首页 > 最新文献

Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security最新文献

英文 中文
Scaling and Effectiveness of Email Masquerade Attacks: Exploiting Natural Language Generation 电子邮件伪装攻击的规模和有效性:利用自然语言生成
Shahryar Baki, Rakesh M. Verma, Arjun Mukherjee, O. Gnawali
We focus on email-based attacks, a rich field with well-publicized consequences. We show how current Natural Language Generation (NLG) technology allows an attacker to generate masquerade attacks on scale, and study their effectiveness with a within-subjects study. We also gather insights on what parts of an email do users focus on and how users identify attacks in this realm, by planting signals and also by asking them for their reasoning. We find that: (i) 17% of participants could not identify any of the signals that were inserted in emails, and (ii) Participants were unable to perform better than random guessing on these attacks. The insights gathered and the tools and techniques employed could help defenders in: (i) implementing new, customized anti-phishing solutions for Internet users including training next-generation email filters that go beyond vanilla spam filters and capable of addressing masquerade, (ii) more effectively training and upgrading the skills of email users, and (iii) understanding the dynamics of this novel attack and its ability of tricking humans.
我们关注的是基于电子邮件的攻击,这是一个内容丰富且后果广为人知的领域。我们展示了当前的自然语言生成(NLG)技术如何允许攻击者大规模生成假面攻击,并通过主题内研究研究其有效性。我们还收集了用户关注电子邮件的哪些部分的见解,以及用户如何通过植入信号并询问他们的推理来识别这一领域的攻击。我们发现:(i) 17%的参与者无法识别电子邮件中插入的任何信号,(ii)参与者无法在这些攻击中表现得比随机猜测更好。收集到的见解以及使用的工具和技术可以帮助防御者:(i)为互联网用户实施新的,定制的反网络钓鱼解决方案,包括培训下一代电子邮件过滤器,超越普通的垃圾邮件过滤器,能够解决假面具,(ii)更有效地培训和提升电子邮件用户的技能,以及(iii)了解这种新型攻击的动态及其欺骗人类的能力。
{"title":"Scaling and Effectiveness of Email Masquerade Attacks: Exploiting Natural Language Generation","authors":"Shahryar Baki, Rakesh M. Verma, Arjun Mukherjee, O. Gnawali","doi":"10.1145/3052973.3053037","DOIUrl":"https://doi.org/10.1145/3052973.3053037","url":null,"abstract":"We focus on email-based attacks, a rich field with well-publicized consequences. We show how current Natural Language Generation (NLG) technology allows an attacker to generate masquerade attacks on scale, and study their effectiveness with a within-subjects study. We also gather insights on what parts of an email do users focus on and how users identify attacks in this realm, by planting signals and also by asking them for their reasoning. We find that: (i) 17% of participants could not identify any of the signals that were inserted in emails, and (ii) Participants were unable to perform better than random guessing on these attacks. The insights gathered and the tools and techniques employed could help defenders in: (i) implementing new, customized anti-phishing solutions for Internet users including training next-generation email filters that go beyond vanilla spam filters and capable of addressing masquerade, (ii) more effectively training and upgrading the skills of email users, and (iii) understanding the dynamics of this novel attack and its ability of tricking humans.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"322 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77989106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
SECRET: On the Feasibility of a Secure, Efficient, and Collaborative Real-Time Web Editor 秘密:关于一个安全、高效、协作的实时网络编辑器的可行性
Dennis Felsch, Christian Mainka, Vladislav Mladenov, Jörg Schwenk
Real-time editing tools like Google Docs, Microsoft Office Online, or Etherpad have changed the way of collaboration. Many of these tools are based on Operational Transforms (OT), which guarantee that the views of different clients onto a document remain consistent over time. Usually, documents and operations are exposed to the server in plaintext -- and thus to administrators, governments, and potentially cyber criminals. Therefore, it is highly desirable to work collaboratively on encrypted documents. Previous implementations do not unleash the full potential of this idea: They either require large storage, network, and computation overhead, are not real-time collaborative, or do not take the structure of the document into account. The latter simplifies the approach since only OT algorithms for byte sequences are required, but