The third list-homomorphism theorem states that if a function is both foldr and foldl, it has a divide-and-conquer parallel implementation as well. In this paper, we develop a theory for obtaining such parallelization theorems. The key is a new proof of the third list-homomorphism theorem based on shortcut deforestation. The proof implies that there exists a divide-and-conquer parallel program of the form of h(x 'merge' y) = h1 x odot h2 y, where h is the subject of parallelization, merge is the operation of integrating independent substructures, h1 and h2 are computations applied to substructures, possibly in parallel, and odot merges the results calculated for substructures, if (i) h can be specified by two certain forms of iterative programs, and (ii) merge can be implemented by a function of a certain polymorphic type. Therefore, when requirement (ii) is fulfilled, h has a divide-and-conquer implementation if h has two certain forms of implementations. We show that our approach is applicable to structure-consuming operations by catamorphisms (folds), structure-generating operations by anamorphisms (unfolds), and their generalizations called hylomorphisms.
第三个列表同态定理指出,如果一个函数既可折叠又可折叠,那么它也具有分治并行实现。在本文中,我们发展了一个理论来获得这样的并行化定理。关键是对基于捷径毁林的第三表同态定理的一个新的证明。证明存在一个分治并行程序,其形式为h(x 'merge' y) = h1 x odot h2 y,其中h是并行化的主体,merge是对独立子结构进行积分的操作,h1和h2是应用于子结构的计算,可能是并行的,odot将子结构计算的结果合并,如果(i) h可以由两种特定形式的迭代程序指定,则(ii)合并可以通过某种多态类型的函数来实现。因此,当满足需求(ii)时,如果h具有两种特定形式的实现,则h具有分而治之的实现。我们证明了我们的方法适用于变形(折叠)的结构消费操作,变形(展开)的结构生成操作,以及它们的推广称为同源。
{"title":"A short cut to parallelization theorems","authors":"Akimasa Morihata","doi":"10.1145/2500365.2500580","DOIUrl":"https://doi.org/10.1145/2500365.2500580","url":null,"abstract":"The third list-homomorphism theorem states that if a function is both foldr and foldl, it has a divide-and-conquer parallel implementation as well. In this paper, we develop a theory for obtaining such parallelization theorems. The key is a new proof of the third list-homomorphism theorem based on shortcut deforestation. The proof implies that there exists a divide-and-conquer parallel program of the form of h(x 'merge' y) = h1 x odot h2 y, where h is the subject of parallelization, merge is the operation of integrating independent substructures, h1 and h2 are computations applied to substructures, possibly in parallel, and odot merges the results calculated for substructures, if (i) h can be specified by two certain forms of iterative programs, and (ii) merge can be implemented by a function of a certain polymorphic type. Therefore, when requirement (ii) is fulfilled, h has a divide-and-conquer implementation if h has two certain forms of implementations. We show that our approach is applicable to structure-consuming operations by catamorphisms (folds), structure-generating operations by anamorphisms (unfolds), and their generalizations called hylomorphisms.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89709023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","authors":"","doi":"10.1145/2500365","DOIUrl":"https://doi.org/10.1145/2500365","url":null,"abstract":"","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91527044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dionna Glaze, Nicholas Labich, M. Might, David Van Horn
The technique of abstracting abstract machines (AAM) provides a systematic approach for deriving computable approximations of evaluators that are easily proved sound. This article contributes a complementary step-by-step process for subsequently going from a naive analyzer derived under the AAM approach, to an efficient and correct implementation. The end result of the process is a two to three order-of-magnitude improvement over the systematically derived analyzer, making it competitive with hand-optimized implementations that compute fundamentally less precise results.
