骨髓间充质干细胞治疗组中,全身输送骨髓间充质干细胞显著逆转了体重、足跖肿胀和关节炎评分的不良变化。放射学图像和组织学评价证实了MSCs的治疗效果。各治疗组血清抗胶原型免疫球蛋白G及炎性细胞因子白细胞介素(IL)-1β、IL-6、IL-17、肿瘤坏死因子-α水平均降低。相反,抑制细胞因子转化生长因子-β和IL-10增加。值得注意的是,bm - mscs的长期传代可以缓解RA症状,类似于WJ-MSCs和bm - mscs的早期传代。BM-cMSCs的重要性在于,它有可能建立来自单个供体的数十亿细胞的细胞库,这可能是治疗RA的竞争性细胞基础疗法。
{"title":"Long-term passages of human clonal mesenchymal stromal cells can alleviate the disease in the rat model of collagen-induced arthritis resembling early passages of different heterogeneous cells","authors":"Mahnaz Babaahmadi,&nbsp;Behnoosh Tayebi,&nbsp;Nima Makvand Gholipour,&nbsp;Phillip Bendele,&nbsp;Jed Pheneger,&nbsp;Abolfazl Kheimeh,&nbsp;Amir Kamali,&nbsp;Mohammad Molazem,&nbsp;Hossein Baharvand,&nbsp;Mohamadreza Baghaban Eslaminejad,&nbsp;Ensiyeh Hajizadeh-Saffar,&nbsp;Seyedeh-Nafiseh Hassani","doi":"10.1002/term.3368","DOIUrl":"https://doi.org/10.1002/term.3368","url":null,"abstract":"<p>Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of unknown cause. The interaction of immune system cells and the secretion of inflammatory cytokines with synovial cells leads to severe inflammation in the affected joints. Currently, medications, including non-steroidal anti-inflammatory drugs, glucocorticoids, and more recently, disease-modifying anti-rheumatic drugs, are used to reduce inflammation. However, long-term use of these drugs causes adverse effects or resistance in a considerable number of RA patients. Recent findings revealed the safety and efficacy of mesenchymal stromal cells (MSCs)-based therapies both in RA animal models and clinical trials. Here, the beneficial effects of bone marrow-derived heterogeneous MSCs (BM-hMSCs) and Wharton jelly-derived MSCs (WJ-MSCs) at early passages were compared to BM-derived clonal MSCs (BM-cMSCs) at high passage number on a rat model of collagen-induced arthritis. Results showed that systemic delivery of MSCs significantly reversed adverse changes in body weight, paw swelling, and arthritis score in all MSC-treated groups. Radiological images and histological evaluation demonstrated the therapeutic effects of MSCs. There was a decrease in serum level of anti-collagen type II immunoglobulin G and the inflammatory cytokines interleukin (IL)-1β, IL-6, IL-17, and tumor necrosis factor-α in all MSC-treated groups. In contrast, an increase in inhibitory cytokines transforming growth factor-β and IL-10 was seen. Notably, the long-term passages of BM-cMSCs could alleviate RA symptoms similar to the early passages of WJ-MSCs and BM-hMSCs. The importance of BM-cMSCs is the potential to establish cell banks with billions of cells derived from a single donor that could be a competitive cell-based therapy to treat RA.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1261-1275"},"PeriodicalIF":3.3,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5828867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effect of amniotic membrane and platelet-rich fibrin membrane on bone healing post endodontic surgery: An ultrasonographic, randomized controlled study 羊膜和富血小板纤维蛋白膜对牙髓手术后骨愈合的影响:一项超声随机对照研究
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-11-19 DOI: 10.1002/term.3362
Saumya Johri, Promila Verma, Aseem Prakash Tikku, Rhythm Bains, Neera Kohli

