Pub Date : 2019-01-01DOI: 10.14379/iodp.proc.381.105.2019
L.C. McNeill, D.J. Shillington, Graham Carter, J.D. Everest, E. Le Ber, R.E. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M. Doan, M. Ford, R. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, N.V. Zakharova
L.C. McNeill, D.J. Shillington, G.D.O. Carter, J.D. Everest, E. Le Ber, R.E.Ll. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M.-L. Doan, M. Ford, R.L. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, and N.V. Zakharova2
{"title":"Site M0079","authors":"L.C. McNeill, D.J. Shillington, Graham Carter, J.D. Everest, E. Le Ber, R.E. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M. Doan, M. Ford, R. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, N.V. Zakharova","doi":"10.14379/iodp.proc.381.105.2019","DOIUrl":"https://doi.org/10.14379/iodp.proc.381.105.2019","url":null,"abstract":"L.C. McNeill, D.J. Shillington, G.D.O. Carter, J.D. Everest, E. Le Ber, R.E.Ll. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M.-L. Doan, M. Ford, R.L. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, and N.V. Zakharova2","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74417745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.14379/iodp.proc.381.104.2019
L.C. McNeill, D.J. Shillington, Graham Carter, J.D. Everest, E. Le Ber, R.E. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M. Doan, M. Ford, R. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, N.V. Zakharova
L.C. McNeill, D.J. Shillington, G.D.O. Carter, J.D. Everest, E. Le Ber, R.E.Ll. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M.-L. Doan, M. Ford, R.L. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, and N.V. Zakharova2
{"title":"Site M0078","authors":"L.C. McNeill, D.J. Shillington, Graham Carter, J.D. Everest, E. Le Ber, R.E. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M. Doan, M. Ford, R. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, N.V. Zakharova","doi":"10.14379/iodp.proc.381.104.2019","DOIUrl":"https://doi.org/10.14379/iodp.proc.381.104.2019","url":null,"abstract":"L.C. McNeill, D.J. Shillington, G.D.O. Carter, J.D. Everest, E. Le Ber, R.E.Ll. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M.-L. Doan, M. Ford, R.L. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, and N.V. Zakharova2","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85107008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.14379/iodp.proc.381.106.2019
L.C. McNeill, D.J. Shillington, Graham Carter, J.D. Everest, E. Le Ber, R.E. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M. Doan, M. Ford, R. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, N.V. Zakharova
L.C. McNeill, D.J. Shillington, G.D.O. Carter, J.D. Everest, E. Le Ber, R.E.Ll. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M.-L. Doan, M. Ford, R.L. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, and N.V. Zakharova2
{"title":"Site M0080","authors":"L.C. McNeill, D.J. Shillington, Graham Carter, J.D. Everest, E. Le Ber, R.E. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M. Doan, M. Ford, R. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, N.V. Zakharova","doi":"10.14379/iodp.proc.381.106.2019","DOIUrl":"https://doi.org/10.14379/iodp.proc.381.106.2019","url":null,"abstract":"L.C. McNeill, D.J. Shillington, G.D.O. Carter, J.D. Everest, E. Le Ber, R.E.Ll. Collier, A. Cvetkoska, G. De Gelder, P. Diz, M.-L. Doan, M. Ford, R.L. Gawthorpe, M. Geraga, J. Gillespie, R. Hemelsdaël, E. Herrero-Bervera, M. Ismaiel, L. Janikian, K. Kouli, S. Li, M.L. Machlus, M. Maffione, C. Mahoney, G. Michas, C. Miller, C.W. Nixon, S.A. Oflaz, A.P. Omale, K. Panagiotopoulos, S. Pechlivanidou, M.P. Phillips, S. Sauer, J. Seguin, S. Sergiou, and N.V. Zakharova2","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83647080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.14379/iodp.proc.374.2019