{"title":"Optimizing abstract abstract machines","authors":"Dionna Glaze, Nicholas Labich, M. Might, David Van Horn","doi":"10.1145/2500365.2500604","DOIUrl":"https://doi.org/10.1145/2500365.2500604","url":null,"abstract":"The technique of abstracting abstract machines (AAM) provides a systematic approach for deriving computable approximations of evaluators that are easily proved sound. This article contributes a complementary step-by-step process for subsequently going from a naive analyzer derived under the AAM approach, to an efficient and correct implementation. The end result of the process is a two to three order-of-magnitude improvement over the systematically derived analyzer, making it competitive with hand-optimized implementations that compute fundamentally less precise results.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79320177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present a framework of dynamic programming combinators that provides a high-level environment to describe the recursions typical of dynamic programming over sequence data in a style very similar to algebraic dynamic programming (ADP). Using a combination of type-level programming and stream fusion leads to a substantial increase in performance, without sacrificing much of the convenience and theoretical underpinnings of ADP. We draw examples from the field of computational biology, more specifically RNA secondary structure prediction, to demonstrate how to use these combinators and what differences exist between this library, ADP, and other approaches. The final version of the combinator library allows writing algorithms with performance close to hand-optimized C code.
{"title":"Sneaking around concatMap: efficient combinators for dynamic programming","authors":"C. H. Z. Siederdissen","doi":"10.1145/2364527.2364559","DOIUrl":"https://doi.org/10.1145/2364527.2364559","url":null,"abstract":"We present a framework of dynamic programming combinators that provides a high-level environment to describe the recursions typical of dynamic programming over sequence data in a style very similar to algebraic dynamic programming (ADP). Using a combination of type-level programming and stream fusion leads to a substantial increase in performance, without sacrificing much of the convenience and theoretical underpinnings of ADP. We draw examples from the field of computational biology, more specifically RNA secondary structure prediction, to demonstrate how to use these combinators and what differences exist between this library, ADP, and other approaches. The final version of the combinator library allows writing algorithms with performance close to hand-optimized C code.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"36 1","pages":"215-226"},"PeriodicalIF":0.0,"publicationDate":"2012-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74716784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Programmers reason about their programs using a wide variety of formal and informal methods. Programmers in untyped languages such as Scheme or Erlang are able to use any such method to reason about the type behavior of their programs. Our type system for Scheme accommodates common reasoning methods by assigning variable occurrences a subtype of their declared type based on the predicates prior to the occurrence, a discipline dubbed occurrence typing. It thus enables programmers to enrich existing Scheme code with types, while requiring few changes to the code itself. Three years of practical experience has revealed serious shortcomings of our type system. In particular, it relied on a system of ad-hoc rules to relate combinations of predicates, it could not reason about subcomponents of data structures, and it could not follow sophisticated reasoning about the relationship among predicate tests, all of which are used in existing code. In this paper, we reformulate occurrence typing to eliminate these shortcomings. The new formulation derives propositional logic formulas that hold when an expression evaluates to true or false, respectively. A simple proof system is then used to determine types of variable occurrences from these propositions. Our implementation of this revised occurrence type system thus copes with many more untyped programming idioms than the original system.
{"title":"Logical types for untyped languages","authors":"Sam Tobin-Hochstadt, M. Felleisen","doi":"10.1145/1863543.1863561","DOIUrl":"https://doi.org/10.1145/1863543.1863561","url":null,"abstract":"Programmers reason about their programs using a wide variety of formal and informal methods. Programmers in untyped languages such as Scheme or Erlang are able to use any such method to reason about the type behavior of their programs. Our type system for Scheme accommodates common reasoning methods by assigning variable occurrences a subtype of their declared type based on the predicates prior to the occurrence, a discipline dubbed occurrence typing. It thus enables programmers to enrich existing Scheme code with types, while requiring few changes to the code itself.\u0000 Three years of practical experience has revealed serious shortcomings of our type system. In particular, it relied on a system of ad-hoc rules to relate combinations of predicates, it could not reason about subcomponents of data structures, and it could not follow sophisticated reasoning about the relationship among predicate tests, all of which are used in existing code.\u0000 In this paper, we reformulate occurrence typing to eliminate these shortcomings. The new formulation derives propositional logic formulas that hold when an expression evaluates to true or false, respectively. A simple proof system is then used to determine types of variable occurrences from these propositions. Our implementation of this revised occurrence type system thus copes with many more untyped programming idioms than the original system.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"42 1","pages":"117-128"},"PeriodicalIF":0.0,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73840695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We show how the binary encoding and decoding of typed data and typed programs can be understood, programmed, and verified with the help of question-answer games. The encoding of a value is determined by the yes/no answers to a sequence of questions about that value; conversely, decoding is the interpretation of binary data as answers to the same question scheme. We introduce a general framework for writing and verifying game-based codecs. We present games for structured, recursive, polymorphic, and indexed types, building up to a representation of well-typed terms in the simply-typed λ-calculus. The framework makes novel use of isomorphisms between types in the definition of games. The definition of isomorphisms together with additional simple properties make it easy to prove that codecs derived from games never encode two distinct values using the same code, never decode two codes to the same value, and interpret any bit sequence as a valid code for a value or as a prefix of a valid code.
