Zwitterionic ring-expansion polymerization (ZREP) is a polymerization method in which a cyclic monomer is converted into a cyclic polymer through a zwitterionic intermediate. In this review, we explored the ZREP of various cyclic polymers and how mass spectrometry assists in identifying the product architectures and understanding their intricate reaction mechanism. For the majority of polymers (from a few thousand to a few million Da) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is the most effective mass spectrometry technique to determine the true molecular weight (MW) of the resultant product, but only when the dispersity is low (approximately below 1.2). The key topics covered in this study were the ZREP of cyclic polyesters, cyclic polyamides, and cyclic ethers. In addition, this study also addresses a number of other preliminary topics, including the ZREP of cyclic polycarbonates, cyclic polysiloxanes, and cyclic poly(alkylene phosphates). The purity and efficiency of those syntheses largely depend on the catalyst. Among several catalysts, N-heterocyclic carbenes have exhibited high efficiency in the synthesis of cyclic polyesters and polyamides, whereas tris(pentafluorophenyl)borane [B(C6F5)3] is the most optimal catalyst for cyclic polyether synthesis.
{"title":"Understanding zwitterionic ring-expansion polymerization through mass spectrometry.","authors":"Mahi Ahmad, Scott M Grayson","doi":"10.1002/mas.21877","DOIUrl":"https://doi.org/10.1002/mas.21877","url":null,"abstract":"<p><p>Zwitterionic ring-expansion polymerization (ZREP) is a polymerization method in which a cyclic monomer is converted into a cyclic polymer through a zwitterionic intermediate. In this review, we explored the ZREP of various cyclic polymers and how mass spectrometry assists in identifying the product architectures and understanding their intricate reaction mechanism. For the majority of polymers (from a few thousand to a few million Da) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is the most effective mass spectrometry technique to determine the true molecular weight (MW) of the resultant product, but only when the dispersity is low (approximately below 1.2). The key topics covered in this study were the ZREP of cyclic polyesters, cyclic polyamides, and cyclic ethers. In addition, this study also addresses a number of other preliminary topics, including the ZREP of cyclic polycarbonates, cyclic polysiloxanes, and cyclic poly(alkylene phosphates). The purity and efficiency of those syntheses largely depend on the catalyst. Among several catalysts, N-heterocyclic carbenes have exhibited high efficiency in the synthesis of cyclic polyesters and polyamides, whereas tris(pentafluorophenyl)borane [B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>] is the most optimal catalyst for cyclic polyether synthesis.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"My journey in life and chemistry.","authors":"Veronica M Bierbaum","doi":"10.1002/mas.21879","DOIUrl":"https://doi.org/10.1002/mas.21879","url":null,"abstract":"","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140292304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Special issue of Dr. Veronica Bierbaum for her contributions to fundamental chemistry in mass spectrometry.","authors":"","doi":"10.1002/mas.21878","DOIUrl":"https://doi.org/10.1002/mas.21878","url":null,"abstract":"","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
McKenna J. Redding, Scott M. Grayson, Laurence Charles
Mass spectrometry (MS) has become an essential technique to characterize dendrimers as it proved efficient at tackling analytical challenges raised by their peculiar onion-like structure. Owing to their chemical diversity, this review covers benefits of MS methods as a function of dendrimer classes, discussing advantages and limitations of ionization techniques, tandem mass spectrometry (MS/MS) strategies to determine the structure of defective species, as well as most recently demonstrated capabilities of ion mobility spectrometry (IMS) in the field. Complementarily, the well-defined structure of these macromolecules offers major advantages in the development of MS-based method, as reported in a second section reviewing uses of dendrimers as MS and IMS calibration standards and as multifunctional charge inversion reagents in gas phase ion/ion reactions.
