首页 > 最新文献

Polymer International最新文献

英文 中文
Synthesis and characterization of novel electrospun nanofibers based on taro starch: influence of solvent and isolation agent on morphology and diameter 基于芋头淀粉的新型电纺纳米纤维的合成与表征:溶剂和分离剂对形态和直径的影响
IF 2.9 4区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-10-28 DOI: 10.1002/pi.6709
Asti Sawitri, Halida Rahmi Luthfianti, Dian Ahmad Hapidin, Dhewa Edikresnha, Pramudita Satria Palar, Neni Surtiyeni, Arie Wibowo, Khairurrijal Khairurrijal

The utilization of natural polymers in producing electrospun nanofibers has received significant attention due to their biocompatibility, sustainability and diverse range of applications. This research focuses on synthesizing electrospun nanofibers derived from taro starch isolated from tubers. The investigation utilized SEM to examine the structure and size of the electrospun nanofibers. Formic acid and dimethyl sulfoxide solvents were tested to determine the most efficient solvent system for synthesizing taro starch nanofibers. The results demonstrated that the taro starch nanofibers can be effectively synthesized when using formic acid as the primary solvent. The study also investigated the impact of altering the volumetric ratio of formic acid to water on nanofiber morphology and size, finding that a lower formic acid fraction produced smooth fibers while a higher fraction resulted in fused fibers. The electrospinnability was further evaluated by comparing the effects of different isolation agents—distilled water and sodium metabisulfite—during the isolation process. The isolation agent significantly affected the fiber diameter, with notable differences observed in the smoothness of taro starch nanofibers at starch solution concentrations of 13, 15 and 17 wt%. Overall, the results of the study showed that the formation of taro starch fibers was influenced by the type of solvent, the volume fraction of the solvent to water, and the starch isolation agent. Successful fabrication of nanofibers from taro starch and its optimization parameters can contribute to the development of environmentally friendly nanofiber materials and offer a variety of applications in biomedicine, food and environmental engineering, such as tissue engineering, wound dressing, drug delivery, functional food delivery and food packaging. © 2024 Society of Chemical Industry.

{"title":"Synthesis and characterization of novel electrospun nanofibers based on taro starch: influence of solvent and isolation agent on morphology and diameter","authors":"Asti Sawitri,&nbsp;Halida Rahmi Luthfianti,&nbsp;Dian Ahmad Hapidin,&nbsp;Dhewa Edikresnha,&nbsp;Pramudita Satria Palar,&nbsp;Neni Surtiyeni,&nbsp;Arie Wibowo,&nbsp;Khairurrijal Khairurrijal","doi":"10.1002/pi.6709","DOIUrl":"https://doi.org/10.1002/pi.6709","url":null,"abstract":"<p>The utilization of natural polymers in producing electrospun nanofibers has received significant attention due to their biocompatibility, sustainability and diverse range of applications. This research focuses on synthesizing electrospun nanofibers derived from taro starch isolated from tubers. The investigation utilized SEM to examine the structure and size of the electrospun nanofibers. Formic acid and dimethyl sulfoxide solvents were tested to determine the most efficient solvent system for synthesizing taro starch nanofibers. The results demonstrated that the taro starch nanofibers can be effectively synthesized when using formic acid as the primary solvent. The study also investigated the impact of altering the volumetric ratio of formic acid to water on nanofiber morphology and size, finding that a lower formic acid fraction produced smooth fibers while a higher fraction resulted in fused fibers. The electrospinnability was further evaluated by comparing the effects of different isolation agents—distilled water and sodium metabisulfite—during the isolation process. The isolation agent significantly affected the fiber diameter, with notable differences observed in the smoothness of taro starch nanofibers at starch solution concentrations of 13, 15 and 17 wt%. Overall, the results of the study showed that the formation of taro starch fibers was influenced by the type of solvent, the volume fraction of the solvent to water, and the starch isolation agent. Successful fabrication of nanofibers from taro starch and its optimization parameters can contribute to the development of environmentally friendly nanofiber materials and offer a variety of applications in biomedicine, food and environmental engineering, such as tissue engineering, wound dressing, drug delivery, functional food delivery and food packaging. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 3","pages":"217-230"},"PeriodicalIF":2.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The conformational statistics of amphiphilic polymers with distinct topological structures at the interface between two phases
IF 2.9 4区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-10-24 DOI: 10.1002/pi.6703
Hui Li, Haitao Zhao, Kaiming Gao, Zijian Xue, Zhenbin Chen, Hong Liu