The use of membrane barriers and bone grafting materials in endodontic surgery promotes healing by regeneration rather than repair by scar tissue. Due to its valuable regenerative and therapeutic properties, the human amniotic membrane can support ideal periapical rehabilitation and promote better healing after surgery. The current trial aimed to evaluate the amniotic membrane's healing potential and compare it with platelet-rich fibrin using color doppler sonography. The current study is a randomized, double-blinded, parallel-group, single-center study. Thirty-four systematically healthy individuals requiring endodontic surgery who fulfilled all inclusion and exclusion criteria were selected and randomly placed in two groups. Surgical curettage of the bony lesion was performed and filled with hydroxyapatite graft. Amniotic membrane (Group 1) and platelet-rich fibrin (Group 2) were placed over the bony crypt, and the flap was sutured back. The lesion's surface area and vascularity were the parameters assessed with ultrasound and color doppler. and observations: The groups found a significant difference in mean vascularity at 1 month and mean vascularity change from baseline to 1 month (p < 0.05). Mean surface area had no statistically significant difference between the groups. However, in terms of the percentage change in surface area, a significant difference was found from baseline to 6 months (p < 0.05). Amniotic membrane was a significantly better promoter of angiogenesis than platelet-rich fibrin in the current trial. The osteogenic potential of both materials was similar. However, the clinical application, availability, and cost-effectiveness of amniotic membrane support it as a promising therapeutic alternative in clinical translation. Further large-scale trials and histologic studies are warranted.

使用膜屏障和植骨材料在根管手术促进愈合再生而不是修复疤痕组织。由于其宝贵的再生和治疗特性,人羊膜可以支持理想的根尖周康复,促进手术后更好的愈合。目前的试验旨在评估羊膜的愈合潜力,并使用彩色多普勒超声将其与富血小板纤维蛋白进行比较。目前的研究是一项随机、双盲、平行组、单中心研究。选择34名符合所有纳入和排除标准的需要进行根管手术的系统健康个体,随机分为两组。手术刮除骨病变并用羟基磷灰石移植物填充。将羊膜(1组)和富血小板纤维蛋白(2组)置于骨隐窝上,并将皮瓣缝合。超声和彩色多普勒评价病变的表面积和血管分布。观察结果:两组患者在1个月时的平均血管密度和从基线到1个月的平均血管密度变化有显著差异(p <0.05)。平均表面积组间差异无统计学意义。然而,就表面积的百分比变化而言,从基线到6个月有显著差异(p <0.05)。在目前的试验中,羊膜比富含血小板的纤维蛋白更能促进血管生成。两种材料的成骨潜能相似。然而,羊膜的临床应用,可用性和成本效益支持它作为一个有前途的治疗替代临床翻译。进一步的大规模试验和组织学研究是必要的。
{"title":"Effect of amniotic membrane and platelet-rich fibrin membrane on bone healing post endodontic surgery: An ultrasonographic, randomized controlled study","authors":"Saumya Johri,&nbsp;Promila Verma,&nbsp;Aseem Prakash Tikku,&nbsp;Rhythm Bains,&nbsp;Neera Kohli","doi":"10.1002/term.3362","DOIUrl":"https://doi.org/10.1002/term.3362","url":null,"abstract":"<p>The use of membrane barriers and bone grafting materials in endodontic surgery promotes healing by regeneration rather than repair by scar tissue. Due to its valuable regenerative and therapeutic properties, the human amniotic membrane can support ideal periapical rehabilitation and promote better healing after surgery. The current trial aimed to evaluate the amniotic membrane's healing potential and compare it with platelet-rich fibrin using color doppler sonography. The current study is a randomized, double-blinded, parallel-group, single-center study. Thirty-four systematically healthy individuals requiring endodontic surgery who fulfilled all inclusion and exclusion criteria were selected and randomly placed in two groups. Surgical curettage of the bony lesion was performed and filled with hydroxyapatite graft. Amniotic membrane (Group 1) and platelet-rich fibrin (Group 2) were placed over the bony crypt, and the flap was sutured back. The lesion's surface area and vascularity were the parameters assessed with ultrasound and color doppler. and observations: The groups found a significant difference in mean vascularity at 1 month and mean vascularity change from baseline to 1 month (<i>p</i> &lt; 0.05). Mean surface area had no statistically significant difference between the groups. However, in terms of the percentage change in surface area, a significant difference was found from baseline to 6 months (<i>p</i> &lt; 0.05). Amniotic membrane was a significantly better promoter of angiogenesis than platelet-rich fibrin in the current trial. The osteogenic potential of both materials was similar. However, the clinical application, availability, and cost-effectiveness of amniotic membrane support it as a promising therapeutic alternative in clinical translation. Further large-scale trials and histologic studies are warranted.