the resulting ciphertexts are almost four times the size of the corresponding plaintexts. We present SECRET, the first secure, efficient, and collaborative real-time editor. In contrast to all previous works, SECRET is the first tool that (1.) allows the encryption of whole documents or arbitrary sub-parts thereof, (2.) uses a novel combination of tree-based OT with a structure preserving encryption, and (3.) requires only a modern browser without any extra software installation or browser extension. We evaluate our implementation and show that its encryption overhead is three times smaller in comparison to all previous approaches. SECRET can even be used by multiple users in a low-bandwidth scenario. The source code of SECRET is published on GitHub as an open-source project:https://github.com/RUB-NDS/SECRET/
像Google Docs、Microsoft Office Online或Etherpad这样的实时编辑工具已经改变了协作的方式。这些工具中的许多都基于操作转换(Operational Transforms, OT),它保证不同客户端对文档的视图随着时间的推移保持一致。通常,文档和操作以明文形式暴露给服务器,从而暴露给管理员、政府和潜在的网络罪犯。因此,在加密文档上进行协作是非常可取的。以前的实现并没有充分发挥这个想法的潜力:它们要么需要大量的存储、网络和计算开销,要么不是实时协作的,要么没有考虑文档的结构。后者简化了方法,因为只需要字节序列的OT算法,但是得到的密文几乎是相应明文的四倍大。我们提出SECRET,第一个安全,高效,协作的实时编辑器。与以前的所有作品相比,SECRET是第一个允许对整个文档或其中任意子部分进行加密的工具,(2)使用基于树的OT与结构保留加密的新颖组合,以及(3)只需要一个现代浏览器,无需任何额外的软件安装或浏览器扩展。我们对我们的实现进行了评估,并表明与之前的所有方法相比,它的加密开销要小三倍。SECRET甚至可以在低带宽场景中由多个用户使用。SECRET的源代码作为开源项目发布在GitHub上:https://github.com/RUB-NDS/SECRET/
{"title":"SECRET: On the Feasibility of a Secure, Efficient, and Collaborative Real-Time Web Editor","authors":"Dennis Felsch, Christian Mainka, Vladislav Mladenov, Jörg Schwenk","doi":"10.1145/3052973.3052982","DOIUrl":"https://doi.org/10.1145/3052973.3052982","url":null,"abstract":"Real-time editing tools like Google Docs, Microsoft Office Online, or Etherpad have changed the way of collaboration. Many of these tools are based on Operational Transforms (OT), which guarantee that the views of different clients onto a document remain consistent over time. Usually, documents and operations are exposed to the server in plaintext -- and thus to administrators, governments, and potentially cyber criminals. Therefore, it is highly desirable to work collaboratively on encrypted documents. Previous implementations do not unleash the full potential of this idea: They either require large storage, network, and computation overhead, are not real-time collaborative, or do not take the structure of the document into account. The latter simplifies the approach since only OT algorithms for byte sequences are required, but the resulting ciphertexts are almost four times the size of the corresponding plaintexts. We present SECRET, the first secure, efficient, and collaborative real-time editor. In contrast to all previous works, SECRET is the first tool that (1.) allows the encryption of whole documents or arbitrary sub-parts thereof, (2.) uses a novel combination of tree-based OT with a structure preserving encryption, and (3.) requires only a modern browser without any extra software installation or browser extension. We evaluate our implementation and show that its encryption overhead is three times smaller in comparison to all previous approaches. SECRET can even be used by multiple users in a low-bandwidth scenario. The source code of SECRET is published on GitHub as an open-source project:https://github.com/RUB-NDS/SECRET/","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84338738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Accurate Manipulation of Delay-based Internet Geolocation 基于延迟的互联网地理定位的精确操作
A. Abdou, A. Matrawy, P. V. Oorschot
Delay-based Internet geolocation techniques are repeatedly positioned as well suited for security-sensitive applications, e.g., location-based access control, and credit-card verification. We present new strategies enabling adversaries to accurately control the forged location. Evaluation showed that using the new strategies, adversaries could misrepresent their true locations by over 15000km, and in some cases within 100km of an intended geographic location. This work significantly improves the adversary's control in misrepresenting its location, directly refuting the appropriateness of current techniques for security-sensitive applications. We finally discuss countermeasures to mitigate such strategies.