The distribution and conformational state of compatibilizer polymers at the interface between two phases are challenging to obtain in detail through experimental research due to spatial scale limitations. This paper employs dissipative particle dynamics simulation to statistically analyze the size variations of compatibilizer copolymers at the interface of a binary blend system. The study examines the impact of factors such as the chain length of blended homopolymers, the topological structure of the compatibilizer and component interactions on the size distribution of compatibilizer copolymers at the interface. The scaling exponent between the size of the compatibilizer copolymers and their chain length is determined and compared with theoretical values under melt conditions. The reasons for the variation in the scaling exponent are analyzed, providing theoretical supplementation for the distribution, size changes and compatibilization effects of compatibilizers during the blend modification process. The results reveal discrepancies between the scaling exponent of chain size and chain length at the interface and theoretical values, analyze the significant impact of compatibilizer copolymer topological structure on the scaling exponent and present the influence of the component interaction parameter α on the scaling exponent's variation pattern. The simulation outcomes offer theoretical support for the design and selection of compatibilizers in a blend system. © 2024 Society of Chemical Industry.

{"title":"The conformational statistics of amphiphilic polymers with distinct topological structures at the interface between two phases","authors":"Hui Li,&nbsp;Haitao Zhao,&nbsp;Kaiming Gao,&nbsp;Zijian Xue,&nbsp;Zhenbin Chen,&nbsp;Hong Liu","doi":"10.1002/pi.6703","DOIUrl":"https://doi.org/10.1002/pi.6703","url":null,"abstract":"<p>The distribution and conformational state of compatibilizer polymers at the interface between two phases are challenging to obtain in detail through experimental research due to spatial scale limitations. This paper employs dissipative particle dynamics simulation to statistically analyze the size variations of compatibilizer copolymers at the interface of a binary blend system. The study examines the impact of factors such as the chain length of blended homopolymers, the topological structure of the compatibilizer and component interactions on the size distribution of compatibilizer copolymers at the interface. The scaling exponent between the size of the compatibilizer copolymers and their chain length is determined and compared with theoretical values under melt conditions. The reasons for the variation in the scaling exponent are analyzed, providing theoretical supplementation for the distribution, size changes and compatibilization effects of compatibilizers during the blend modification process. The results reveal discrepancies between the scaling exponent of chain size and chain length at the interface and theoretical values, analyze the significant impact of compatibilizer copolymer topological structure on the scaling exponent and present the influence of the component interaction parameter <i>α</i> on the scaling exponent's variation pattern. The simulation outcomes offer theoretical support for the design and selection of compatibilizers in a blend system. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 2","pages":"152-162"},"PeriodicalIF":2.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevating mechanical and thermal performance on alkali-treated pineapple/glass fibre sandwich composite
IF 2.9 4区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-10-08 DOI: 10.1002/pi.6705
Sajin Justin Abraham Baby, Sujin Jose Arul, Raja Thandavamoorthy, Yuvarajan Devarajan

The present work generated hybrid composite sandwiches by incorporating 65% epoxy resin and 35% reinforcements derived from pineapple and glass fibres. The specimens were subjected to mechanical characterization by tensile, flexural and impact examinations. Among the untreated samples, the specimens containing untreated pineapple fibres (PF) with a composition of 17% PF, 18% glass fibres (three layers) and 65% epoxy by weight (17PF/TLGF) showed the most superior mechanical characteristics. Nevertheless, specimens containing fibres treated with NaOH exhibited exceptional characteristics, attaining a tensile strength of 88.121 MPa, a flexural strength of 94.213 MPa and an impact energy of 4.1 J. These data indicate a 20% enhancement in both tensile and flexural strength as well as a 63% improvement in impact strength compared to specimens containing 35% PF and lacking glass fibres (35PF/0GF). In comparison to 17PF/TLGF, the specimens treated with NaOH exhibited a 4.34% gain in tensile strength, a 4.24% increase in flexural strength and a 9% increase in impact strength. Experimental TGA was performed on the chemically treated fibre composite specimens, specifically identified as 35PF/0GF and 17PF/TLGF. Approximately 260 °C marked the beginning of decomposition for the 35PF/0GF sample, but the 17PF/TLGF sample decomposed at roughly 310°C. In addition, the fragmented surface of the 17PF/TLGF sample was analysed using SEM. © 2024 Society of Chemical Industry.

