Pub Date : 2018-06-08DOI: 10.14379/IODP.PROC.363.2018
Y. Rosenthal, A. Holbourn, D. Kulhanek
{"title":"Western Pacific Warm Pool","authors":"Y. Rosenthal, A. Holbourn, D. Kulhanek","doi":"10.14379/IODP.PROC.363.2018","DOIUrl":"https://doi.org/10.14379/IODP.PROC.363.2018","url":null,"abstract":"","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86442712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-08DOI: 10.14379/iodp.proc.363.111.2018
Y. Rosenthal, A. Holbourn, D. Kulhanek, I. Aiello, T. Babila, G. Bayon, L. Beaufort, S. C. Bova, J.-H. Chun, H. Dang, A. Drury, T. Dunkley Jones, P. Eichler, A.G.S. Fernando, K. Gibson, R. G. Hatfield, D.L. Johnson, Y. Kumagai, T. Li, B. Linsley, N. Meinicke, G. Mountain, B. Opdyke, P.N. Pearson, C. R. Poole, A. Ravelo, T. Sagawa, A. Schmitt, J. Wurtzel, J. Xu, M. Yamamoto, Y.G. Zhang
Y. Rosenthal, A.E. Holbourn, D.K. Kulhanek, I.W. Aiello, T.L. Babila, G. Bayon, L. Beaufort, S.C. Bova, J.-H. Chun, H. Dang, A.J. Drury, T. Dunkley Jones, P.P.B. Eichler, A.G.S. Fernando, K. Gibson, R.G. Hatfield, D.L. Johnson, Y. Kumagai, T. Li, B.K. Linsley, N. Meinicke, G.S. Mountain, B.N. Opdyke, P.N. Pearson, C.R. Poole, A.C. Ravelo, T. Sagawa, A. Schmitt, J.B. Wurtzel, J. Xu, M. Yamamoto, and Y.G. Zhang2
{"title":"Site U1490","authors":"Y. Rosenthal, A. Holbourn, D. Kulhanek, I. Aiello, T. Babila, G. Bayon, L. Beaufort, S. C. Bova, J.-H. Chun, H. Dang, A. Drury, T. Dunkley Jones, P. Eichler, A.G.S. Fernando, K. Gibson, R. G. Hatfield, D.L. Johnson, Y. Kumagai, T. Li, B. Linsley, N. Meinicke, G. Mountain, B. Opdyke, P.N. Pearson, C. R. Poole, A. Ravelo, T. Sagawa, A. Schmitt, J. Wurtzel, J. Xu, M. Yamamoto, Y.G. Zhang","doi":"10.14379/iodp.proc.363.111.2018","DOIUrl":"https://doi.org/10.14379/iodp.proc.363.111.2018","url":null,"abstract":"Y. Rosenthal, A.E. Holbourn, D.K. Kulhanek, I.W. Aiello, T.L. Babila, G. Bayon, L. Beaufort, S.C. Bova, J.-H. Chun, H. Dang, A.J. Drury, T. Dunkley Jones, P.P.B. Eichler, A.G.S. Fernando, K. Gibson, R.G. Hatfield, D.L. Johnson, Y. Kumagai, T. Li, B.K. Linsley, N. Meinicke, G.S. Mountain, B.N. Opdyke, P.N. Pearson, C.R. Poole, A.C. Ravelo, T. Sagawa, A. Schmitt, J.B. Wurtzel, J. Xu, M. Yamamoto, and Y.G. Zhang2","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84678968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-29DOI: 10.14379/IODP.PROC.366.110.2018
R. Johnston, J. Ryan
Recovered shipboard solids (rocks and sediments) may be characterized for elemental abundances on International Ocean Discovery Program (IODP) expeditions in several ways, using either the shipboard inductively coupled plasma–atomic emission spectrometer (ICP-AES) or a handheld portable X-ray fluorescence spectrometer (pXRF). These two instruments have overlapping capabilities in terms of the elements they measure but are designed to meet different analytical needs. During Expedition 366, we made extensive use of both instruments to conduct standard bulk elemental analysis of samples and in situ measurements on rock surfaces of cores. The following is a description of current shipboard measurement protocols for recovered rocks and sediments using these instruments, an analysis of the respective methodologies, and recommendations for best analytical practices. Portable X-ray fluorescence spectrometry Based on the success in using portable X-ray fluorescence spectrometry (pXRF) for core characterization during International Ocean Discovery Program (IODP) Expedition 352 (Ryan et al., 2017; Reagan et al., 2015, 2017), pXRF was used both to conduct near–real time characterization of recovered rock samples from cores and to analyze serpentinite rock powders and unconsolidated serpentinite samples during Expedition 366. A new pXRF—an Olympus DeltaX handheld instrument—was acquired by IODP for use during Expedition 366 and future expeditions. Compared to the original Fisher Niton instrument described in Ryan et al. (2017), this new instrument has overall expanded analytical capabilities. The Olympus DeltaX is a self-contained energy-dispersive XRF survey tool that includes data correction packages tailored to geological applications. The data correction methods are based on “fundamental parameters” methodology, which solves a series of nonlinear equations for each analyzed element. The parameters used in these equations comprise metrics for the X-ray source, fluorescence