R. McKay, L. D. Santis, D. Kulhanek, I. Browne, A. Shevenell, Expedition Scientists
{"title":"Ross Sea West Antarctic Ice Sheet History","authors":"R. McKay, L. D. Santis, D. Kulhanek, I. Browne, A. Shevenell, Expedition Scientists","doi":"10.14379/iodp.proc.374.2019","DOIUrl":"https://doi.org/10.14379/iodp.proc.374.2019","url":null,"abstract":"","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83447354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-11DOI: 10.14379/iodp.proc.355.203.2018
M. Lyle, D. Kulhanek, M. G. Bowen, Annette Hahn
Bulk sediment chemistry was measured at 2 cm resolution along cores from International Ocean Discovery Program (IODP) Site U1457 using the X-ray fluorescence (XRF) core scanner at the IODP Gulf Coast Repository. The Pleistocene splice section assembled from Holes U1457A and U1457B was scanned in its entirety, and nearly continuous sediment bulk chemistry profiles were constructed to a depth of 125 m core composite depth below seafloor (CCSF). Some sections of Hole U1457C were also scanned: (1) an upper Miocene hemipelagic section and (2) a 30 m lower Paleocene section directly overlying basalt. In the Pleistocene spliced sections, 2 cm spacing represents a sampling resolution of 150–300 y, whereas in the upper Miocene section this spacing represents about 500 y between samples. We report data and acquisition conditions for major and many minor elements. We find large variability in CaCO3 content in the Pleistocene section, from around 14 to 89 wt%. We used discrete shipboard CaCO3 measurements to calibrate the XRF Ca data. CaCO3 has cyclic variability and correlates with light sediment colors. Variation in aluminosilicate elements is largely caused by changes in dilution by CaCO3. The lower part of the spliced section, presumably representing distal Indus Fan deposits, has a distinctive but more uniform composition than the upper part. Introduction Variability in chemical composition of deep-sea sediments provides important data needed to understand changes in primary productivity, the carbon cycle, and sources of aluminosilicates. However, chemical analyses are typically too slow and expensive for high-resolution study of chemical composition covering long intervals of time. They also consume the sediments, so only limited numbers of analyses can be performed. Nondestructive X-ray fluorescence (XRF) core scanning provides the potential to produce high-resolution chemical profiles that can be calibrated with a small number of discrete chemical analyses. XRF is an X-ray optical technique that can measure most major and some minor elements. It is an economical way to extract bulk chemical data over longer sediment/rock profiles where thousands of analyses might be needed to resolve lithostratigraphic changes in the section. The method can be used to gather chemical data at a vertical resolution similar to that of physical property data collection by track systems on the JOIDES Resolution (e.g., Westerhold and Röhl, 2009; Lyle et al., 2012). These chemical measurements can augment physical property measurements to study cyclostratigraphy or rapid changes in sedimentation. If calibrated, the XRF data can be used to understand the long-term evolution of biogeochemical cycles and to identify the provenance of aluminosilicate sediments (Lyle and Baldauf, 2015). Data acquisition methods Data in this report were acquired at the IODP Gulf Coast Repository in College Station, Texas (http://iodp.tamu.edu/labs/xrf) using a third-generation Avaatech XRF core s
利用国际海洋发现计划(IODP)墨西哥湾沿岸储存库的x射线荧光(XRF)岩心扫描仪,沿着国际海洋发现计划(IODP)站点U1457的岩心,以2厘米分辨率测量了大块沉积物的化学性质。对U1457A孔和U1457B孔组装的更新世剪接剖面进行了整体扫描,构建了海底下125 m岩心复合深度(CCSF)近连续的沉积物体化学剖面。U1457C孔的部分剖面也进行了扫描:(1)上中新世半深海剖面和(2)下古新世30 m直接覆盖玄武岩剖面。在更新世拼接剖面中,2 cm间距代表150-300 y的采样分辨率,而在中新世上部剖面中,样品之间的间距约为500 y。我们报告主要元素和许多次要元素的数据和获取条件。我们发现更新世剖面的CaCO3含量变化很大,从14%到89%不等。我们使用离散的船载CaCO3测量来校准XRF Ca数据。CaCO3具有循环变异性,并与浅沉积物颜色相关。铝硅酸盐元素的变化主要是由CaCO3稀释度的变化引起的。拼接剖面的下半部分可能代表远端印度河扇沉积,其组成比上半部分独特但更均匀。深海沉积物化学成分的变化为了解初级生产力、碳循环和铝硅酸盐来源的变化提供了重要的数据。然而,化学分析对于长时间的高分辨率化学成分研究来说通常过于缓慢和昂贵。它们也会消耗沉积物,因此只能进行有限数量的分析。非破坏性x射线荧光(XRF)核心扫描提供了产生高分辨率化学剖面的潜力,可以通过少量离散化学分析进行校准。XRF是一种可以测量大多数主要元素和一些次要元素的x射线光学技术。这是一种经济的方法,可以从较长的沉积物/岩石剖面中提取大量化学数据,因为可能需要数千次分析才能解决剖面中的岩石地层变化。该方法可用于收集垂直分辨率的化学数据,类似于JOIDES分辨率上的跟踪系统收集的物理性质数据(例如,Westerhold和Röhl, 2009;Lyle et al., 2012)。这些化学测量可以增强物理性质测量,以研究旋回地层学或沉积的快速变化。如果经过校准,XRF数据可用于了解生物地球化学循环的长期演变,并确定铝硅酸盐沉积物的来源(Lyle和Baldauf, 2015)。本报告中的数据是在德克萨斯州大学城的IODP墨西哥湾沿岸储存库(http://iodp.tamu.edu/labs/xrf)使用第三代Avaatech XRF核心扫描仪与堪培拉X-PIPS SDD,型号SXD 15C-150-500 150 eV分辨率x射线探测器获得的。XRF扫描仪配置用于分析分裂沉积物岩心。数据报告:对U1457站点沉积物的x射线荧光研究,发现元素周期表中Al和U之间的元素。x射线管和探测器装置安装在移动轨道上,以便在每次扫描运行时,可以沿分割的岩心剖面分析不同位置的多个点,并且可以自动编程不同设置的多个扫描(Richter et al., 2006)。操作者控制x射线管电流、电压、测量时间(活时间)、使用的x射线滤光片和x射线照射面积。下芯位置步进精确到0.1毫米。对于Site U1457(图F1) XRF扫描,在每个岩心切片中,样品间距设置在岩心下方2厘米的间隔,并在两个电压下进行单独扫描。x射线照射区域设置为下岩心方向1.0 cm和交叉岩心方向1.2 cm,扫描沿劈开岩心一半的中心向下进行(采用先进活塞盖[APC]收集的岩心总直径为6.8 cm)。第一次扫描在10 kV, 800 μA, 15 s寿命下进行,对Al, Si, s, Cl, K, Ca, Ti, Mn和Fe元素不加滤波。第二次扫描在30 kV, 1000 μA, 20 s寿命下进行,使用pd厚滤波器对Ni, Cu, Zn, Br, Rb, Sr, Y, Zr, Nb, Mo, Pb和Bi进行扫描。在这些元素中,Br、Rb、Sr和Zr有足够大的信号来证明进一步的数据缩减是合理的。每个核心切片在扫描前至少2小时从冰箱中取出,覆盖约15分钟,然后用4 μm厚的Ultralene塑料薄膜(SPEX Centriprep, Inc.)放在扫描仪上。Ultralene薄膜保护探测器表面在扫描过程中不被沉积物覆盖和污染。重要的是要等到核心部分温暖到室温,然后再把胶片放在核心部分。 在冷却的核心部分上放置塑料薄膜会导致水凝结在薄膜上,通过吸收发射的低能x射线,严重减少轻元素XRF峰面积(Lyle et al., 2012)。对Site U1457连续拼接截面内的所有核心截面进行分析。当沉积物拼接从一个孔改变到另一个孔时,连接点的两个剖面都被完整扫描。扫描了Lyle和Saraswat(2019)中列出的修订后的Site U1457剪接中的所有部分。收集到的所有数据,包括重叠部分,如表T1 (U1457A孔)和表T2 (U1457B孔)所示。表T3包含U1457C孔数据,表T4包含U1457站点拼接数据,它们代表了上部125 m CCSF连续沉积物剖面的数据。所有表都包含原始峰值面积和标准化的中位数缩放(NMS)减少的数据,如下所述。因为对于XRF扫描数据有不止一种数据约简方法(Weltje和Tjallingii, 2008;Lyle et al., 2012;Weltje et al., 2015),我们在表T1、T2和T3中报告了原始峰面积数据和处理数据。因此,如果有必要,原始数据将允许在将来进行再处理。后期校准的数据约简方法-归一化中位数缩放(NMS)数据数据约简是通过简单的两步法实现的,如Lyle等人(2012)所述:(1)首先通过将每个元素的中位数峰面积设置为平均graywacke的模型百分比(Wedepohl, 1995)来对数据进行中位数缩放。然后将每个样品的峰面积除以中位数峰面积,然后将结果乘以模型中位数元素丰度,将峰面积数据中的范围转换为原始百分比。(2)由于所得到的原始数据很少能达到主要元素氧化物的100%,因此对它们进行归一化处理,使主要造岩元素氧化物的总和达到100%。标准化是通过将主要氧化物的原始和除以100,然后将每个原始氧化物乘以这个因子来实现的。次要元素被同一因子归一化。归一化步骤用于消除孔隙度或裂缝差异或XRF源强度变化引起的可变性(Lyle et al., 2012)。数据约简的NMS方法与Weltje和Tjallingii(2008)的方法以及Weltje et al.(2015)对该方法的进一步阐述有一些相似之处,也有一些不同之处。Weltje和Tjallingii(2008)首先通过除以总原始峰面积的总和来标准化每个元素峰面积。然后,他们对这些比率进行对数变换,以减少主要和次要xrfemter之间的范围,就像我们的中位数缩放步骤一样。最后,他们求解了组成的XRF元素/元素比例矩阵。Weltje et al.(2015)研究了使用各种矩阵解来获得最终组合(图F1)。阿拉伯海阴影水深图显示了Site U1457的位置(参见Site U1457章节[Pandey et al., 2016])。U1457遗址位于印度南海岸附近,位于阿拉伯海的拉克西米盆地。黄色圆圈=第355次科考期间钻探的地点,红色星星=更早的科学钻探地点,粉色线=在Kolla和Coumes(1987)之后印度河扇的大致范围,黄色带问号的虚线=根据拉克西米盆地是由海洋地壳还是大陆地壳
