Aviv Amirav, Benny Neumark, Oneg Elkabets, Alex Yakovchuk
Gas chromatography-mass spectrometry (GC-MS) with Cold electron ionization (EI) is based on interfacing the GC and MS with a supersonic molecular beam (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a contact-free fly-through ion source (hence the name Cold EI). Cold EI improves all the central performance aspects of GC-MS, including: a significantly extended range of compounds that are amenable for analysis, enhanced molecular ions, highly improved sample identification, faster analysis (much faster), uniform response to all analytes, greater selectivity and higher signal to noise ratios and lower limits of detection, particularly for compounds that are difficult to analyze. GC-MS with Cold EI executes the analysis of the full range of standard EI applications and most with major improvements of various metrics. Furthermore, it significantly extends the range of compounds and applications amenable for GC-MS analysis. Accordingly, it is a highly superior replacement ion source. In this review article, we describe Cold EI and its main features, discuss its benefits, and demonstrate several of its unique applications including cannabinoids analysis, synthetic organic compounds analysis, whole blood analysis for medical diagnostics, isomer distribution analysis for improved fuels and oils, and explosives analysis.
冷电子电离(EI)气相色谱-质谱(GC-MS)是一种将气相色谱和质谱(MS)与超声分子束(SMB)结合,并在无接触飞穿离子源(因此称为冷电子电离)中对SMB中的振动冷样品化合物进行电子电离的方法。Cold EI改善了GC-MS的所有核心性能方面,包括:可用于分析的化合物范围的显著扩展,增强的分子离子,高度改进的样品鉴定,更快的分析(快得多),对所有分析物的均匀响应,更高的选择性和更高的信噪比和更低的检测限,特别是对于难以分析的化合物。GC-MS with Cold EI执行全范围的标准EI应用程序的分析,并且大多数具有各种指标的重大改进。此外,它大大扩展了适用于GC-MS分析的化合物和应用范围。因此,它是一种非常优越的替代离子源。在这篇综述文章中,我们描述了Cold EI及其主要特点,讨论了它的优点,并展示了它的几个独特的应用,包括大麻素分析,合成有机化合物分析,医学诊断的全血分析,改进燃料和油的异构体分布分析,以及爆炸物分析。
{"title":"Cold EI-The Way to Improve GC-MS and Increase Its Range of Applications.","authors":"Aviv Amirav, Benny Neumark, Oneg Elkabets, Alex Yakovchuk","doi":"10.1002/mas.21928","DOIUrl":"https://doi.org/10.1002/mas.21928","url":null,"abstract":"<p><p>Gas chromatography-mass spectrometry (GC-MS) with Cold electron ionization (EI) is based on interfacing the GC and MS with a supersonic molecular beam (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a contact-free fly-through ion source (hence the name Cold EI). Cold EI improves all the central performance aspects of GC-MS, including: a significantly extended range of compounds that are amenable for analysis, enhanced molecular ions, highly improved sample identification, faster analysis (much faster), uniform response to all analytes, greater selectivity and higher signal to noise ratios and lower limits of detection, particularly for compounds that are difficult to analyze. GC-MS with Cold EI executes the analysis of the full range of standard EI applications and most with major improvements of various metrics. Furthermore, it significantly extends the range of compounds and applications amenable for GC-MS analysis. Accordingly, it is a highly superior replacement ion source. In this review article, we describe Cold EI and its main features, discuss its benefits, and demonstrate several of its unique applications including cannabinoids analysis, synthetic organic compounds analysis, whole blood analysis for medical diagnostics, isomer distribution analysis for improved fuels and oils, and explosives analysis.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clinton Yu, Rithika Adavikolanu, Robyn M Kaake, Lan Huang
An intricate network of protein assemblies and protein-protein interactions (PPIs) underlies nearly every biological process in living systems. The organization of these cellular networks is highly dynamic and intimately tied to the genomic and proteomic landscapes of a cell. Disruptions in normal PPIs can impair cellular functions and contribute to the development of human diseases. In recent years, targeting PPIs has emerged as an attractive strategy for drug discovery. Consequently, the identification and characterization of endogenous PPIs-those occurring naturally under physiological conditions-has become crucial for unraveling the molecular mechanisms driving human pathology and for laying the groundwork for novel diagnostics and therapeutics. Owing to numerous technological advancements, mass spectrometry (MS)-based proteomics has transformed the study of PPIs at the systems-level. This review focuses on proteomics approaches that enable the characterization of physiologically relevant endogenous interactions, spanning complex-centric to structure-centric analyses. Additionally, their applications to define native PPIs in the contexts of cancer and viral infectious diseases is highlighted.