质谱法(MS)已成为表征树枝状聚合物的重要技术,因为事实证明它能有效地解决树枝状聚合物独特的洋葱状结构所带来的分析难题。由于树枝状聚合物的化学性质多种多样,本综述将根据树枝状聚合物的类别介绍质谱方法的优势,讨论电离技术的优势和局限性、确定缺陷物种结构的串联质谱(MS/MS)策略以及离子迁移谱(IMS)在该领域的最新功能。作为补充,这些大分子的明确结构为开发基于 MS 的方法提供了重大优势,第二部分回顾了树枝状聚合物作为 MS 和 IMS 校准标准以及气相离子/离子反应中多功能电荷反转试剂的用途。
{"title":"Mass spectrometry of dendrimers","authors":"McKenna J. Redding, Scott M. Grayson, Laurence Charles","doi":"10.1002/mas.21876","DOIUrl":"https://doi.org/10.1002/mas.21876","url":null,"abstract":"Mass spectrometry (MS) has become an essential technique to characterize dendrimers as it proved efficient at tackling analytical challenges raised by their peculiar onion-like structure. Owing to their chemical diversity, this review covers benefits of MS methods as a function of dendrimer classes, discussing advantages and limitations of ionization techniques, tandem mass spectrometry (MS/MS) strategies to determine the structure of defective species, as well as most recently demonstrated capabilities of ion mobility spectrometry (IMS) in the field. Complementarily, the well-defined structure of these macromolecules offers major advantages in the development of MS-based method, as reported in a second section reviewing uses of dendrimers as MS and IMS calibration standards and as multifunctional charge inversion reagents in gas phase ion/ion reactions.","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"2014 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Celebrating the remarkable career of Prof. Catherine Fenselau","authors":"Daniele Fabris","doi":"10.1002/mas.21875","DOIUrl":"10.1002/mas.21875","url":null,"abstract":"","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 4","pages":"723-724"},"PeriodicalIF":6.6,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to \"Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples\".","authors":"","doi":"10.1002/mas.21874","DOIUrl":"10.1002/mas.21874","url":null,"abstract":"","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edwin J. Yoo, Julie S. Kim, Stephanie Stransky, Simon Spivack, Simone Sidoli
The analysis of exhaled breath condensate (EBC) demonstrates a promising avenue of minimally invasive biopsies for diagnostics. EBC is obtained by cooling exhaled air and collecting the condensation to be utilized for downstream analysis using various analytical methods. The aqueous phase of breath contains a large variety of miscible small compounds including polar electrolytes, amino acids, cytokines, chemokines, peptides, small proteins, metabolites, nucleic acids, and lipids/eicosanoids—however, these analytes are typically present at minuscule levels in EBC, posing a considerable technical challenge. Along with recent improvements in devices for breath collection, the sensitivity and resolution of liquid chromatography coupled to online mass spectrometry-based proteomics has attained subfemtomole sensitivity, vastly enhancing the quality of EBC sample analysis. As a result, proteomics analysis of EBC has been expanding the field of breath biomarker research. We present an au courant overview of the achievements in proteomics of EBC, the advancement of EBC collection devices, and the current and future applications for EBC biomarker analysis.
{"title":"Advances in proteomics methods for the analysis of exhaled breath condensate","authors":"Edwin J. Yoo, Julie S. Kim, Stephanie Stransky, Simon Spivack, Simone Sidoli","doi":"10.1002/mas.21871","DOIUrl":"10.1002/mas.21871","url":null,"abstract":"<p>The analysis of exhaled breath condensate (EBC) demonstrates a promising avenue of minimally invasive biopsies for diagnostics. EBC is obtained by cooling exhaled air and collecting the condensation to be utilized for downstream analysis using various analytical methods. The aqueous phase of breath contains a large variety of miscible small compounds including polar electrolytes, amino acids, cytokines, chemokines, peptides, small proteins, metabolites, nucleic acids, and lipids/eicosanoids—however, these analytes are typically present at minuscule levels in EBC, posing a considerable technical challenge. Along with recent improvements in devices for breath collection, the sensitivity and resolution of liquid chromatography coupled to online mass spectrometry-based proteomics has attained subfemtomole sensitivity, vastly enhancing the quality of EBC sample analysis. As a result, proteomics analysis of EBC has been expanding the field of breath biomarker research. We present an au courant overview of the achievements in proteomics of EBC, the advancement of EBC collection devices, and the current and future applications for EBC biomarker analysis.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 4","pages":"713-722"},"PeriodicalIF":6.6,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
{"title":"Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry.","authors":"Paola Rizzarelli, Melania Leanza, Marco Rapisarda","doi":"10.1002/mas.21869","DOIUrl":"https://doi.org/10.1002/mas.21869","url":null,"abstract":"<p><p>Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138443291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mass spectrometry (MS) has become a powerful technique for clinical applications with high sensitivity and specificity. Different from conventional MS diagnosis in laboratory, point-of-care (POC) analyses in clinics require mass spectrometers and analytical procedures to be friendly for novice users and applicable for on-site clinical diagnosis. The recent decades have seen the progress in the development of miniature mass spectrometers, providing a promising solution for clinical POC applications. In this review, we report recent advances of miniature mass spectrometers and their exploration in clinical applications, mainly including the rapid analysis of illegal drugs, on-site monitoring of therapeutic drugs, and detection of biomarkers. With improved analytical performance, miniature mass spectrometers are also expected to apply to more and more clinical applications. Some promising POC analyses that can be performed by miniature mass spectrometers in the future are discussed. Lastly, we also provide our perspectives on the challenges in technical development of miniature mass spectrometers for clinical POC analysis.