{"title":"Data report: X-ray fluorescence studies of Site U1457 sediments, Laxmi Basin, Arabian Sea","authors":"M. Lyle, D. Kulhanek, M. G. Bowen, Annette Hahn","doi":"10.14379/iodp.proc.355.203.2018","DOIUrl":"https://doi.org/10.14379/iodp.proc.355.203.2018","url":null,"abstract":"Bulk sediment chemistry was measured at 2 cm resolution along cores from International Ocean Discovery Program (IODP) Site U1457 using the X-ray fluorescence (XRF) core scanner at the IODP Gulf Coast Repository. The Pleistocene splice section assembled from Holes U1457A and U1457B was scanned in its entirety, and nearly continuous sediment bulk chemistry profiles were constructed to a depth of 125 m core composite depth below seafloor (CCSF). Some sections of Hole U1457C were also scanned: (1) an upper Miocene hemipelagic section and (2) a 30 m lower Paleocene section directly overlying basalt. In the Pleistocene spliced sections, 2 cm spacing represents a sampling resolution of 150–300 y, whereas in the upper Miocene section this spacing represents about 500 y between samples. We report data and acquisition conditions for major and many minor elements. We find large variability in CaCO3 content in the Pleistocene section, from around 14 to 89 wt%. We used discrete shipboard CaCO3 measurements to calibrate the XRF Ca data. CaCO3 has cyclic variability and correlates with light sediment colors. Variation in aluminosilicate elements is largely caused by changes in dilution by CaCO3. The lower part of the spliced section, presumably representing distal Indus Fan deposits, has a distinctive but more uniform composition than the upper part. Introduction Variability in chemical composition of deep-sea sediments provides important data needed to understand changes in primary productivity, the carbon cycle, and sources of aluminosilicates. However, chemical analyses are typically too slow and expensive for high-resolution study of chemical composition covering long intervals of time. They also consume the sediments, so only limited numbers of analyses can be performed. Nondestructive X-ray fluorescence (XRF) core scanning provides the potential to produce high-resolution chemical profiles that can be calibrated with a small number of discrete chemical analyses. XRF is an X-ray optical technique that can measure most major and some minor elements. It is an economical way to extract bulk chemical data over longer sediment/rock profiles where thousands of analyses might be needed to resolve lithostratigraphic changes in the section. The method can be used to gather chemical data at a vertical resolution similar to that of physical property data collection by track systems on the JOIDES Resolution (e.g., Westerhold and Röhl, 2009; Lyle et al., 2012). These chemical measurements can augment physical property measurements to study cyclostratigraphy or rapid changes in sedimentation. If calibrated, the XRF data can be used to understand the long-term evolution of biogeochemical cycles and to identify the provenance of aluminosilicate sediments (Lyle and Baldauf, 2015). Data acquisition methods Data in this report were acquired at the IODP Gulf Coast Repository in College Station, Texas (http://iodp.tamu.edu/labs/xrf) using a third-generation Avaatech XRF core s","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79850219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-08DOI: 10.14379/iodp.proc.353.201.2018