{"title":"Elevating mechanical and thermal performance on alkali-treated pineapple/glass fibre sandwich composite","authors":"Sajin Justin Abraham Baby,&nbsp;Sujin Jose Arul,&nbsp;Raja Thandavamoorthy,&nbsp;Yuvarajan Devarajan","doi":"10.1002/pi.6705","DOIUrl":"https://doi.org/10.1002/pi.6705","url":null,"abstract":"<p>The present work generated hybrid composite sandwiches by incorporating 65% epoxy resin and 35% reinforcements derived from pineapple and glass fibres. The specimens were subjected to mechanical characterization by tensile, flexural and impact examinations. Among the untreated samples, the specimens containing untreated pineapple fibres (PF) with a composition of 17% PF, 18% glass fibres (three layers) and 65% epoxy by weight (17PF/TLGF) showed the most superior mechanical characteristics. Nevertheless, specimens containing fibres treated with NaOH exhibited exceptional characteristics, attaining a tensile strength of 88.121 MPa, a flexural strength of 94.213 MPa and an impact energy of 4.1 J. These data indicate a 20% enhancement in both tensile and flexural strength as well as a 63% improvement in impact strength compared to specimens containing 35% PF and lacking glass fibres (35PF/0GF). In comparison to 17PF/TLGF, the specimens treated with NaOH exhibited a 4.34% gain in tensile strength, a 4.24% increase in flexural strength and a 9% increase in impact strength. Experimental TGA was performed on the chemically treated fibre composite specimens, specifically identified as 35PF/0GF and 17PF/TLGF. Approximately 260 °C marked the beginning of decomposition for the 35PF/0GF sample, but the 17PF/TLGF sample decomposed at roughly 310°C. In addition, the fragmented surface of the 17PF/TLGF sample was analysed using SEM. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 2","pages":"170-177"},"PeriodicalIF":2.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of sawdust fillers loaded on Cucumis sativus fiber-reinforced polymer composite: a novel composite for lightweight static application
IF 2.9 4区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-10-07 DOI: 10.1002/pi.6704
Thandavamoorthy Raja, Yuvarajan Devarajan

This research investigates the impact of sawdust fillers on Cucumis sativus fiber-reinforced polymer composites through a conventional hand layup process. The objective is to develop a novel material suitable for static applications that is both lightweight and environmentally sustainable. A range of analytical techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, mechanical testing, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis were employed to thoroughly characterize the resulting composite material. By integrating Cucumis sativus fibers and sawdust fillers into a polymer matrix, the study demonstrates the potential to create materials with improved mechanical properties due to addition of sawdust filler, including tensile strength (27.61 MPa), flexural strength (32.84 MPa), impact resistance (14.7 J cm−2) and hardness (42). These enhancements, averaging at 16.2%, are attributed to the addition of sawdust filler, which opens new avenues for environmentally conscious engineering solutions. XRD analysis reveals the composite's crystalline structure, indicating a crystallinity index of 64.5% and the orientation of crystalline planes. FTIR spectroscopy identifies chemical bonding and CO and CO functional groups present in the material with major peaks at 2123 and 2438 cm−1. TGA assesses the composite's thermal stability and decomposition behavior up to 380 °C. Additionally, SEM imaging elucidates the microstructural features and distribution of Cucumis sativus fibers and sawdust fillers within the epoxy matrix, while EDX analysis provides quantitative data on elemental composition. © 2024 Society of Chemical Industry.

{"title":"Effect of sawdust fillers loaded on Cucumis sativus fiber-reinforced polymer composite: a novel composite for lightweight static application","authors":"Thandavamoorthy Raja,&nbsp;Yuvarajan Devarajan","doi":"10.1002/pi.6704","DOIUrl":"https://doi.org/10.1002/pi.6704","url":null,"abstract":"<p>This research investigates the impact of sawdust fillers on <i>Cucumis sativus</i> fiber-reinforced polymer composites through a conventional hand layup process. The objective is to develop a novel material suitable for static applications that is both lightweight and environmentally sustainable. A range of analytical techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, mechanical testing, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis were employed to thoroughly characterize the resulting composite material. By integrating <i>Cucumis sativus</i> fibers and sawdust fillers into a polymer matrix, the study demonstrates the potential to create materials with improved mechanical properties due to addition of sawdust filler, including tensile strength (27.61 MPa), flexural strength (32.84 MPa), impact resistance (14.7 J cm<sup>−2</sup>) and hardness (42). These enhancements, averaging at 16.2%, are attributed to the addition of sawdust filler, which opens new avenues for environmentally conscious engineering solutions. XRD analysis reveals the composite's crystalline structure, indicating a crystallinity index of 64.5% and the orientation of crystalline planes. FTIR spectroscopy identifies chemical bonding and C<span></span>O and CO functional groups present in the material with major peaks at 2123 and 2438 cm<sup>−1</sup>. TGA assesses the composite's thermal stability and decomposition behavior up to 380 °C. Additionally, SEM imaging elucidates the microstructural features and distribution of <i>Cucumis sativus</i> fibers and sawdust fillers within the epoxy matrix, while EDX analysis provides quantitative data on elemental composition. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 2","pages":"163-169"},"PeriodicalIF":2.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Titanium oxide hydrates as versatile polymer crosslinkers and molecular-hybrid formers 作为多功能聚合物交联剂和分子杂化形成剂的氧化钛水合物
IF 2.9 4区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-10-05 DOI: 10.1002/pi.6702
Marlow M. Durbin, Irene Votta, Alex H. Balzer, Michal Procházka, Marian Valentin, Mária Omastová, Natalie Stingelin

