A concurrent implementation of software transactional memory in Concurrent Haskell using a call-by-need functional language with processes and futures is given. The description of the small-step operational semantics is precise and explicit, and employs an early abort of conflicting transactions. A proof of correctness of the implementation is given for a contextual semantics with may- and should-convergence. This implies that our implementation is a correct evaluator for an abstract specification equipped with a big-step semantics.
{"title":"Correctness of an STM Haskell implementation","authors":"M. Schmidt-Schauß, David Sabel","doi":"10.1145/2500365.2500585","DOIUrl":"https://doi.org/10.1145/2500365.2500585","url":null,"abstract":"A concurrent implementation of software transactional memory in Concurrent Haskell using a call-by-need functional language with processes and futures is given. The description of the small-step operational semantics is precise and explicit, and employs an early abort of conflicting transactions. A proof of correctness of the implementation is given for a contextual semantics with may- and should-convergence. This implies that our implementation is a correct evaluator for an abstract specification equipped with a big-step semantics.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75389933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dependent type-theory aims to become the standard way to formalize mathematics at the same time as displacing traditional platforms for high-assurance programming. However, current implementations of type theory are still lacking, in the sense that some obvious truths require explicit proofs, making type-theory awkward to use for many applications, both in formalization and programming. In particular, notions of erasure are poorly supported. In this paper we propose an extension of type-theory with colored terms, color erasure and interpretation of colored types as predicates. The result is a more powerful type-theory: some definitions and proofs may be omitted as they become trivial, it becomes easier to program with precise types, and some parametricity results can be internalized.
{"title":"Type-theory in color","authors":"Jean-Philippe Bernardy, Guilhem Moulin","doi":"10.1145/2500365.2500577","DOIUrl":"https://doi.org/10.1145/2500365.2500577","url":null,"abstract":"Dependent type-theory aims to become the standard way to formalize mathematics at the same time as displacing traditional platforms for high-assurance programming. However, current implementations of type theory are still lacking, in the sense that some obvious truths require explicit proofs, making type-theory awkward to use for many applications, both in formalization and programming. In particular, notions of erasure are poorly supported. In this paper we propose an extension of type-theory with colored terms, color erasure and interpretation of colored types as predicates. The result is a more powerful type-theory: some definitions and proofs may be omitted as they become trivial, it becomes easier to program with precise types, and some parametricity results can be internalized.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73399165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modular programming and modular verification go hand in hand, but most existing logics for concurrency ignore two crucial forms of modularity: *higher-order functions*, which are essential for building reusable components, and *granularity abstraction*, a key technique for hiding the intricacies of fine-grained concurrent data structures from the clients of those data structures. In this paper, we present CaReSL, the first logic to support the use of granularity abstraction for modular verification of higher-order concurrent programs. After motivating the features of CaReSL through a variety of illustrative examples, we demonstrate its effectiveness by using it to tackle a significant case study: the first formal proof of (partial) correctness for Hendler et al.'s "flat combining" algorithm.
{"title":"Unifying refinement and hoare-style reasoning in a logic for higher-order concurrency","authors":"Aaron Turon, Derek Dreyer, L. Birkedal","doi":"10.1145/2500365.2500600","DOIUrl":"https://doi.org/10.1145/2500365.2500600","url":null,"abstract":"Modular programming and modular verification go hand in hand, but most existing logics for concurrency ignore two crucial forms of modularity: *higher-order functions*, which are essential for building reusable components, and *granularity abstraction*, a key technique for hiding the intricacies of fine-grained concurrent data structures from the clients of those data structures. In this paper, we present CaReSL, the first logic to support the use of granularity abstraction for modular verification of higher-order concurrent programs. After motivating the features of CaReSL through a variety of illustrative examples, we demonstrate its effectiveness by using it to tackle a significant case study: the first formal proof of (partial) correctness for Hendler et al.'s \"flat combining\" algorithm.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73303062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One often cited benefit of pure functional programming is that pure code is easier to test and reason about, both formally and informally. However, real programs have side-effects including state management, exceptions and interactions with the outside world. Haskell solves this problem using monads to capture details of possibly side-effecting computations --- it provides monads for capturing state, I/O, exceptions, non-determinism, libraries for practical purposes such as CGI and parsing, and many others, as well as monad transformers for combining multiple effects. Unfortunately, useful as monads are, they do not compose very well. Monad transformers can quickly become unwieldy when there are lots of effects to manage, leading to a temptation in larger programs to combine everything into one coarse-grained state and exception monad. In this paper I describe an alternative approach based on handling algebraic effects, implemented in the IDRIS programming language. I show how to describe side effecting computations, how to write programs which compose multiple fine-grained effects, and how, using dependent types, we can use this approach to reason about states in effectful programs.