M. Robinson, H. Dowsett
{"title":"Data report: late Pliocene planktonic foraminifer assemblages from IODP Holes U1443B, U1443C, and U1445A","authors":"M. Robinson, H. Dowsett","doi":"10.14379/iodp.proc.353.201.2018","DOIUrl":"https://doi.org/10.14379/iodp.proc.353.201.2018","url":null,"abstract":"","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"E-30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84530863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-10-17DOI: 10.14379/IODP.PROC.354.202.2018
S. K. Adhikari, T. Sakai, Kohki Yoshida
Grain size distributions of 311 sediment samples from Sites U1450 and U1451 of International Ocean Discovery Program (IODP) Expedition 354 were determined using laser diffraction. Most of the samples were from turbidites, but some hemipelagic beds were also examined. The mean grain size values show that siltsized particles are the dominant textural class, whereas the grain size values range from clay to coarse-grained sand. An overall upward change in mean grain size value reveals a slight coarseningupward trend. However, other parameters such as standard deviation, skewness, and kurtosis show no systematic relationship with depth in the holes. The analyzed samples cover the age range from recent to early Miocene. Shepard textural classification plots show the sediments are mostly sandy silts, silty sands, and clayey silts with a few silts and sands also present. Frequency curve plots of samples from individual turbidite beds show inversely graded beds are most common at Site U1450, whereas thicker massive beds are dominant at Site U1451.
{"title":"Data report: grain size analysis of Bengal Fan sediments at Sites U1450 and U1451, IODP Expedition 354","authors":"S. K. Adhikari, T. Sakai, Kohki Yoshida","doi":"10.14379/IODP.PROC.354.202.2018","DOIUrl":"https://doi.org/10.14379/IODP.PROC.354.202.2018","url":null,"abstract":"Grain size distributions of 311 sediment samples from Sites U1450 and U1451 of International Ocean Discovery Program (IODP) Expedition 354 were determined using laser diffraction. Most of the samples were from turbidites, but some hemipelagic beds were also examined. The mean grain size values show that siltsized particles are the dominant textural class, whereas the grain size values range from clay to coarse-grained sand. An overall upward change in mean grain size value reveals a slight coarseningupward trend. However, other parameters such as standard deviation, skewness, and kurtosis show no systematic relationship with depth in the holes. The analyzed samples cover the age range from recent to early Miocene. Shepard textural classification plots show the sediments are mostly sandy silts, silty sands, and clayey silts with a few silts and sands also present. Frequency curve plots of samples from individual turbidite beds show inversely graded beds are most common at Site U1450, whereas thicker massive beds are dominant at Site U1451.","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85751832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-28DOI: 10.14379/iodp.proc.367368.2018
Zhen Sun, Z. Jian, J. Stock, H. Larsen, A. Klaus, C. Zarikian, A. Briais