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1208-1222"},"PeriodicalIF":3.3,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5935876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evolution of functional tissue engineering for tendon and ligament repair 肌腱和韧带修复功能组织工程的发展
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-11-17 DOI: 10.1002/term.3360
David L. Butler

This review paper is motivated by a Back-to-Basics presentation given by the author at the 2022 Orthopaedic Research Society meeting in Tampa, Florida. I was tasked with providing a brief history of research leading up to the introduction of functional tissue engineering (FTE) for tendon and ligament repair. Beginning in the 1970s, this timeline focused on two common orthopedic soft tissue problems, anterior cruciate ligament ruptures in the knee and supraspinatus tendon injuries in the shoulder. Historic changes in the field over the next 5 decades revealed a transformation from a focus more on mechanics (called “bioMECHANICS”) on a larger (tissue) scale to a more recent focus on biology (called “mechanoBIOLOGY”) on a smaller (cellular and molecular) scale. Early studies by surgeons and engineers revealed the importance of testing conditions for ligaments and tendons (e.g., high strain rates while avoiding subject disuse and immobility) and the need to measure in vivo forces in these tissues. But any true tissue engineering and regeneration in these early decades was limited more to the use of auto-, allo- and xenografts than actual generation of stimulated cell-scaffold constructs in culture. It was only after the discovery of tissue engineering in 1988 and the recognition of frequent rotator cuff injuries in the early 1990s, that biologists joined surgeons and engineers to discover mechanical and biological testing criteria for FTE. This review emphasizes the need for broader and more inclusive collaborations by surgeons, biologists and engineers in the short term with involvement of those in biomaterials, manufacturing, and regulation of new products in the longer term.

这篇综述论文的动机是作者在佛罗里达州坦帕市举行的2022年骨科研究学会会议上所做的回归基础的演讲。我的任务是简要介绍肌腱和韧带修复的功能性组织工程(FTE)的研究历史。从20世纪70年代开始,这个时间线集中在两个常见的骨科软组织问题,膝关节前交叉韧带断裂和肩部冈上肌腱损伤。在接下来的50年里,该领域的历史性变化揭示了一个转变,从更多地关注更大(组织)尺度上的力学(称为“生物力学”)到最近更关注更小(细胞和分子)尺度上的生物学(称为“机械生物学”)。外科医生和工程师的早期研究揭示了测试韧带和肌腱条件的重要性(例如,在避免受试者废弃和不动的情况下,高应变率),以及测量这些组织中的体内力的必要性。但是,在最初的几十年里,任何真正的组织工程和再生都更多地局限于使用自体、同种和异种移植物,而不是在培养中实际产生受刺激的细胞支架结构。直到1988年组织工程学被发现,以及20世纪90年代初对频繁发生的肩袖损伤的认识,生物学家才加入外科医生和工程师的行列,发现了FTE的力学和生物学检测标准。这篇综述强调了外科医生、生物学家和工程师在短期内需要更广泛和更具包容性的合作,而在长期内则需要生物材料、制造和新产品监管方面的参与。