基于延迟的Internet地理定位技术被反复定位为非常适合于对安全性敏感的应用程序,例如,基于位置的访问控制和信用卡验证。我们提出了新的策略,使对手能够准确地控制伪造的位置。评估表明,使用新策略,对手可以歪曲他们的真实位置超过15,000公里,在某些情况下,在预定地理位置100公里内。这项工作显著提高了对手在歪曲其位置方面的控制能力,直接驳斥了当前技术对安全敏感应用的适当性。最后,我们讨论了缓解这种策略的对策。
{"title":"Accurate Manipulation of Delay-based Internet Geolocation","authors":"A. Abdou, A. Matrawy, P. V. Oorschot","doi":"10.1145/3052973.3052993","DOIUrl":"https://doi.org/10.1145/3052973.3052993","url":null,"abstract":"Delay-based Internet geolocation techniques are repeatedly positioned as well suited for security-sensitive applications, e.g., location-based access control, and credit-card verification. We present new strategies enabling adversaries to accurately control the forged location. Evaluation showed that using the new strategies, adversaries could misrepresent their true locations by over 15000km, and in some cases within 100km of an intended geographic location. This work significantly improves the adversary's control in misrepresenting its location, directly refuting the appropriateness of current techniques for security-sensitive applications. We finally discuss countermeasures to mitigate such strategies.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85610331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Session details: Mobile Security 1 会话详细信息:移动安全
N. Asokan
{"title":"Session details: Mobile Security 1","authors":"N. Asokan","doi":"10.1145/3248560","DOIUrl":"https://doi.org/10.1145/3248560","url":null,"abstract":"","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85367302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Session details: Privacy 会话详细信息:隐私
Cong Wang
{"title":"Session details: Privacy","authors":"Cong Wang","doi":"10.1145/3248558","DOIUrl":"https://doi.org/10.1145/3248558","url":null,"abstract":"","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75337121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Attack Against Message Authentication in the ERTMS Train to Trackside Communication Protocols ERTMS列车到轨侧通信协议中的消息认证攻击
Tom Chothia, M. Ordean, Joeri de Ruiter, Richard J. Thomas
This paper presents the results of a cryptographic analysis of the protocols used by the European Rail Traffic Management System (ERTMS). A stack of three protocols secures the communication between trains and trackside equipment; encrypted radio communication is provided by the GSM-R protocol, on top of this the EuroRadio protocol provides authentication for a train control application-level protocol. We present an attack which exploits weaknesses in all three protocols: GSM-R has the same well known weaknesses as the GSM protocol, and we present a new collision attack against the EuroRadio protocol. Combined with design weaknesses in the application-level protocol, these vulnerabilities allow an attacker, who observes a MAC collision, to forge train control messages. We demonstrate this attack with a proof of concept using train control messages we have generated ourselves. Currently, ERTMS is only used to send small amounts of data for short sessions, therefore this attack does not present an immediate danger. However, if EuroRadio was to be used to transfer larger amounts of data trains would become vulnerable to this attack. Additionally, we calculate that, under reasonable assumptions, an attacker who could monitor all backend control centres in a country the size of the UK for 45 days would have a 1% chance of being able to take control of a train.
本文介绍了对欧洲铁路交通管理系统(ERTMS)使用的协议进行加密分析的结果。由三种协议组成的堆栈保证了列车和轨道旁设备之间的通信;加密无线电通信由GSM-R协议提供,在此基础上,EuroRadio协议为列车控制应用级协议提供认证。我们提出了一种利用这三种协议弱点的攻击:GSM- r具有与GSM协议相同的众所周知的弱点,我们提出了一种针对EuroRadio协议的新的碰撞攻击。结合应用程序级协议中的设计缺陷,这些漏洞允许攻击者在观察到MAC冲突后伪造列车控制消息。我们通过使用我们自己生成的列车控制消息的概念验证来演示这种攻击。目前,ERTMS仅用于在短会话中发送少量数据,因此这种攻击不会立即造成危险。然而,如果EuroRadio被用来传输更大量的数据,列车将变得容易受到这种攻击。此外,我们计算出,在合理的假设下,一个攻击者可以监控英国大小的国家的所有后端控制中心45天,将有1%的机会能够控制一列火车。