Molecular hybrid materials based on widely available polymers crosslinked with an inorganic species have received increasing interest for their unique property sets outside of the usual range of commodity plastics and/or nanocomposites. Here, we provide a mini-review on molecular hybrids based on metal oxide hydrates—compounds that readily react with, for example, hydroxylated polymers to form inorganic:organic materials systems with many desirable features and properties. Focusing on titanium oxide hydrates, we discuss here that such molecular hybrids can exhibit a broad refractive index range in addition to an increased glass transition temperature, mechanical stiffness and swelling resistance in comparison to the neat polymer, which illustrates that such hybrid systems offer a new, low-cost, robust and versatile functional materials platform with great promise for, for example, solution-processed photonics, catalysts and antimicrobial coatings. Generally, our mini-review seeks to provide a concise and accessible overview of titanium oxide hydrate:polymer hybrid systems, focusing on their unique properties and processability as well as their broad and largely untapped potential as functional materials. © 2024 The Author(s). Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

基于与无机物交联的广泛可用聚合物的分子杂化材料,因其超出普通商品塑料和/或纳米复合材料范围的独特性能而受到越来越多的关注。在此,我们将对基于金属氧化物水合物的分子杂化材料进行小型综述--这种化合物很容易与羟基聚合物等发生反应,形成具有许多理想特性和性能的无机:有机材料系统。以氧化钛水合物为重点,我们在此讨论,与纯聚合物相比,这种分子杂化物除了能提高玻璃化转变温度、机械刚度和抗溶胀性之外,还能显示出宽广的折射率范围,这说明这种杂化物体系提供了一种新型、低成本、坚固耐用且用途广泛的功能材料平台,在溶液加工光子学、催化剂和抗菌涂层等方面大有可为。总体而言,我们的微型综述旨在提供有关氧化钛水合物:聚合物杂化体系的简明易懂的概述,重点关注其独特的性能和可加工性,以及作为功能材料尚未开发的广泛潜力。© 2024 作者简介国际聚合物》由 John Wiley & Sons Ltd 代表化学工业协会出版。
{"title":"Titanium oxide hydrates as versatile polymer crosslinkers and molecular-hybrid formers","authors":"Marlow M. Durbin,&nbsp;Irene Votta,&nbsp;Alex H. Balzer,&nbsp;Michal Procházka,&nbsp;Marian Valentin,&nbsp;Mária Omastová,&nbsp;Natalie Stingelin","doi":"10.1002/pi.6702","DOIUrl":"https://doi.org/10.1002/pi.6702","url":null,"abstract":"<p>Molecular hybrid materials based on widely available polymers crosslinked with an inorganic species have received increasing interest for their unique property sets outside of the usual range of commodity plastics and/or nanocomposites. Here, we provide a mini-review on molecular hybrids based on metal oxide hydrates—compounds that readily react with, for example, hydroxylated polymers to form inorganic:organic materials systems with many desirable features and properties. Focusing on titanium oxide hydrates, we discuss here that such molecular hybrids can exhibit a broad refractive index range in addition to an increased glass transition temperature, mechanical stiffness and swelling resistance in comparison to the neat polymer, which illustrates that such hybrid systems offer a new, low-cost, robust and versatile functional materials platform with great promise for, for example, solution-processed photonics, catalysts and antimicrobial coatings. Generally, our mini-review seeks to provide a concise and accessible overview of titanium oxide hydrate:polymer hybrid systems, focusing on their unique properties and processability as well as their broad and largely untapped potential as functional materials. © 2024 The Author(s). <i>Polymer International</i> published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 12","pages":"1017-1021"},"PeriodicalIF":2.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pi.6702","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyhydroxybutyrate/poly(ε-caprolactone)-based electrospun membranes loaded with amoxicillin-potassium clavulanate halloysite nanotubes for biomedical applications 负载阿莫西林-克拉维酸钾高岭土纳米管的聚羟基丁酸/聚(ε-己内酯)基静电纺丝膜在生物医学上的应用
IF 2.9 4区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-10-01 DOI: 10.1002/pi.6700
Deepak Verma, Manunya Okhawilai, Nangan Senthilkumar, Natesan Thirumalaivasan, Aran Incharoensakdi, Hiroshi Uyama