{"title":"Mass Spectrometry-Based Proteomics Technologies to Define Endogenous Protein-Protein Interactions and Their Applications to Cancer and Viral Infectious Diseases.","authors":"Clinton Yu, Rithika Adavikolanu, Robyn M Kaake, Lan Huang","doi":"10.1002/mas.21926","DOIUrl":"10.1002/mas.21926","url":null,"abstract":"<p><p>An intricate network of protein assemblies and protein-protein interactions (PPIs) underlies nearly every biological process in living systems. The organization of these cellular networks is highly dynamic and intimately tied to the genomic and proteomic landscapes of a cell. Disruptions in normal PPIs can impair cellular functions and contribute to the development of human diseases. In recent years, targeting PPIs has emerged as an attractive strategy for drug discovery. Consequently, the identification and characterization of endogenous PPIs-those occurring naturally under physiological conditions-has become crucial for unraveling the molecular mechanisms driving human pathology and for laying the groundwork for novel diagnostics and therapeutics. Owing to numerous technological advancements, mass spectrometry (MS)-based proteomics has transformed the study of PPIs at the systems-level. This review focuses on proteomics approaches that enable the characterization of physiologically relevant endogenous interactions, spanning complex-centric to structure-centric analyses. Additionally, their applications to define native PPIs in the contexts of cancer and viral infectious diseases is highlighted.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the increasing FDA approvals of glycoprotein-based biotherapeutics including monoclonal antibodies, cytokines, and enzyme treatments, the significance of glycosylation in modulating drug efficacy and safety becomes central. This review highlights the crucial role of mass spectrometry (MS) in elucidating the glycome of biotherapeutics that feature N- and O-glycosylation, directly addressing the challenges posed by glycosylation complexity and heterogeneity. We have detailed the advancements and application of MS technologies including MALDI-TOF MS, LC-MS, and tandem MS in the precise characterization of glycoprotein therapeutics. Emphasizing MS-based strategies for detecting immunogenic glycans and ensuring batch-to-batch consistency, this review highlights targeted approaches for glycoprotein, glycopeptide, and glycan analysis tailored to meet the stringent analytical and regulatory demands of biopharmaceutical development.
随着越来越多基于糖蛋白的生物治疗药物(包括单克隆抗体、细胞因子和酶疗法)获得美国食品与药物管理局(FDA)的批准,糖基化在调节药物疗效和安全性方面的意义变得至关重要。本综述强调了质谱(MS)在阐明以 N- 和 O- 糖基化为特征的生物治疗药物的糖基化结果中的关键作用,直接解决了糖基化复杂性和异质性带来的挑战。我们详细介绍了 MS 技术(包括 MALDI-TOF MS、LC-MS 和串联 MS)在精确表征糖蛋白治疗药物方面的进步和应用。本综述强调了基于 MS 的免疫原性聚糖检测策略,并确保批次间的一致性,重点介绍了糖蛋白、糖肽和聚糖分析的针对性方法,以满足生物制药开发过程中严格的分析和监管要求。
{"title":"MS-Based Glycome Characterization of Biotherapeutics With N- and O-Glycosylation.","authors":"Myung Jin Oh, Youngsuk Seo, Nari Seo, Hyun Joo An","doi":"10.1002/mas.21925","DOIUrl":"https://doi.org/10.1002/mas.21925","url":null,"abstract":"<p><p>With the increasing FDA approvals of glycoprotein-based biotherapeutics including monoclonal antibodies, cytokines, and enzyme treatments, the significance of glycosylation in modulating drug efficacy and safety becomes central. This review highlights the crucial role of mass spectrometry (MS) in elucidating the glycome of biotherapeutics that feature N- and O-glycosylation, directly addressing the challenges posed by glycosylation complexity and heterogeneity. We have detailed the advancements and application of MS technologies including MALDI-TOF MS, LC-MS, and tandem MS in the precise characterization of glycoprotein therapeutics. Emphasizing MS-based strategies for detecting immunogenic glycans and ensuring batch-to-batch consistency, this review highlights targeted approaches for glycoprotein, glycopeptide, and glycan analysis tailored to meet the stringent analytical and regulatory demands of biopharmaceutical development.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS. Current top-down MS workflows have incorporated automated, on-line HPLC workflows to enable rapid desalting of nucleic acid samples for facile mass analysis without complication from adduction. Furthermore, optimization of MS/MS parameters utilizing collision, electron, or photon-based activation methods have enabled effective bond cleavage throughout the phosphodiester backbone while limiting secondary fragmentation, allowing characterization of progressively larger (~100 nt) nucleic acids and localization of covalent modifications. Development of software applications to perform automated identification of fragment ions has accelerated the broader adoption of mass spectrometry for analysis of nucleic acids. This review focuses on progress in tandem mass spectrometry for characterization of nucleic acids with particular emphasis on the software tools that have proven critical for advancing the field.
{"title":"Progress in Tandem Mass Spectrometry Data Analysis for Nucleic Acids.","authors":"Michael B Lanzillotti, Jennifer S Brodbelt","doi":"10.1002/mas.21923","DOIUrl":"10.1002/mas.21923","url":null,"abstract":"<p><p>Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS. Current top-down MS workflows have incorporated automated, on-line HPLC workflows to enable rapid desalting of nucleic acid samples for facile mass analysis without complication from adduction. Furthermore, optimization of MS/MS parameters utilizing collision, electron, or photon-based activation methods have enabled effective bond cleavage throughout the phosphodiester backbone while limiting secondary fragmentation, allowing characterization of progressively larger (~100 nt) nucleic acids and localization of covalent modifications. Development of software applications to perform automated identification of fragment ions has accelerated the broader adoption of mass spectrometry for analysis of nucleic acids. This review focuses on progress in tandem mass spectrometry for characterization of nucleic acids with particular emphasis on the software tools that have proven critical for advancing the field.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}