{"title":"Evolution of functional tissue engineering for tendon and ligament repair","authors":"David L. Butler","doi":"10.1002/term.3360","DOIUrl":"https://doi.org/10.1002/term.3360","url":null,"abstract":"<p>This review paper is motivated by a Back-to-Basics presentation given by the author at the 2022 Orthopaedic Research Society meeting in Tampa, Florida. I was tasked with providing a brief history of research leading up to the introduction of functional tissue engineering (FTE) for tendon and ligament repair. Beginning in the 1970s, this timeline focused on two common orthopedic soft tissue problems, anterior cruciate ligament ruptures in the knee and supraspinatus tendon injuries in the shoulder. Historic changes in the field over the next 5 decades revealed a transformation from a focus more on mechanics (called “bioMECHANICS”) on a larger (tissue) scale to a more recent focus on biology (called “mechanoBIOLOGY”) on a smaller (cellular and molecular) scale. Early studies by surgeons and engineers revealed the importance of testing conditions for ligaments and tendons (e.g., high strain rates while avoiding subject disuse and immobility) and the need to measure in vivo forces in these tissues. But any true tissue engineering and regeneration in these early decades was limited more to the use of auto-, allo- and xenografts than actual generation of stimulated cell-scaffold constructs in culture. It was only after the discovery of tissue engineering in 1988 and the recognition of frequent rotator cuff injuries in the early 1990s, that biologists joined surgeons and engineers to discover mechanical and biological testing criteria for FTE. This review emphasizes the need for broader and more inclusive collaborations by surgeons, biologists and engineers in the short term with involvement of those in biomaterials, manufacturing, and regulation of new products in the longer term.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1091-1108"},"PeriodicalIF":3.3,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5691448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Recent advances in gene therapy for bone tissue engineering 骨组织工程基因治疗研究进展
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-11-16 DOI: 10.1002/term.3363
Fatemeh Ranjbarnejad, Mozafar Khazaei, Alireza Shahryari, Fatemeh Khazaei, Leila Rezakhani

Autografting, a major treatment for bone fractures, has potential risks related to the required surgery and disease transmission. Bone morphogenetic proteins (BMPs) are the most common osteogenic factors used for bone-healing applications. However, BMP delivery can have shortcomings such as a short half-life and the high cost of manufacturing the recombinant proteins. Gene delivery methods have demonstrated promising alternative strategies for producing BMPs or other osteogenic factors using engineered cells. These approaches can also enable temporal overexpression and local production of the therapeutic genes in the target tissues. This review addresses recent progress on engineered viral, non-viral, and RNA-mediated gene delivery systems that are being used for bone repair and regeneration. Advances in clustered regularly interspaced short palindromic repeats/Cas9 genome engineering for bone tissue regeneration also is discussed.

自体植骨术是骨折的主要治疗方法,但存在手术和疾病传播的潜在风险。骨形态发生蛋白(BMPs)是骨愈合应用中最常见的成骨因子。然而,BMP的递送有半衰期短和制造重组蛋白的高成本等缺点。基因传递方法已经证明了利用工程细胞产生bmp或其他成骨因子的有前途的替代策略。这些方法也可以使治疗基因在靶组织中的时间过表达和局部产生。本文综述了用于骨修复和再生的工程化病毒、非病毒和rna介导的基因传递系统的最新进展。本文还讨论了聚类规则间隔短回文重复序列/Cas9基因组工程用于骨组织再生的研究进展。
{"title":"Recent advances in gene therapy for bone tissue engineering","authors":"Fatemeh Ranjbarnejad,&nbsp;Mozafar Khazaei,&nbsp;Alireza Shahryari,&nbsp;Fatemeh Khazaei,&nbsp;Leila Rezakhani","doi":"10.1002/term.3363","DOIUrl":"https://doi.org/10.1002/term.3363","url":null,"abstract":"<p>Autografting, a major treatment for bone fractures, has potential risks related to the required surgery and disease transmission. Bone morphogenetic proteins (BMPs) are the most common osteogenic factors used for bone-healing applications. However, BMP delivery can have shortcomings such as a short half-life and the high cost of