{"title":"Volume 367/368: South China Sea Rifted Margin","authors":"Zhen Sun, Z. Jian, J. Stock, H. Larsen, A. Klaus, C. Zarikian, A. Briais","doi":"10.14379/iodp.proc.367368.2018","DOIUrl":"https://doi.org/10.14379/iodp.proc.367368.2018","url":null,"abstract":"","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89152621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-13DOI: 10.14379/IODP.PROC.366.201.2018
G. Wheat, T. Fournier, C. Paul, C. Menzies, R. Price, J. Ryan, Olivier Sissman
International Ocean Discovery Program (IODP) Expedition 366 focused, in part, on the study of geochemical cycling, matrix alteration and transport, and deep biosphere processes in the Mariana subduction zone. This research was accomplished by sampling the summit and flank regions of three active serpentinite mud volcanoes in the Mariana forearc: Yinazao (Blue Moon), Fantangisña (Celestial), and Asùt Tesoro (Big Blue) Seamounts. These mud volcanoes represent a transect with increasing distance from the trench. Because these mud volcanoes discharge fluids and materials from the subduction channel, they provide a means to characterize thermal, geochemical, and pressure conditions within the seismogenic zone. Previous coring on Ocean Drilling Program (ODP) Legs 125 and 195 at two other serpentinite mud volcanoes (Conical and South Chamorro Seamounts, respectively) and piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add to this transect of deep-sourced material that is discharged at the seafloor. Pore waters were squeezed from cored serpentinite materials to determine the composition of deep-sourced fluid from the subduction channel and to assess the character, extent, and effect of diagenetic reactions and mixing with seawater on the flanks of three serpentinite seamounts (Yinazao, Fantangisña, and Asùt Tesoro). In addition, two water-sampling temperature probe (WSTP) fluid samples were collected in two of the cased boreholes, each with at least 30 m of screened casing that allowed formation fluids to discharge into the borehole. Here we report shore-based Li, Rb, Cs, Ba, V, Mo, and U measurements of pore waters and one of the WSTP samples. The alkali metals were analyzed to constrain the temperature of reaction in the subduction channel. The other elements were analyzed to assess potential biogenic and diagenetic reactions as the serpentinite material weathers and exchanges with bottom seawater via diffusion. Results were generally consistent with earlier coring and drilling operations, resulting in systematic changes in the composition of the deep-sourced fluid with distance from the trench. Introduction One goal of International Ocean Discovery Program (IODP) Expedition 366 was to elucidate geochemical cycling within the subduction channel of the Mariana forearc system (see the Expedition 366 summary chapter [Fryer et al., 2018b]). Expedition 366 successfully cored the flank and summit regions of three Mariana forearc serpentinite mud volcanoes that are located along a transect with increasing distance from the trench and by inference with depth to the subducted Pacific plate (Figure F1). Previous scientific drilling during Ocean Drilling Program (ODP) Legs 125 and 195 at two other Mariana serpentinite mud volcanoes, Conical and South Chamorro Seamounts, respectively, as well as piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add additional geochemical data to this transec