{"title":"Programming and reasoning with algebraic effects and dependent types","authors":"Edwin C. Brady","doi":"10.1145/2500365.2500581","DOIUrl":"https://doi.org/10.1145/2500365.2500581","url":null,"abstract":"One often cited benefit of pure functional programming is that pure code is easier to test and reason about, both formally and informally. However, real programs have side-effects including state management, exceptions and interactions with the outside world. Haskell solves this problem using monads to capture details of possibly side-effecting computations --- it provides monads for capturing state, I/O, exceptions, non-determinism, libraries for practical purposes such as CGI and parsing, and many others, as well as monad transformers for combining multiple effects. Unfortunately, useful as monads are, they do not compose very well. Monad transformers can quickly become unwieldy when there are lots of effects to manage, leading to a temptation in larger programs to combine everything into one coarse-grained state and exception monad. In this paper I describe an alternative approach based on handling algebraic effects, implemented in the IDRIS programming language. I show how to describe side effecting computations, how to write programs which compose multiple fine-grained effects, and how, using dependent types, we can use this approach to reason about states in effectful programs.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80282644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Beta Ziliani, Derek Dreyer, N. Krishnaswami, Aleksandar Nanevski, Viktor Vafeiadis
Effective support for custom proof automation is essential for large scale interactive proof development. However, existing languages for automation via *tactics* either (a) provide no way to specify the behavior of tactics within the base logic of the accompanying theorem prover, or (b) rely on advanced type-theoretic machinery that is not easily integrated into established theorem provers. We present Mtac, a lightweight but powerful extension to Coq that supports dependently-typed tactic programming. Mtac tactics have access to all the features of ordinary Coq programming, as well as a new set of typed tactical primitives. We avoid the need to touch the trusted kernel typechecker of Coq by encapsulating uses of these new tactical primitives in a *monad*, and instrumenting Coq so that it executes monadic tactics during type inference.
{"title":"Mtac: a monad for typed tactic programming in Coq","authors":"Beta Ziliani, Derek Dreyer, N. Krishnaswami, Aleksandar Nanevski, Viktor Vafeiadis","doi":"10.1145/2500365.2500579","DOIUrl":"https://doi.org/10.1145/2500365.2500579","url":null,"abstract":"Effective support for custom proof automation is essential for large scale interactive proof development. However, existing languages for automation via *tactics* either (a) provide no way to specify the behavior of tactics within the base logic of the accompanying theorem prover, or (b) rely on advanced type-theoretic machinery that is not easily integrated into established theorem provers. We present Mtac, a lightweight but powerful extension to Coq that supports dependently-typed tactic programming. Mtac tactics have access to all the features of ordinary Coq programming, as well as a new set of typed tactical primitives. We avoid the need to touch the trusted kernel typechecker of Coq by encapsulating uses of these new tactical primitives in a *monad*, and instrumenting Coq so that it executes monadic tactics during type inference.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73128362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Functional reactive programming (FRP) is an elegant approach to declaratively specify reactive systems. However, the powerful abstractions of FRP have historically made it difficult to predict and control the resource usage of programs written in this style. In this paper, we give a new language for higher-order reactive programming. Our language generalizes and simplifies prior type systems for reactive programming, by supporting the use of streams of streams, first-class functions, and higher-order operations. We also support many temporal operations beyond streams, such as terminatable streams, events, and even resumptions with first-class schedulers. Furthermore, our language supports an efficient implementation strategy permitting us to eagerly deallocate old values and statically rule out spacetime leaks, a notorious source of inefficiency in reactive programs. Furthermore, these memory guarantees are achieved without the use of a complex substructural type discipline. We also show that our implementation strategy of eager deallocation is safe, by showing the soundness of our type system with a novel step-indexed Kripke logical relation.