Biopolymers exhibit distinct properties for biomedical applications. Different biopolymer classes are utilized for various applications, for example antibacterial properties, drug delivery, tissue engineering, tissue scaffolds etc. In the present investigation, a nano-bioengineering approach was followed to prepare polyhydroxybutyrate and polycaprolactone polymer-based drug-loaded halloysite nanotube electrospun membranes for biomedical applications. Functionalized halloysite nanotubes ((3-aminopropyl)triethoxysilane acid treated halloysite nanotubes) at different weight percentages (1, 3, 5 and 7 wt%) were loaded with a broad-spectrum antibiotic amoxicillin trihydrate-potassium clavulanate, incorporated into the electrospun membranes, and characterized by different techniques such as XRD, FTIR, SEM, TEM and TGA. Different physical and mechanical properties were evaluated, such as porosity, water uptake, water vapor transmission rate, wettability and tensile properties. The developed membranes exhibited good in vitro biological properties, for example antibacterial, effective cell migration and less toxicity, as confirmed by disk diffusion, MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and cell scratch assays. A sustained drug release profile was observed from all the developed membranes. Overall results on the characterization of the developed membranes confirm the suitability of their use for different biomedical applications and as a wound dressing application. © 2024 Society of Chemical Industry.

生物聚合物在生物医学应用中表现出独特的特性。不同的生物聚合物类别被用于各种应用,例如抗菌性能、药物输送、组织工程、组织支架等。本研究采用纳米生物工程方法制备了聚羟基丁酸酯和聚己内酯聚合物基载药高土纳米管静电纺丝膜,用于生物医学应用。用广谱抗生素三水合阿莫西林-克拉维酸钾负载不同重量百分比(1、3、5、7 wt%)的功能化高岭土纳米管((3-氨基丙基)三乙氧基硅烷酸处理的高岭土纳米管),并将其掺入电纺丝膜中,采用XRD、FTIR、SEM、TEM和TGA等不同技术对其进行表征。研究了不同的物理力学性能,如孔隙率、吸水率、水蒸气透过率、润湿性和拉伸性能。通过圆盘扩散、MTT(3-(4,5-二甲基噻唑-2)-2,5-二苯基溴化四唑)和细胞划痕实验证实,所制备的膜具有良好的体外生物学性能,如抗菌、有效的细胞迁移和低毒性。从所有发育的膜上观察到药物的持续释放。所开发膜的特性的总体结果证实了它们在不同生物医学应用和伤口敷料应用中的适用性。©2024化学工业学会。
{"title":"Polyhydroxybutyrate/poly(ε-caprolactone)-based electrospun membranes loaded with amoxicillin-potassium clavulanate halloysite nanotubes for biomedical applications","authors":"Deepak Verma,&nbsp;Manunya Okhawilai,&nbsp;Nangan Senthilkumar,&nbsp;Natesan Thirumalaivasan,&nbsp;Aran Incharoensakdi,&nbsp;Hiroshi Uyama","doi":"10.1002/pi.6700","DOIUrl":"https://doi.org/10.1002/pi.6700","url":null,"abstract":"<p>Biopolymers exhibit distinct properties for biomedical applications. Different biopolymer classes are utilized for various applications, for example antibacterial properties, drug delivery, tissue engineering, tissue scaffolds etc. In the present investigation, a nano-bioengineering approach was followed to prepare polyhydroxybutyrate and polycaprolactone polymer-based drug-loaded halloysite nanotube electrospun membranes for biomedical applications. Functionalized halloysite nanotubes ((3-aminopropyl)triethoxysilane acid treated halloysite nanotubes) at different weight percentages (1, 3, 5 and 7 wt%) were loaded with a broad-spectrum antibiotic amoxicillin trihydrate-potassium clavulanate, incorporated into the electrospun membranes, and characterized by different techniques such as XRD, FTIR, SEM, TEM and TGA. Different physical and mechanical properties were evaluated, such as porosity, water uptake, water vapor transmission rate, wettability and tensile properties. The developed membranes exhibited good <i>in vitro</i> biological properties, for example antibacterial, effective cell migration and less toxicity, as confirmed by disk diffusion, MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and cell scratch assays. A sustained drug release profile was observed from all the developed membranes. Overall results on the characterization of the developed membranes confirm the suitability of their use for different biomedical applications and as a wound dressing application. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 1","pages":"54-65"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances of silk-fibroin-based hydrogel in the field of antibacterial application
IF 2.9 4区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-09-26 DOI: 10.1002/pi.6699
Pan Zou, Xiaoliang Li, Haiyun Zhao, Shenhong Qu, Zhichao Jiang, Xi Lei, Cimin Wu, Ling Liu