intensities, absorption coefficients, and absorption edge effects for each wavelength analyzed, together with parameters for sample geometry (e.g., van Sprang, 2000) and a Compton normalization scheme (Reynolds, 1963). The “geochemistry/soils” protocol used on the ship presumes a perpendicular sample geometry. The protocol analyzes for elements at two different filter settings to optimize results. Analysis of different core materials Generally, the pXRF instrument is operated by the shipboard scientist(s), typically from the Petrology/Core Description or Geochemistry teams, who are tasked with overseeing its use. The protocol for rock surface analyses used during Expedition 366 is as follows. Rock surface samples The primary shipboard use of the pXRF instrument during Expedition 366 was to conduct quick geochemical assessments of the cored material through direct measurements on rock surfaces of either workingor archive-half core pieces. For these measurements, rock samples that could be
{"title":"pXRF and ICP-AES characterization of shipboard rocks and sediments: protocols and strategies","authors":"R. Johnston, J. Ryan","doi":"10.14379/IODP.PROC.366.110.2018","DOIUrl":"https://doi.org/10.14379/IODP.PROC.366.110.2018","url":null,"abstract":"Recovered shipboard solids (rocks and sediments) may be characterized for elemental abundances on International Ocean Discovery Program (IODP) expeditions in several ways, using either the shipboard inductively coupled plasma–atomic emission spectrometer (ICP-AES) or a handheld portable X-ray fluorescence spectrometer (pXRF). These two instruments have overlapping capabilities in terms of the elements they measure but are designed to meet different analytical needs. During Expedition 366, we made extensive use of both instruments to conduct standard bulk elemental analysis of samples and in situ measurements on rock surfaces of cores. The following is a description of current shipboard measurement protocols for recovered rocks and sediments using these instruments, an analysis of the respective methodologies, and recommendations for best analytical practices. Portable X-ray fluorescence spectrometry Based on the success in using portable X-ray fluorescence spectrometry (pXRF) for core characterization during International Ocean Discovery Program (IODP) Expedition 352 (Ryan et al., 2017; Reagan et al., 2015, 2017), pXRF was used both to conduct near–real time characterization of recovered rock samples from cores and to analyze serpentinite rock powders and unconsolidated serpentinite samples during Expedition 366. A new pXRF—an Olympus DeltaX handheld instrument—was acquired by IODP for use during Expedition 366 and future expeditions. Compared to the original Fisher Niton instrument described in Ryan et al. (2017), this new instrument has overall expanded analytical capabilities. The Olympus DeltaX is a self-contained energy-dispersive XRF survey tool that includes data correction packages tailored to geological applications. The data correction methods are based on “fundamental parameters” methodology, which solves a series of nonlinear equations for each analyzed element. The parameters used in these equations comprise metrics for the X-ray source, fluorescence intensities, absorption coefficients, and absorption edge effects for each wavelength analyzed, together with parameters for sample geometry (e.g., van Sprang, 2000) and a Compton normalization scheme (Reynolds, 1963). The “geochemistry/soils” protocol used on the ship presumes a perpendicular sample geometry. The protocol analyzes for elements at two different filter settings to optimize results. Analysis of different core materials Generally, the pXRF instrument is operated by the shipboard scientist(s), typically from the Petrology/Core Description or Geochemistry teams, who are tasked with overseeing its use. The protocol for rock surface analyses used during Expedition 366 is as follows. Rock surface samples The primary shipboard use of the pXRF instrument during Expedition 366 was to conduct quick geochemical assessments of the cored material through direct measurements on rock surfaces of either workingor archive-half core pieces. For these measurements, rock samples that could be","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91071457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}