{"title":"Higher-order functional reactive programming without spacetime leaks","authors":"N. Krishnaswami","doi":"10.1145/2500365.2500588","DOIUrl":"https://doi.org/10.1145/2500365.2500588","url":null,"abstract":"Functional reactive programming (FRP) is an elegant approach to declaratively specify reactive systems. However, the powerful abstractions of FRP have historically made it difficult to predict and control the resource usage of programs written in this style. In this paper, we give a new language for higher-order reactive programming. Our language generalizes and simplifies prior type systems for reactive programming, by supporting the use of streams of streams, first-class functions, and higher-order operations. We also support many temporal operations beyond streams, such as terminatable streams, events, and even resumptions with first-class schedulers. Furthermore, our language supports an efficient implementation strategy permitting us to eagerly deallocate old values and statically rule out spacetime leaks, a notorious source of inefficiency in reactive programs. Furthermore, these memory guarantees are achieved without the use of a complex substructural type discipline. We also show that our implementation strategy of eager deallocation is safe, by showing the soundness of our type system with a novel step-indexed Kripke logical relation.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"586 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76325944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present Mezzo, a typed programming language of ML lineage. Mezzo is equipped with a novel static discipline of duplicable and affine permissions, which controls aliasing and ownership. This rules out certain mistakes, including representation exposure and data races, and enables new idioms, such as gradual initialization, memory re-use, and (type)state changes. Although the core static discipline disallows sharing a mutable data structure, Mezzo offers several ways of working around this restriction, including a novel dynamic ownership control mechanism which we dub "adoption and abandon".
{"title":"Programming with permissions in Mezzo","authors":"Jonathan Protzenko, F. Pottier","doi":"10.1145/2500365.2500598","DOIUrl":"https://doi.org/10.1145/2500365.2500598","url":null,"abstract":"We present Mezzo, a typed programming language of ML lineage. Mezzo is equipped with a novel static discipline of duplicable and affine permissions, which controls aliasing and ownership. This rules out certain mistakes, including representation exposure and data races, and enables new idioms, such as gradual initialization, memory re-use, and (type)state changes. Although the core static discipline disallows sharing a mutable data structure, Mezzo offers several ways of working around this restriction, including a novel dynamic ownership control mechanism which we dub \"adoption and abandon\".","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76462731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plotkin and Pretnar's handlers for algebraic effects occupy a sweet spot in the design space of abstractions for effectful computation. By separating effect signatures from their implementation, algebraic effects provide a high degree of modularity, allowing programmers to express effectful programs independently of the concrete interpretation of their effects. A handler is an interpretation of the effects of an algebraic computation. The handler abstraction adapts well to multiple settings: pure or impure, strict or lazy, static types or dynamic types. This is a position paper whose main aim is to popularise the handler abstraction. We give a gentle introduction to its use, a collection of illustrative examples, and a straightforward operational semantics. We describe our Haskell implementation of handlers in detail, outline the ideas behind our OCaml, SML, and Racket implementations, and present experimental results comparing handlers with existing code.
{"title":"Handlers in action","authors":"Ohad Kammar, S. Lindley, N. Oury","doi":"10.1145/2500365.2500590","DOIUrl":"https://doi.org/10.1145/2500365.2500590","url":null,"abstract":"Plotkin and Pretnar's handlers for algebraic effects occupy a sweet spot in the design space of abstractions for effectful computation. By separating effect signatures from their implementation, algebraic effects provide a high degree of modularity, allowing programmers to express effectful programs independently of the concrete interpretation of their effects. A handler is an interpretation of the effects of an algebraic computation. The handler abstraction adapts well to multiple settings: pure or impure, strict or lazy, static types or dynamic types. This is a position paper whose main aim is to popularise the handler abstraction. We give a gentle introduction to its use, a collection of illustrative examples, and a straightforward operational semantics. We describe our Haskell implementation of handlers in detail, outline the ideas behind our OCaml, SML, and Racket implementations, and present experimental results comparing handlers with existing code.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87811324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As programmers, programming in typed languages increases our confidence in the correctness of our programs. As type system designers, soundness proofs increase our confidence in the correctness of our type systems. There is more to typed languages than their typing rules, however. To be usable, a typed language needs to provide a well-furnished standard library and to specify types for its exports. As software artifacts, these base type environments can rival typecheckers in complexity. Our experience with the Typed Racket base environment---which accounts for 31% of the code in the Typed Racket implementation---teaches us that writing type environments can be just as error-prone as writing typecheckers. We report on our experience over the past two years of using random testing to increase our confidence in the correctness of the Typed Racket base environment.