manufacturing the recombinant proteins. Gene delivery methods have demonstrated promising alternative strategies for producing BMPs or other osteogenic factors using engineered cells. These approaches can also enable temporal overexpression and local production of the therapeutic genes in the target tissues. This review addresses recent progress on engineered viral, non-viral, and RNA-mediated gene delivery systems that are being used for bone repair and regeneration. Advances in clustered regularly interspaced short palindromic repeats/Cas9 genome engineering for bone tissue regeneration also is discussed.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1121-1137"},"PeriodicalIF":3.3,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6171617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Examination of epigenetic inhibitor zebularine in treatment of skin wounds in healthy and diabetic mice 表观遗传抑制剂zebularine治疗健康和糖尿病小鼠皮肤创伤的研究
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-11-09 DOI: 10.1002/term.3365
Piotr Sass, Pawe? Sosnowski, Jolanta Kamińska, Milena Deptu?a, Aneta Skoniecka, Jacek Zieliński, Sylwia Rodziewicz-Motowid?o, Micha? Piku?a, Pawe? Sachadyn

DNA methyltransferase inhibitor zebularine was proven to induce regeneration in the ear pinna in mice. We utilized a dorsal skin wound model to further evaluate this epigenetic inhibitor in wound healing. Full-thickness excisional wounds were made on the dorsum of 2 and 10-month-old healthy BALB/c and 3 and 8-month-old diabetic (db/db) mice, followed by topical or intraperitoneal zebularine delivery. Depending on the strain, age, dose, and delivery, the zebularine treatments either had no effect or accelerated or delayed wound closure. In principle, zebularine applied topically moderately promoted wound closure in the healthy but markedly delayed in the diabetic mice, which was in line with decreased viability of cultured keratinocytes from diabetic patients exposed to zebularine. The histological analysis revealed an improvement in the architecture of restored skin in zebularine-treated mice, manifested as a distinct layered pattern resembling panniculus carnosus. The finding corresponds with the zebularine-mediated activation of the Wnt5a gene, an essential regulator of Wnt signaling, the pathway involved in hair follicle development, the process which in turn is connected with regenerative skin healing. Although zebularine did not remarkably accelerate wound healing, zebularine and other epigenetic inhibitors deserve further testing as potential drugs to improve the quality of restored skin.

DNA甲基转移酶抑制剂zebularine被证明可以诱导小鼠耳膜再生。我们利用背侧皮肤伤口模型来进一步评估这种表观遗传抑制剂在伤口愈合中的作用。在2月龄和10月龄的健康BALB/c小鼠以及3月龄和8月龄的糖尿病小鼠(db/db)背部做全层切除创面,然后局部或腹腔注射zebularine。根据菌株,年龄,剂量和递送,zebularine治疗要么没有效果,要么加速或延迟伤口愈合。原则上,局部应用zebularine适度促进健康小鼠的伤口愈合,但明显延迟糖尿病小鼠的伤口愈合,这与暴露于zebularine的糖尿病患者培养的角化细胞活力下降一致。组织学分析显示,经斑马碱处理的小鼠修复后的皮肤结构有所改善,表现为明显的分层模式,类似于肉环。这一发现与斑马碱介导的Wnt5a基因激活相一致,Wnt5a基因是Wnt信号的重要调节因子,Wnt信号通路涉及毛囊发育,而这一过程反过来又与皮肤再生愈合有关。虽然斑马碱没有显著加速伤口愈合,但斑马碱和其他表观遗传抑制剂作为改善修复皮肤质量的潜在药物值得进一步试验。
{"title":"Examination of epigenetic inhibitor zebularine in treatment of skin wounds in healthy and diabetic mice","authors":"Piotr Sass,&nbsp;Pawe? Sosnowski,&nbsp;Jolanta Kamińska,&nbsp;Milena Deptu?a,&nbsp;Aneta Skoniecka,&nbsp;Jacek Zieliński,&nbsp;Sylwia Rodziewicz-Motowid?o,&nbsp;Micha? Piku?a,&nbsp;Pawe? Sachadyn","doi":"10.1002/term.3365","DOIUrl":"https://doi.org/10.1002/term.3365","url":null,"abstract":"<p>DNA methyltransferase inhibitor zebularine was proven to induce regeneration in the ear pinna in mice. We utilized a dorsal skin wound model to further