国际海洋发现计划(IODP) 366远征队的部分重点是研究马里亚纳俯冲带的地球化学循环、基质蚀变和运输以及深层生物圈过程。本研究通过对马里亚纳前弧的三个活火山——Yinazao (Blue Moon)、Fantangisña (Celestial)和Asùt Tesoro (Big Blue)海山的山顶和侧翼区域进行采样来完成。这些泥火山代表了一个离海沟越来越远的样带。由于这些泥火山从俯冲通道排出流体和物质,它们提供了一种表征发震区内热、地球化学和压力条件的方法。海洋钻探计划(ODP)第125号和第195号腿对另外两座蛇纹岩泥火山(分别为圆锥海山和南查莫罗海山)和其他几个马里亚纳蛇纹岩泥火山的活塞、重力和推动岩心进行了取样,增加了海底排放的深源物质的样带。从取心蛇纹岩物质中挤压孔隙水,以确定俯冲通道深部流体的组成,并评估三个蛇纹岩海山(Yinazao、Fantangisña和Asùt Tesoro)侧翼成岩反应和海水混合的特征、程度和影响。此外,在两个套管井眼中收集了两个水采样温度探头(WSTP)流体样本,每个井眼至少有30米的屏蔽套管,允许地层流体排放到井眼中。在这里,我们报告了孔隙水和WSTP样品之一的岸基Li, Rb, Cs, Ba, V, Mo和U的测量。分析了碱金属对俯冲通道反应温度的约束作用。对其他元素进行了分析,以评估蛇纹岩物质在与海底海水扩散和交换过程中可能发生的生物成因和成岩反应。结果与早期的取心和钻井作业基本一致,导致深部流体成分随着距离海沟的距离而发生系统性变化。国际海洋发现计划(IODP)远征366的一个目标是阐明马里亚纳前弧系统俯冲通道内的地球化学循环(见远征366总结章[Fryer et al., 2018b])。366探险队成功地取芯了三座马里亚纳弧前蛇纹岩泥火山的侧翼和峰顶区域,这些火山位于离海沟越来越远的样带上,由此推断,随着深度的增加,它们与俯冲的太平洋板块之间的距离也在增加(图F1)。海洋钻探计划(ODP)第125和195号阶段的科学钻探,分别在另外两个马里亚纳蛇纹岩泥火山,圆锥海山和南查莫罗海山进行,以及来自其他几个马里亚纳蛇纹岩泥火山的活塞、重力和推动岩心,为马里亚纳前弧的活跃蛇纹岩泥火山样带提供了额外的地球化学数据(Fryer, Pearce, Stokking等,1990;索尔兹伯里,筱原,Richter等,2002;Mottl et al., 2004;Hulme et al., 2010)。此次考察的主要目标之一是确定深层流体的组成,以表征俯冲通道内的热、地球化学和压力条件,方法是对目前正在运送新沉积物质的峰顶区域进行采样。第二个主要目标是评估三个蛇纹岩泥火山两侧成岩反应和海水混合的特征、程度和影响,因此C.G. Wheat等人。数据报告:孔隙水微量元素组成限制了蛇纹石持续反应的程度和潜在的微生物代谢活性。为了实现这两个目标,我们采集了149个完整的样品进行孔隙水提取。提取的孔隙水在船上进行分析,将其放入一系列容器中,并保存下来用于岸上分析(见Expedition 366总结章[Fryer et al., 2018b])。此外,在两个套管井眼内使用水样温度探头(WSTP)收集了两个流体样本,每个套管都有屏蔽套管,允许地层流体流入井眼,同时保留泥浆基质(例如,ODP井眼1200C;Wheat et al., 2008)。虽然在海上对孔隙水中的许多溶解离子和气体进行了分析,但船上的仪器限制了一些关键的分析。本文通过介绍微量元素,特别是Rb和Cs的分析结果来弥补这一局限性。由于这两种元素的化学性质相似,但其动员特性不同,因此限制了深层流体的温度(例如,Hulme等人,2010年)。 另一种碱金属锂的浓度数据也被提出,因为许多样品的浓度低于船上仪器提供的检测极限。其他微量元素(V、Mo、Ba和U)的测量为海底山两侧的潜在反应和成岩途径提供了一种衡量标准。半长先进活塞盖取心(HLAPC)是远征366期间获取材料的主要方法(参见远征366方法章节[Fryer等人,2018a])。我们还使用扩展取心筒(XCB)和旋转取心筒(RCB)取心来回收材料。回收的材料包括蛇纹岩泥流和来自三个建筑物两侧的碎屑,以及上层沉积物:U1491 (Yinazao [Blue Moon]海山)、U1493、U1494、U1495 (Asùt Tesoro [Big Blue]海山)和U1498 (Fantangisña [Celestial]海山)(图F1)。蛇纹岩泥流基质的颜色随深度不同而不同,尽管在HLAPC和XCB取心过程中明显受到流入的干扰,但碎屑含量和基质成分的离散层位仍然存在。在三个岩心泥火山:U1492 (Yinazao海山)、U1496 (Asùt Tesoro海山)和U1497 (Fantangisña海山)的山顶区域也发现了蛇纹岩物质。用于孔隙水分析的蛇纹岩材料和沉积物立即从t台上取出,并放置在冰箱中,将样品冷却到接近(2°-5°C)的原位温度(参见Expedition 366方法章节[Fryer et al., 2018a])。然后将蛇纹石和沉积物样品从岩心衬里中取出,放入一个充满氮气的手套袋中,刮去外部污染的外壳,并放入钛挤压器中。挤压器从手套袋中取出并插入压力机。孔隙水被排出、过滤、提取、保存和储存,用于一系列基于海岸的分析。366次考察共采集孔隙水样品149份,WSTP样品2份。不幸的是,并非所有的完整样本都能提供足够的流体,用于岸上对每种溶质或同位素的分析。本数据集中仅包含来自U1496C孔的WSTP样本。本文的分析使用了Mottl等人(2004)和Hulme等人(2010)使用的相同的电感耦合等离子体质谱(ICP-MS)和电感耦合等离子光学发射光谱(ICPOES)方法,从而确保了数据集之间的连续性。在3%的超纯硝酸和标准机器设置中,使用ICP-MS以1:50稀释对103个样品进行微量元素(V、Mo、Rb、Cs、U和Ba)分析(表T1)。标准与来自Juan de Fuca Ridge东部侧翼的海底海水进行基质匹配(Wheat et al., 2010)。这些海水和空白大约每8到10个样本进行一次分析,以解释机器漂移。该海底海水的平均浓度及标准差列于表T1。由于海上Li测量缺乏灵敏度,我们利用标准轴向机设置,在3%超纯硝酸中以1:25稀释的ICP-OES分析了127个样品(表T1)。与此同时,我们还测量了B、Ba、Mn、Fe、Si和Sr,并测量了Ca、Mg、K、Na和S,稀释比例为1:100。进行这些分析是为了确认船上的结果与之前工作中产生的结果一致(例如,Mottl等人,2004;Hulme et al., 2010)。正如预期的那样,岸上分析结果和船上分析结果在分析精度范围内是一致的。由于没有对整个数据集进行分析,并且IODP数据库已经包含了测量值,因此没有提供重复的基于海岸的结果。考察366期间钻探的三个海山的深层流体成分是根据顶部钻孔的孔隙水数据计算的,其中流体成分随深度渐近。这种剖面与深部流体的上涌速度比周围的蛇纹岩基体快一致(例如,Fryer, Pearce, Stokking等,1999;Mottl et al., 2003, 20
{"title":"Data report: IODP Expeditiom 366 pore water trace element (V, Mo, Rb, Cs, U, Ba, and Li) compositions","authors":"G. Wheat, T. Fournier, C. Paul, C. Menzies, R. Price, J. Ryan, Olivier Sissman","doi":"10.14379/IODP.PROC.366.201.2018","DOIUrl":"https://doi.org/10.14379/IODP.PROC.366.201.2018","url":null,"abstract":"International Ocean Discovery Program (IODP) Expedition 366 focused, in part, on the study of geochemical cycling, matrix alteration and transport, and deep biosphere processes in the Mariana subduction zone. This research was