{"title":"An Attack Against Message Authentication in the ERTMS Train to Trackside Communication Protocols","authors":"Tom Chothia, M. Ordean, Joeri de Ruiter, Richard J. Thomas","doi":"10.1145/3052973.3053027","DOIUrl":"https://doi.org/10.1145/3052973.3053027","url":null,"abstract":"This paper presents the results of a cryptographic analysis of the protocols used by the European Rail Traffic Management System (ERTMS). A stack of three protocols secures the communication between trains and trackside equipment; encrypted radio communication is provided by the GSM-R protocol, on top of this the EuroRadio protocol provides authentication for a train control application-level protocol. We present an attack which exploits weaknesses in all three protocols: GSM-R has the same well known weaknesses as the GSM protocol, and we present a new collision attack against the EuroRadio protocol. Combined with design weaknesses in the application-level protocol, these vulnerabilities allow an attacker, who observes a MAC collision, to forge train control messages. We demonstrate this attack with a proof of concept using train control messages we have generated ourselves. Currently, ERTMS is only used to send small amounts of data for short sessions, therefore this attack does not present an immediate danger. However, if EuroRadio was to be used to transfer larger amounts of data trains would become vulnerable to this attack. Additionally, we calculate that, under reasonable assumptions, an attacker who could monitor all backend control centres in a country the size of the UK for 45 days would have a 1% chance of being able to take control of a train.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90757536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Understanding Human-Chosen PINs: Characteristics, Distribution and Security 理解人为选择的pin:特征,分布和安全性
Ding Wang, Qianchen Gu, Xinyi Huang, Ping Wang
Personal Identification Numbers (PINs) are ubiquitously used in embedded computing systems where user input interfaces are constrained. Yet, little attention has been paid to this important kind of authentication credentials, especially for 6-digit PINs which dominate in Asian countries and are gaining popularity worldwide. Unsurprisingly, many fundamental questions (e.g., what's the distribution that human-chosen PINs follow?) remain as intact as about fifty years ago when they first arose. In this work, we conduct a systematic investigation into the characteristics, distribution and security of both 4-digit PINs and 6-digit PINs that are chosen by English users and Chinese users. Particularly, we, for the first time, perform a comprehensive comparison of the PIN characteristics and security between these two distinct user groups. Our results show that there are great differences in PIN choices between these two groups of users, a small number of popular patterns prevail in both groups, and surprisingly, over 50% of every PIN datasets can be accounted for by just the top 5%~8% most popular PINs. What's disturbing is the observation that, as online guessing is a much more serious threat than offline guessing in the current PIN-based systems, longer PINs only attain marginally improved security: human-chosen 4-digit PINs can offer about 6.6 bits of security against online guessing and 8.4 bits of security against offline guessing, and this figure for 6-digit PINs is 7.2 bits and 13.2 bits, respectively. We, for the first time, reveal that Zipf's law is likely to exist in PINs. Despite distinct language/cultural backgrounds, both user groups choose PINs with almost the same Zipf distribution function, and such Zipf PIN-distribution from one source (about which we may know little information) can be well predicted by real-world attackers by running Markov-Chains with PINs from another known source. Our Zipf theory would have foundational implications for analyzing PIN-based protocols and for designing PIN creation policies, while our security measurements provide guidance for bank agencies and financial authorities that are planning to conduct PIN migration from 4-digits to 6-digits.
个人识别号码(pin)在用户输入界面受限的嵌入式计算系统中被广泛使用。然而,很少有人关注这种重要的身份验证凭证,特别是在亚洲国家占主导地位并在全球范围内越来越受欢迎的6位数pin。不出所料,许多基本问题(例如,人类选择的pin遵循什么分布?)与大约50年前它们首次出现时一样完好无损。在这项工作中,我们对英语用户和中文用户选择的4位pin和6位pin的特征、分布和安全性进行了系统的调查。特别是,我们首次对这两个不同用户组之间的PIN特征和安全性进行了全面的比较。我们的研究结果表明,这两组用户在PIN选择上存在很大差异,少数流行的模式在两组中都占主导地位,令人惊讶的是,每个PIN数据集的50%以上都可以由前5%~8%的最受欢迎的PIN所占。令人不安的是,在当前基于pin的系统中,由于在线猜测比离线猜测更严重,较长的pin只能略微提高安全性:人为选择的4位pin可以提供大约6.6位的安全性来防止在线猜测,8.4位的安全性来防止离线猜测,而6位pin的这个数字分别是7.2位和13.2位。我们首次揭示了齐夫定律可能存在于pin中。尽管语言/文化背景不同,两个用户组都选择具有几乎相同Zipf分布函数的pin,并且这种来自一个来源的Zipf pin分布(我们可能知之甚少)可以被现实世界的攻击者通过使用来自另一个已知来源的pin运行马尔可夫链来很好地预测。我们的Zipf理论将对分析基于PIN的协议和设计PIN创建策略具有基础意义,而我们的安全措施为计划进行PIN从4位数字迁移到6位数字的银行机构和金融当局提供指导。