evaluate this epigenetic inhibitor in wound healing. Full-thickness excisional wounds were made on the dorsum of 2 and 10-month-old healthy BALB/c and 3 and 8-month-old diabetic (db/db) mice, followed by topical or intraperitoneal zebularine delivery. Depending on the strain, age, dose, and delivery, the zebularine treatments either had no effect or accelerated or delayed wound closure. In principle, zebularine applied topically moderately promoted wound closure in the healthy but markedly delayed in the diabetic mice, which was in line with decreased viability of cultured keratinocytes from diabetic patients exposed to zebularine. The histological analysis revealed an improvement in the architecture of restored skin in zebularine-treated mice, manifested as a distinct layered pattern resembling <i>panniculus carnosus</i>. The finding corresponds with the zebularine-mediated activation of the <i>Wnt5a</i> gene, an essential regulator of Wnt signaling, the pathway involved in hair follicle development, the process which in turn is connected with regenerative skin healing. Although zebularine did not remarkably accelerate wound healing, zebularine and other epigenetic inhibitors deserve further testing as potential drugs to improve the quality of restored skin.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1238-1248"},"PeriodicalIF":3.3,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3365","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6174257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomal let-7f-5p derived from mineralized osteoblasts promotes the angiogenesis of endothelial cells via the DUSP1/Erk1/2 signaling pathway 矿化成骨细胞衍生的外泌体let-7f-5p通过DUSP1/Erk1/2信号通路促进内皮细胞血管生成
IF 3.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-11-08 DOI: 10.1002/term.3358
Yiqun He, Hailong Li, Zuochong Yu, Linli Li, Xujun Chen, Aolei Yang, Feizhou Lyu, Youhai Dong

Blood vessel formation is the prerequisite for the survival and growth of tissue-engineered bone. Mineralized osteoblasts (MOBs) have been shown to regulate angiogenesis through the secretion of exosomes containing various pro-angiogenic factors. However, whether the mineralized osteoblast-derived exosomes (MOB-Exos) containing let-7f-5p can regulate the angiogenesis of endothelial cells (ECs) is still unknown. In this study, the angiogenic capabilities of ECs respectively treated with MOB-Exos, let-7f-5p mimicked MOB-Exos (miR mimic group), and let-7f-5p inhibited MOB-Exos (miR inhibitor group) were compared through in vitro and in vivo studies. Moreover, the potential mechanism of MOB-Exo let-7f-5p regulating angiogenesis was explored by verifying the role of the Erk1/2 signaling pathway and target gene DUSP1. The results showed that MOB-Exos could significantly promote the angiogenesis of ECs, which could be enhanced by mimicked exosomal let-7f-5p and attenuated by inhibited exosomal let-7f-5p. Let-7f-5p could suppress the luciferase activity of wide-type DUSP1, and the mutation of DUSP1 could abrogate the repressive ability of let-7f-5p. Furthermore, the expression of DUSP1 exhibited a reversed trend to that of pErk1/2. The expression of pErk1/2 was significantly higher in the miR mimic group and lower in the miR inhibitor group than that in the MOB-Exos group, while inhibition of pErk1/2 could partly impair the angiogenic capabilities of ECs. In conclusion, we concluded that exosomal let-7f-5p derived from MOBs could promote the angiogenesis of ECs via activating the DUSP1/Erk1/2 signaling pathway, which might be a promising target for promoting the angiogenesis of tissue-engineered bone.