{"title":"Functional pearl: every bit counts","authors":"Dimitrios Vytiniotis, A. Kennedy","doi":"10.1145/1863543.1863548","DOIUrl":"https://doi.org/10.1145/1863543.1863548","url":null,"abstract":"We show how the binary encoding and decoding of typed data and typed programs can be understood, programmed, and verified with the help of question-answer games. The encoding of a value is determined by the yes/no answers to a sequence of questions about that value; conversely, decoding is the interpretation of binary data as answers to the same question scheme.\u0000 We introduce a general framework for writing and verifying game-based codecs. We present games for structured, recursive, polymorphic, and indexed types, building up to a representation of well-typed terms in the simply-typed λ-calculus. The framework makes novel use of isomorphisms between types in the definition of games. The definition of isomorphisms together with additional simple properties make it easy to prove that codecs derived from games never encode two distinct values using the same code, never decode two codes to the same value, and interpret any bit sequence as a valid code for a value or as a prefix of a valid code.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"69 1","pages":"15-26"},"PeriodicalIF":0.0,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84247147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Voigtländer, Zhenjiang Hu, Kazutaka Matsuda, Meng Wang
Matsuda et al. [2007, ICFP] and Voigtländer [2009, POPL] introduced two techniques that given a source-to-view function provide an update propagation function mapping an original source and an updated view back to an updated source, subject to standard consistency conditions. Being fundamentally different in approach, both techniques have their respective strengths and weaknesses. Here we develop a synthesis of the two techniques to good effect. On the intersection of their applicability domains we achieve more than what a simple union of applying the techniques side by side delivers.
{"title":"Combining syntactic and semantic bidirectionalization","authors":"J. Voigtländer, Zhenjiang Hu, Kazutaka Matsuda, Meng Wang","doi":"10.1145/1863543.1863571","DOIUrl":"https://doi.org/10.1145/1863543.1863571","url":null,"abstract":"Matsuda et al. [2007, ICFP] and Voigtländer [2009, POPL] introduced two techniques that given a source-to-view function provide an update propagation function mapping an original source and an updated view back to an updated source, subject to standard consistency conditions. Being fundamentally different in approach, both techniques have their respective strengths and weaknesses. Here we develop a synthesis of the two techniques to good effect. On the intersection of their applicability domains we achieve more than what a simple union of applying the techniques side by side delivers.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"3 1","pages":"181-192"},"PeriodicalIF":0.0,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82840578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James Chapman, Pierre-Évariste Dagand, Conor McBride, Peter Morris
We present a closed dependent type theory whose inductive types are given not by a scheme for generative declarations, but by encoding in a universe. Each inductive datatype arises by interpreting its description - a first-class value in a datatype of descriptions. Moreover, the latter itself has a description. Datatype-generic programming thus becomes ordinary programming. We show some of the resulting generic operations and deploy them in particular, useful ways on the datatype of datatype descriptions itself. Simulations in existing systems suggest that this apparently self-supporting setup is achievable without paradox or infinite regress.