{"title":"Understanding Human-Chosen PINs: Characteristics, Distribution and Security","authors":"Ding Wang, Qianchen Gu, Xinyi Huang, Ping Wang","doi":"10.1145/3052973.3053031","DOIUrl":"https://doi.org/10.1145/3052973.3053031","url":null,"abstract":"Personal Identification Numbers (PINs) are ubiquitously used in embedded computing systems where user input interfaces are constrained. Yet, little attention has been paid to this important kind of authentication credentials, especially for 6-digit PINs which dominate in Asian countries and are gaining popularity worldwide. Unsurprisingly, many fundamental questions (e.g., what's the distribution that human-chosen PINs follow?) remain as intact as about fifty years ago when they first arose. In this work, we conduct a systematic investigation into the characteristics, distribution and security of both 4-digit PINs and 6-digit PINs that are chosen by English users and Chinese users. Particularly, we, for the first time, perform a comprehensive comparison of the PIN characteristics and security between these two distinct user groups. Our results show that there are great differences in PIN choices between these two groups of users, a small number of popular patterns prevail in both groups, and surprisingly, over 50% of every PIN datasets can be accounted for by just the top 5%~8% most popular PINs. What's disturbing is the observation that, as online guessing is a much more serious threat than offline guessing in the current PIN-based systems, longer PINs only attain marginally improved security: human-chosen 4-digit PINs can offer about 6.6 bits of security against online guessing and 8.4 bits of security against offline guessing, and this figure for 6-digit PINs is 7.2 bits and 13.2 bits, respectively. We, for the first time, reveal that Zipf's law is likely to exist in PINs. Despite distinct language/cultural backgrounds, both user groups choose PINs with almost the same Zipf distribution function, and such Zipf PIN-distribution from one source (about which we may know little information) can be well predicted by real-world attackers by running Markov-Chains with PINs from another known source. Our Zipf theory would have foundational implications for analyzing PIN-based protocols and for designing PIN creation policies, while our security measurements provide guidance for bank agencies and financial authorities that are planning to conduct PIN migration from 4-digits to 6-digits.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"145 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76873162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 55
On the Detection of Kernel-Level Rootkits Using Hardware Performance Counters 利用硬件性能计数器检测内核级rootkit
Baljit Singh, Dmitry Evtyushkin, J. Elwell, Ryan D. Riley, I. Cervesato
Recent work has investigated the use of hardware performance counters (HPCs) for the detection of malware running on a system. These works gather traces of HPCs for a variety of applications (both malicious and non-malicious) and then apply machine learning to train a detector to distinguish between benign applications and malware. In this work, we provide a more comprehensive analysis of the applicability of using machine learning and HPCs for a specific subset of malware: kernel rootkits. We design five synthetic rootkits, each providing a single piece of rootkit functionality, and execute each while collecting HPC traces of its impact on a specific benchmark application. We then apply machine learning feature selection techniques in order to determine the most relevant HPCs for the detection of these rootkits. We identify 16 HPCs that are useful for the detection of hooking based roots, and also find that rootkits employing direct kernel object manipulation (DKOM) do not significantly impact HPCs. We then use these synthetic rootkit traces to train a detection system capable of detecting new rootkits it has not seen previously with an accuracy of over 99%. Our results indicate that HPCs have the potential to be an effective tool for rootkit detection, even against new rootkits not previously seen by the detector.