血管的形成是组织工程骨存活和生长的先决条件。矿化成骨细胞(MOBs)已被证明通过分泌含有各种促血管生成因子的外泌体来调节血管生成。然而,含有let-7f-5p的矿化成骨细胞衍生外泌体(mobo - exos)是否能调节内皮细胞(ECs)的血管生成尚不清楚。本研究通过体外和体内研究,比较了分别用mobo - exos、let-7f-5p模拟mobo - exos (miR模拟组)和let-7f-5p抑制mobo - exos (miR抑制剂组)处理的ECs的血管生成能力。此外,通过验证Erk1/2信号通路和靶基因DUSP1的作用,探讨了mobo - exo let-7f-5p调控血管生成的潜在机制。结果表明,mobo - exos能显著促进内皮细胞血管生成,模拟外泌体let-7f-5p能增强内皮细胞血管生成,抑制外泌体let-7f-5p能减弱内皮细胞血管生成。Let-7f-5p可以抑制宽型DUSP1的荧光素酶活性,而DUSP1的突变可以取消Let-7f-5p的抑制能力。DUSP1的表达趋势与pErk1/2的表达趋势相反。与mobo - exos组相比,miR mimic组的pErk1/2表达明显升高,miR抑制剂组的pErk1/2表达明显降低,而抑制pErk1/2可部分损害内皮细胞的血管生成能力。综上所述,我们认为来源于MOBs的外泌体let-7f-5p可以通过激活DUSP1/Erk1/2信号通路促进ECs血管生成,这可能是促进组织工程骨血管生成的一个有希望的靶点。
{"title":"Exosomal let-7f-5p derived from mineralized osteoblasts promotes the angiogenesis of endothelial cells via the DUSP1/Erk1/2 signaling pathway","authors":"Yiqun He,&nbsp;Hailong Li,&nbsp;Zuochong Yu,&nbsp;Linli Li,&nbsp;Xujun Chen,&nbsp;Aolei Yang,&nbsp;Feizhou Lyu,&nbsp;Youhai Dong","doi":"10.1002/term.3358","DOIUrl":"https://doi.org/10.1002/term.3358","url":null,"abstract":"<p>Blood vessel formation is the prerequisite for the survival and growth of tissue-engineered bone. Mineralized osteoblasts (MOBs) have been shown to regulate angiogenesis through the secretion of exosomes containing various pro-angiogenic factors. However, whether the mineralized osteoblast-derived exosomes (MOB-Exos) containing let-7f-5p can regulate the angiogenesis of endothelial cells (ECs) is still unknown. In this study, the angiogenic capabilities of ECs respectively treated with MOB-Exos, let-7f-5p mimicked MOB-Exos (miR mimic group), and let-7f-5p inhibited MOB-Exos (miR inhibitor group) were compared through in vitro and in vivo studies. Moreover, the potential mechanism of MOB-Exo let-7f-5p regulating angiogenesis was explored by verifying the role of the Erk1/2 signaling pathway and target gene DUSP1. The results showed that MOB-Exos could significantly promote the angiogenesis of ECs, which could be enhanced by mimicked exosomal let-7f-5p and attenuated by inhibited exosomal let-7f-5p. Let-7f-5p could suppress the luciferase activity of wide-type DUSP1, and the mutation of DUSP1 could abrogate the repressive ability of let-7f-5p. Furthermore, the expression of DUSP1 exhibited a reversed trend to that of pErk1/2. The expression of pErk1/2 was significantly higher in the miR mimic group and lower in the miR inhibitor group than that in the MOB-Exos group, while inhibition of pErk1/2 could partly impair the angiogenic capabilities of ECs. In conclusion, we concluded that exosomal let-7f-5p derived from MOBs could promote the angiogenesis of ECs via activating the DUSP1/Erk1/2 signaling pathway, which might be a promising target for promoting the angiogenesis of tissue-engineered bone.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1184-1195"},"PeriodicalIF":3.3,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6049484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Tissue Engineering and Regenerative Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1