Silk fibroin (SF) hydrogel has been popular in the wound dressing and tissue engineering fields for its good biocompatibility, biodegradation and water retention ability. The development of functional SF-based hydrogels has gained attention in recent decades in medical fields. Multifunctional SF hydrogel is prepared by the addition and combination of therapeutic agents with cell growth promoting, antibacterial, antioxidant and anti-inflammatory properties. In particular, the antibacterial activity of SF-based hydrogel is essential in clinical practice. Despite this growing interest in functional silk protein hydrogels and their potential antimicrobial applications, a comprehensive review on this topic is currently lacking. Therefore, this review aims to provide an in-depth understanding of the advanced status of the antibacterial application of SF-based hydrogel, mainly focused on different components loaded. The review begins by briefly introducing the preparation methods of SF-based hydrogel. Subsequently, the review summarizes diverse components loaded into the hydrogel to provide a comprehensive understanding in the antibacterial field. Furthermore, the article reviews the biomedical applications of antibacterial aspects including tissue engineering, sustained drug release, wound repair and adhesive use. Also the challenges associated with developing SF-based hydrogels are analyzed alongside future prospects. We hope that this study will contribute to promoting the application and innovation of SF material in the clinical antibacterial field. © 2024 Society of Chemical Industry.

{"title":"Recent advances of silk-fibroin-based hydrogel in the field of antibacterial application","authors":"Pan Zou,&nbsp;Xiaoliang Li,&nbsp;Haiyun Zhao,&nbsp;Shenhong Qu,&nbsp;Zhichao Jiang,&nbsp;Xi Lei,&nbsp;Cimin Wu,&nbsp;Ling Liu","doi":"10.1002/pi.6699","DOIUrl":"https://doi.org/10.1002/pi.6699","url":null,"abstract":"<p>Silk fibroin (SF) hydrogel has been popular in the wound dressing and tissue engineering fields for its good biocompatibility, biodegradation and water retention ability. The development of functional SF-based hydrogels has gained attention in recent decades in medical fields. Multifunctional SF hydrogel is prepared by the addition and combination of therapeutic agents with cell growth promoting, antibacterial, antioxidant and anti-inflammatory properties. In particular, the antibacterial activity of SF-based hydrogel is essential in clinical practice. Despite this growing interest in functional silk protein hydrogels and their potential antimicrobial applications, a comprehensive review on this topic is currently lacking. Therefore, this review aims to provide an in-depth understanding of the advanced status of the antibacterial application of SF-based hydrogel, mainly focused on different components loaded. The review begins by briefly introducing the preparation methods of SF-based hydrogel. Subsequently, the review summarizes diverse components loaded into the hydrogel to provide a comprehensive understanding in the antibacterial field. Furthermore, the article reviews the biomedical applications of antibacterial aspects including tissue engineering, sustained drug release, wound repair and adhesive use. Also the challenges associated with developing SF-based hydrogels are analyzed alongside future prospects. We hope that this study will contribute to promoting the application and innovation of SF material in the clinical antibacterial field. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 3","pages":"183-198"},"PeriodicalIF":2.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and characterization of poly(fullerene) thin films for gas sensors
IF 2.9 4区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-09-25 DOI: 10.1002/pi.6698
André VS Simõis, Marcelo S Borro, Maria ERS Medina, Luiz A Riga Jr, Nyara D Ferreira, Pedro L Silva, Hasina H Ramanitra, Meera Stephen, Nara C Souza, Roger C Hiorns, Deuber LS Agostini, Clarissa A Olivati

Ammonia, despite being a naturally generated compound in the metabolic process, can be harmful to health in higher concentrations. In this context, sensor devices are directly related to health and safety measurements to detect the presence of such substances. In this work, we study materials derived from fullerene, a material with a high electron affinity. We characterize three fullerene derivatives, namely PCBM, OPCBMMB and PPCBMB, and verify their applicability as ammonia sensors. The materials were studied in the form of thin films, produced by Langmuir–Schaefer and drop-casting techniques. Optical characterization was performed using UV–visible spectroscopy while morphological characteristics were studied using atomic force microscopy (AFM) and optical microscopy (OM). Current versus voltage and current versus time measurements were performed in order to determine the films' conductivities, electrical resistances and gas-sensing properties. UV–visible absorption was observed at lower wavelengths, with peaks in the UV region. In the electrical measurements, differences were observed between the deposition techniques, with the Langmuir–Schaefer films showing a higher conductivity than the drop-casting films. AFM and OM also showed differences in the film surfaces between the techniques, with a rougher surface on the drop-casting films. When exposed to ammonia, the materials showed electrical responses at every cycle, with a significant increase in their electrical responses. © 2024 Society of Chemical Industry.