{"title":"The gentle art of levitation","authors":"James Chapman, Pierre-Évariste Dagand, Conor McBride, Peter Morris","doi":"10.1145/1863543.1863547","DOIUrl":"https://doi.org/10.1145/1863543.1863547","url":null,"abstract":"We present a closed dependent type theory whose inductive types are given not by a scheme for generative declarations, but by encoding in a universe. Each inductive datatype arises by interpreting its description - a first-class value in a datatype of descriptions. Moreover, the latter itself has a description. Datatype-generic programming thus becomes ordinary programming. We show some of the resulting generic operations and deploy them in particular, useful ways on the datatype of datatype descriptions itself. Simulations in existing systems suggest that this apparently self-supporting setup is achievable without paradox or infinite regress.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"32 1","pages":"3-14"},"PeriodicalIF":0.0,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73468160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While many type systems based on the intuitionistic fragment of linear logic have been proposed, applications in programming languages of the full power of linear logic - including double-negation elimination - have remained elusive. Meanwhile, linearity has been used in many type systems for concurrent programs - e.g., session types - which suggests applicability to the problems of concurrent programming, but the ways in which linearity has interacted with concurrency primitives in lambda calculi have remained somewhat ad-hoc. In this paper we connect classical linear logic and concurrent functional programming in the language Lolliproc, which provides simple primitives for concurrency that have a direct logical interpretation and that combine to provide the functionality of session types. Lolliproc features a simple process calculus "under the hood" but hides the machinery of processes from programmers. We illustrate Lolliproc by example and prove soundness, strong normalization, and confluence results, which, among other things, guarantees freedom from deadlocks and race conditions.
{"title":"Lolliproc: to concurrency from classical linear logic via curry-howard and control","authors":"K. Mazurak, S. Zdancewic","doi":"10.1145/1863543.1863551","DOIUrl":"https://doi.org/10.1145/1863543.1863551","url":null,"abstract":"While many type systems based on the intuitionistic fragment of linear logic have been proposed, applications in programming languages of the full power of linear logic - including double-negation elimination - have remained elusive. Meanwhile, linearity has been used in many type systems for concurrent programs - e.g., session types - which suggests applicability to the problems of concurrent programming, but the ways in which linearity has interacted with concurrency primitives in lambda calculi have remained somewhat ad-hoc. In this paper we connect classical linear logic and concurrent functional programming in the language Lolliproc, which provides simple primitives for concurrency that have a direct logical interpretation and that combine to provide the functionality of session types. Lolliproc features a simple process calculus \"under the hood\" but hides the machinery of processes from programmers. We illustrate Lolliproc by example and prove soundness, strong normalization, and confluence results, which, among other things, guarantees freedom from deadlocks and race conditions.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"8 1","pages":"39-50"},"PeriodicalIF":0.0,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74982430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper describes CFML, the first program verification tool based on characteristic formulae. Given the source code of a pure Caml program, this tool generates a logical formula that implies any valid post-condition for that program. One can then prove that the program satisfies a given specification by reasoning interactively about the characteristic formula using a proof assistant such as Coq. Our characteristic formulae improve over Honda et al's total characteristic assertion pairs in that they are expressible in standard higher-order logic, allowing to exploit them in practice to verify programs using existing proof assistants. Our technique has been applied to formally verify more than half of the content of Okasaki's Purely Functional Data Structures reference book
{"title":"Program verification through characteristic formulae","authors":"A. Charguéraud","doi":"10.1145/1863543.1863590","DOIUrl":"https://doi.org/10.1145/1863543.1863590","url":null,"abstract":"This paper describes CFML, the first program verification tool based on characteristic formulae. Given the source code of a pure Caml program, this tool generates a logical formula that implies any valid post-condition for that program. One can then prove that the program satisfies a given specification by reasoning interactively about the characteristic formula using a proof assistant such as Coq. Our characteristic formulae improve over Honda et al's total characteristic assertion pairs in that they are expressible in standard higher-order logic, allowing to exploit them in practice to verify programs using existing proof assistants. Our technique has been applied to formally verify more than half of the content of Okasaki's Purely Functional Data Structures reference book","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"48 1","pages":"321-332"},"PeriodicalIF":0.0,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84715273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}