accomplished by sampling the summit and flank regions of three active serpentinite mud volcanoes in the Mariana forearc: Yinazao (Blue Moon), Fantangisña (Celestial), and Asùt Tesoro (Big Blue) Seamounts. These mud volcanoes represent a transect with increasing distance from the trench. Because these mud volcanoes discharge fluids and materials from the subduction channel, they provide a means to characterize thermal, geochemical, and pressure conditions within the seismogenic zone. Previous coring on Ocean Drilling Program (ODP) Legs 125 and 195 at two other serpentinite mud volcanoes (Conical and South Chamorro Seamounts, respectively) and piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add to this transect of deep-sourced material that is discharged at the seafloor. Pore waters were squeezed from cored serpentinite materials to determine the composition of deep-sourced fluid from the subduction channel and to assess the character, extent, and effect of diagenetic reactions and mixing with seawater on the flanks of three serpentinite seamounts (Yinazao, Fantangisña, and Asùt Tesoro). In addition, two water-sampling temperature probe (WSTP) fluid samples were collected in two of the cased boreholes, each with at least 30 m of screened casing that allowed formation fluids to discharge into the borehole. Here we report shore-based Li, Rb, Cs, Ba, V, Mo, and U measurements of pore waters and one of the WSTP samples. The alkali metals were analyzed to constrain the temperature of reaction in the subduction channel. The other elements were analyzed to assess potential biogenic and diagenetic reactions as the serpentinite material weathers and exchanges with bottom seawater via diffusion. Results were generally consistent with earlier coring and drilling operations, resulting in systematic changes in the composition of the deep-sourced fluid with distance from the trench. Introduction One goal of International Ocean Discovery Program (IODP) Expedition 366 was to elucidate geochemical cycling within the subduction channel of the Mariana forearc system (see the Expedition 366 summary chapter [Fryer et al., 2018b]). Expedition 366 successfully cored the flank and summit regions of three Mariana forearc serpentinite mud volcanoes that are located along a transect with increasing distance from the trench and by inference with depth to the subducted Pacific plate (Figure F1). Previous scientific drilling during Ocean Drilling Program (ODP) Legs 125 and 195 at two other Mariana serpentinite mud volcanoes, Conical and South Chamorro Seamounts, respectively, as well as piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add additional geochemical data to this transec","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85109848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-07DOI: 10.14379/IODP.PROC.354.201.2018
B. Reilly, J. Stoner, P. Selkin, J. Savian, L. Meynadier
{"title":" Data report: paleomagnetic directions from IODP Expedition 354, Hole U1451A, Cores 23H and 24H","authors":"B. Reilly, J. Stoner, P. Selkin, J. Savian, L. Meynadier","doi":"10.14379/IODP.PROC.354.201.2018","DOIUrl":"https://doi.org/10.14379/IODP.PROC.354.201.2018","url":null,"abstract":"","PeriodicalId":20641,"journal":{"name":"Proceedings of the International Ocean Discovery Program","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74568047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}