{"title":"Miniature mass spectrometers and their potential for clinical point-of-care analysis","authors":"Yanbing Zhai, Xinyan Fu, Wei Xu","doi":"10.1002/mas.21867","DOIUrl":"10.1002/mas.21867","url":null,"abstract":"<p>Mass spectrometry (MS) has become a powerful technique for clinical applications with high sensitivity and specificity. Different from conventional MS diagnosis in laboratory, point-of-care (POC) analyses in clinics require mass spectrometers and analytical procedures to be friendly for novice users and applicable for on-site clinical diagnosis. The recent decades have seen the progress in the development of miniature mass spectrometers, providing a promising solution for clinical POC applications. In this review, we report recent advances of miniature mass spectrometers and their exploration in clinical applications, mainly including the rapid analysis of illegal drugs, on-site monitoring of therapeutic drugs, and detection of biomarkers. With improved analytical performance, miniature mass spectrometers are also expected to apply to more and more clinical applications. Some promising POC analyses that can be performed by miniature mass spectrometers in the future are discussed. Lastly, we also provide our perspectives on the challenges in technical development of miniature mass spectrometers for clinical POC analysis.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 5","pages":"1172-1191"},"PeriodicalIF":6.9,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10408290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Direct analysis in real time (DART) represents a new generation of ionization techniques that are used to rapidly ionize small molecules under ambient environments. The combination of DART with various mass spectrometry (MS) instruments allows analyzing multiple plant materials, including traditional Chinese herbal medicines (TCHMs), under simple or no sample treatment conditions. This review discussed the DART principles, including devices, ionization mechanisms, and operation parameters. Typical spectra detected by DART-MS were exhibited and discussed. Numerous applications of DART-MS in the fields of plant material and TCHM analysis were reviewed, including compound identification, biomarker discovery, fingerprinting analysis, and quantification analysis. Besides, modifications and improvements of DART-MS, such as hyphenated application with other separation methods, laser-based desorption techniques, and online sampling configuration, were summarized as well.
{"title":"Recent application of direct analysis in real time mass spectrometry in plant materials analysis with emphasis on traditional Chinese herbal medicine","authors":"Yang Wang, Shuying Liu","doi":"10.1002/mas.21866","DOIUrl":"10.1002/mas.21866","url":null,"abstract":"<p>Direct analysis in real time (DART) represents a new generation of ionization techniques that are used to rapidly ionize small molecules under ambient environments. The combination of DART with various mass spectrometry (MS) instruments allows analyzing multiple plant materials, including traditional Chinese herbal medicines (TCHMs), under simple or no sample treatment conditions. This review discussed the DART principles, including devices, ionization mechanisms, and operation parameters. Typical spectra detected by DART-MS were exhibited and discussed. Numerous applications of DART-MS in the fields of plant material and TCHM analysis were reviewed, including compound identification, biomarker discovery, fingerprinting analysis, and quantification analysis. Besides, modifications and improvements of DART-MS, such as hyphenated application with other separation methods, laser-based desorption techniques, and online sampling configuration, were summarized as well.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 5","pages":"1150-1171"},"PeriodicalIF":6.9,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10018593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}