{"title":"Fabrication and characterization of poly(fullerene) thin films for gas sensors","authors":"André VS Simõis,&nbsp;Marcelo S Borro,&nbsp;Maria ERS Medina,&nbsp;Luiz A Riga Jr,&nbsp;Nyara D Ferreira,&nbsp;Pedro L Silva,&nbsp;Hasina H Ramanitra,&nbsp;Meera Stephen,&nbsp;Nara C Souza,&nbsp;Roger C Hiorns,&nbsp;Deuber LS Agostini,&nbsp;Clarissa A Olivati","doi":"10.1002/pi.6698","DOIUrl":"https://doi.org/10.1002/pi.6698","url":null,"abstract":"<p>Ammonia, despite being a naturally generated compound in the metabolic process, can be harmful to health in higher concentrations. In this context, sensor devices are directly related to health and safety measurements to detect the presence of such substances. In this work, we study materials derived from fullerene, a material with a high electron affinity. We characterize three fullerene derivatives, namely PCBM, OPCBMMB and PPCBMB, and verify their applicability as ammonia sensors. The materials were studied in the form of thin films, produced by Langmuir–Schaefer and drop-casting techniques. Optical characterization was performed using UV–visible spectroscopy while morphological characteristics were studied using atomic force microscopy (AFM) and optical microscopy (OM). Current <i>versus</i> voltage and current <i>versus</i> time measurements were performed in order to determine the films' conductivities, electrical resistances and gas-sensing properties. UV–visible absorption was observed at lower wavelengths, with peaks in the UV region. In the electrical measurements, differences were observed between the deposition techniques, with the Langmuir–Schaefer films showing a higher conductivity than the drop-casting films. AFM and OM also showed differences in the film surfaces between the techniques, with a rougher surface on the drop-casting films. When exposed to ammonia, the materials showed electrical responses at every cycle, with a significant increase in their electrical responses. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 2","pages":"140-151"},"PeriodicalIF":2.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural polymers for emerging technological applications: cellulose, lignin, shellac and silk 用于新兴技术应用的天然聚合物:纤维素、木质素、虫胶和蚕丝
IF 2.9 4区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-09-18 DOI: 10.1002/pi.6697
Mihai Irimia-Vladu, Niyazi Serdar Sariciftci

In an effort to stave off the growth of electronic waste (e-waste) that poses a critical environmental dilemma, scientists often look into nature as an unending inspirational pool of materials and chemical processes that ensure functionality, performance and safe dissolution at the end of life cycle. This short review highlights only four organic polymer materials of natural origin (i.e. cellulose, lignin, shellac and silk) from the very large pool of natural (bio)polymeric materials and looks not only into the recent developments at the industrial scale but also into the emerging niche applications of these materials, while highlighting their implementation into electronics and sensor development. This review exemplifies that natural polymeric materials have great potential for the development of eco-friendly electronics, in other words the class of industrial products that has carefully considered the important issues of biocompatibility, biodegradability (even compostability), cost of production and energy expanded in production (i.e. the carbon footprint). © 2024 The Author(s). Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

电子垃圾对环境造成严重危害,为了遏制电子垃圾的增长,科学家们常常将大自然视为一个无穷无尽的材料和化学过程的灵感源泉,这些材料和化学过程可确保产品的功能、性能以及在生命周期结束时的安全溶解。这篇简短的综述从庞大的天然(生物)聚合物材料库中挑选出四种源于自然的有机聚合物材料(即纤维素、木质素、虫胶和蚕丝),不仅介绍了这些材料在工业规模上的最新发展,还介绍了这些材料的新兴利基应用,同时强调了它们在电子和传感器开发中的应用。本综述表明,天然聚合材料在开发生态友好型电子产品方面具有巨大潜力,换句话说,这类工业产品已仔细考虑了生物兼容性、生物降解性(甚至可堆肥性)、生产成本和生产过程中的能源消耗(即碳足迹)等重要问题。© 2024 作者。国际聚合物》由 John Wiley & Sons Ltd 代表化学工业协会出版。
{"title":"Natural polymers for emerging technological applications: cellulose, lignin, shellac and silk","authors":"Mihai Irimia-Vladu,&nbsp;Niyazi Serdar Sariciftci","doi":"10.1002/pi.6697","DOIUrl":"10.1002/pi.6697","url":null,"abstract":"<p>In an effort to stave off the growth of electronic waste (e-waste) that poses a critical environmental dilemma, scientists often look into nature as an unending inspirational pool of materials and chemical processes that ensure functionality, performance and safe dissolution at the end of life cycle. This short review highlights only four organic polymer materials of natural origin (i.e. cellulose, lignin, shellac and silk) from the very large pool of natural (bio)polymeric materials and looks not only into the recent developments at the industrial scale but also into the emerging niche applications of these materials, while highlighting their implementation into electronics and sensor development. This review exemplifies that natural polymeric materials have great potential for the development of eco-friendly electronics, in other words the class of industrial products that has carefully considered the important issues of biocompatibility, biodegradability (even compostability), cost of production and energy expanded in production (i.e. the carbon footprint). © 2024 The Author(s). <i>Polymer International</i> published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 2","pages":"71-86"},"PeriodicalIF":2.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pi.6697","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigate Performance of ATGF nanocomposite based on guar gum polymer for adsorption of Congo Red dye and alpha lipoic acid drug from wastewater: study kinetics and simulation 研究基于瓜尔胶聚合物的 ATGF 纳米复合材料吸附废水中刚果红染料和阿尔法硫辛酸药物的性能:动力学研究与模拟
IF 2.9 4区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-09-07 DOI: 10.1002/pi.6691
Fatemeh Tazimifar, Pegah Nazarizadeh, Ali Reza Akbarzadeh