{"title":"Experience report: applying random testing to a base type environment","authors":"Vincent St-Amour, N. Toronto","doi":"10.1145/2500365.2500616","DOIUrl":"https://doi.org/10.1145/2500365.2500616","url":null,"abstract":"As programmers, programming in typed languages increases our confidence in the correctness of our programs. As type system designers, soundness proofs increase our confidence in the correctness of our type systems. There is more to typed languages than their typing rules, however. To be usable, a typed language needs to provide a well-furnished standard library and to specify types for its exports. As software artifacts, these base type environments can rival typecheckers in complexity. Our experience with the Typed Racket base environment---which accounts for 31% of the code in the Typed Racket implementation---teaches us that writing type environments can be just as error-prone as writing typecheckers. We report on our experience over the past two years of using random testing to increase our confidence in the correctness of the Typed Racket base environment.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87053020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Hidaka, Kazuyuki Asada, Zhenjiang Hu, H. Kato, Keisuke Nakano
Structural recursion, in the form of, for example, folds on lists and catamorphisms on algebraic data structures including trees, plays an important role in functional programming, by providing a systematic way for constructing and manipulating functional programs. It is, however, a challenge to define structural recursions for graph data structures, the most ubiquitous sort of data in computing. This is because unlike lists and trees, graphs are essentially not inductive and cannot be formalized as an initial algebra in general. In this paper, we borrow from the database community the idea of structural recursion on how to restrict recursions on infinite unordered regular trees so that they preserve the finiteness property and become terminating, which are desirable properties for query languages. We propose a new graph transformation language called lambdaFG for transforming and querying ordered graphs, based on the well-defined bisimulation relation on ordered graphs with special epsilon-edges. The language lambdaFG is a higher order graph transformation language that extends the simply typed lambda calculus with graph constructors and more powerful structural recursions, which is extended for transformations on the sibling dimension. It not only gives a general framework for manipulating graphs and reasoning about them, but also provides a solution to the open problem of how to define a structural recursion on ordered graphs, with the help of the bisimilarity for ordered graphs with epsilon-edges.
{"title":"Structural recursion for querying ordered graphs","authors":"S. Hidaka, Kazuyuki Asada, Zhenjiang Hu, H. Kato, Keisuke Nakano","doi":"10.1145/2500365.2500608","DOIUrl":"https://doi.org/10.1145/2500365.2500608","url":null,"abstract":"Structural recursion, in the form of, for example, folds on lists and catamorphisms on algebraic data structures including trees, plays an important role in functional programming, by providing a systematic way for constructing and manipulating functional programs. It is, however, a challenge to define structural recursions for graph data structures, the most ubiquitous sort of data in computing. This is because unlike lists and trees, graphs are essentially not inductive and cannot be formalized as an initial algebra in general. In this paper, we borrow from the database community the idea of structural recursion on how to restrict recursions on infinite unordered regular trees so that they preserve the finiteness property and become terminating, which are desirable properties for query languages. We propose a new graph transformation language called lambdaFG for transforming and querying ordered graphs, based on the well-defined bisimulation relation on ordered graphs with special epsilon-edges. The language lambdaFG is a higher order graph transformation language that extends the simply typed lambda calculus with graph constructors and more powerful structural recursions, which is extended for transformations on the sibling dimension. It not only gives a general framework for manipulating graphs and reasoning about them, but also provides a solution to the open problem of how to define a structural recursion on ordered graphs, with the help of the bisimilarity for ordered graphs with epsilon-edges.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"967 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85646594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}