最近的工作研究了使用硬件性能计数器(hpc)来检测系统上运行的恶意软件。这些工作收集各种应用程序(包括恶意和非恶意)的hpc痕迹,然后应用机器学习来训练检测器来区分良性应用程序和恶意软件。在这项工作中,我们对使用机器学习和hpc的特定恶意软件子集的适用性进行了更全面的分析:内核rootkits。我们设计了五个综合rootkit,每个都提供一个单一的rootkit功能,并在执行每个rootkit的同时收集其对特定基准应用程序的影响的HPC跟踪。然后,我们应用机器学习特征选择技术,以确定最相关的hpc检测这些rootkit。我们确定了16个对基于钩子的根的检测有用的hpc,并且还发现使用直接内核对象操作(DKOM)的rootkit不会显著影响hpc。然后,我们使用这些合成的rootkit痕迹来训练一个检测系统,该系统能够检测以前未见过的新rootkit,准确率超过99%。我们的研究结果表明,hpc有可能成为一种有效的rootkit检测工具,即使是针对以前未被检测器发现的新rootkit。
{"title":"On the Detection of Kernel-Level Rootkits Using Hardware Performance Counters","authors":"Baljit Singh, Dmitry Evtyushkin, J. Elwell, Ryan D. Riley, I. Cervesato","doi":"10.1145/3052973.3052999","DOIUrl":"https://doi.org/10.1145/3052973.3052999","url":null,"abstract":"Recent work has investigated the use of hardware performance counters (HPCs) for the detection of malware running on a system. These works gather traces of HPCs for a variety of applications (both malicious and non-malicious) and then apply machine learning to train a detector to distinguish between benign applications and malware. In this work, we provide a more comprehensive analysis of the applicability of using machine learning and HPCs for a specific subset of malware: kernel rootkits. We design five synthetic rootkits, each providing a single piece of rootkit functionality, and execute each while collecting HPC traces of its impact on a specific benchmark application. We then apply machine learning feature selection techniques in order to determine the most relevant HPCs for the detection of these rootkits. We identify 16 HPCs that are useful for the detection of hooking based roots, and also find that rootkits employing direct kernel object manipulation (DKOM) do not significantly impact HPCs. We then use these synthetic rootkit traces to train a detection system capable of detecting new rootkits it has not seen previously with an accuracy of over 99%. Our results indicate that HPCs have the potential to be an effective tool for rootkit detection, even against new rootkits not previously seen by the detector.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"92 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85846874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 81
Session details: Embedded Systems Security 2 会议详情:嵌入式系统安全
M. Maniatakos
{"title":"Session details: Embedded Systems Security 2","authors":"M. Maniatakos","doi":"10.1145/3248563","DOIUrl":"https://doi.org/10.1145/3248563","url":null,"abstract":"","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82822062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Program Analysis to Synthesize Sensor Spoofing Attacks 应用程序分析综合传感器欺骗攻击
I. Pustogarov, T. Ristenpart, Vitaly Shmatikov
In a sensor spoofing attack, an adversary modifies the physical environment in a certain way so as to force an embedded system into unwanted or unintended behaviors. This usually requires a thorough understanding of the system's control logic. The conventional methods for discovering this logic are manual code inspection and experimentation. In this paper, we design a directed, compositional symbolic execution framework that targets software for the popular MSP430 family of microcontrollers. Using our framework, an analyst can generate traces of sensor readings that will drive an MSP430-based embedded system to a chosen point in its code. As a case study, we use our system to generate spoofed wireless signals used as sensor inputs into AllSee, a recently proposed low-cost gesture recognition system. We then experimentally confirm that AllSee recognizes our adversarially synthesized signals as "gestures."
在传感器欺骗攻击中,攻击者以某种方式修改物理环境,从而迫使嵌入式系统产生不想要的或意想不到的行为。这通常需要对系统的控制逻辑有透彻的理解。发现这种逻辑的传统方法是手工代码检查和实验。在本文中,我们为流行的MSP430系列微控制器设计了一个定向的、组合的符号执行框架。使用我们的框架,分析人员可以生成传感器读数的跟踪,将基于msp430的嵌入式系统驱动到其代码中的选定点。作为一个案例研究,我们使用我们的系统生成欺骗无线信号,作为传感器输入AllSee,一个最近提出的低成本手势识别系统。然后,我们通过实验证实,AllSee将我们的对抗合成信号识别为“手势”。
{"title":"Using Program Analysis to Synthesize Sensor Spoofing Attacks","authors":"I. Pustogarov, T. Ristenpart, Vitaly Shmatikov","doi":"10.1145/3052973.3053038","DOIUrl":"https://doi.org/10.1145/3052973.3053038","url":null,"abstract":"In a sensor spoofing attack, an adversary modifies the physical environment in a certain way so as to force an embedded system into unwanted or unintended behaviors. This usually requires a thorough understanding of the system's control logic. The conventional methods for discovering this logic are manual code inspection and experimentation. In this paper, we design a directed, compositional symbolic execution framework that targets software for the popular MSP430 family of microcontrollers. Using our framework, an analyst can generate traces of sensor readings that will drive an MSP430-based embedded system to a chosen point in its code. As a case study, we use our system to generate spoofed wireless signals used as sensor inputs into AllSee, a recently proposed low-cost gesture recognition system. We then experimentally confirm that AllSee recognizes our adversarially synthesized signals as \"gestures.\"","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86727403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
期刊
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1