In this study, the synthesized nanocomposite novel arginine/thiourea/guar gum/ferrite (ATGF) adsorbent was evaluated for the adsorption of alpha lipoic acid (ALA) and Congo Red (CR) from wastewater. The synthesized nanocomposite was examined by Brunauer–Emmett–Teller theory (BET), Termal gravimetric analysis (TGA), Fourier transform infrared spectrometer (FT-IR), field emission scanning electron microscopy (FE-SEM), X-ray Diffraction (XRD), Vibrating sample magnetometer (VSM), and energy dispersive X-ray (EDX). For the removal of ALA and CR from aqueous solution, the capacity of the nanocomposite was investigated by working on a series of experiments such as the effect of adsorbent dose, initial concentration, contact time, pH and temperature. The adsorption kinetics of these two pollutants were investigated using pseudo-first-order and pseudo-second-order velocity equations. The nanocomposite kinetics follow pseudo-second-order. Langmuir and Freundlich isotherms were investigated. The results show that the Langmuir isotherm model gives the maximum adsorption capacity of ALA as 96.93 mg g−1 and of CR as 229.34 mg g−1 on the nanocomposite. © 2024 Society of Chemical Industry.

本研究评估了合成的新型精氨酸/硫脲/瓜尔胶/铁氧体(ATGF)纳米复合吸附剂对废水中α-硫辛酸(ALA)和刚果红(CR)的吸附效果。布鲁纳-艾美特-泰勒理论(BET)、热重分析(TGA)、傅立叶变换红外光谱仪(FT-IR)、场发射扫描电子显微镜(FE-SEM)、X 射线衍射(XRD)、振动样品磁力计(VSM)和能量色散 X 射线(EDX)对合成的纳米复合材料进行了检测。通过一系列实验,如吸附剂剂量、初始浓度、接触时间、pH 值和温度的影响,研究了纳米复合材料去除水溶液中 ALA 和 CR 的能力。使用伪一阶和伪二阶速度方程研究了这两种污染物的吸附动力学。纳米复合材料的吸附动力学遵循伪一阶。研究了 Langmuir 和 Freundlich 等温线。结果表明,根据 Langmuir 等温线模型,纳米复合材料对 ALA 的最大吸附量为 96.93 mg g-1,对 CR 的最大吸附量为 229.34 mg g-1。© 2024 化学工业协会。
{"title":"Investigate Performance of ATGF nanocomposite based on guar gum polymer for adsorption of Congo Red dye and alpha lipoic acid drug from wastewater: study kinetics and simulation","authors":"Fatemeh Tazimifar,&nbsp;Pegah Nazarizadeh,&nbsp;Ali Reza Akbarzadeh","doi":"10.1002/pi.6691","DOIUrl":"10.1002/pi.6691","url":null,"abstract":"<p>In this study, the synthesized nanocomposite novel arginine/thiourea/guar gum/ferrite (ATGF) adsorbent was evaluated for the adsorption of alpha lipoic acid (ALA) and Congo Red (CR) from wastewater. The synthesized nanocomposite was examined by Brunauer–Emmett–Teller theory (BET), Termal gravimetric analysis (TGA), Fourier transform infrared spectrometer (FT-IR), field emission scanning electron microscopy (FE-SEM), X-ray Diffraction (XRD), Vibrating sample magnetometer (VSM), and energy dispersive X-ray (EDX). For the removal of ALA and CR from aqueous solution, the capacity of the nanocomposite was investigated by working on a series of experiments such as the effect of adsorbent dose, initial concentration, contact time, pH and temperature. The adsorption kinetics of these two pollutants were investigated using pseudo-first-order and pseudo-second-order velocity equations. The nanocomposite kinetics follow pseudo-second-order. Langmuir and Freundlich isotherms were investigated. The results show that the Langmuir isotherm model gives the maximum adsorption capacity of ALA as 96.93 mg g<sup>−1</sup> and of CR as 229.34 mg g<sup>−1</sup> on the nanocomposite. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 2","pages":"95-106"},"PeriodicalIF":2.9,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Polymer International
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1