This review describes the development of evolutionary studies of sex based on the volvocine lineage of green algae, which was facilitated by whole-genome analyses of both model and non-model species. Volvocine algae, which include Chlamydomonas and Volvox species, have long been considered a model group for experimental studies investigating the evolution of sex. Thus, whole-genomic information on the sex-determining regions of volvocine algal sex chromosomes has been sought to elucidate the molecular genetic basis of sex evolution. By 2010, whole genomes were published for two model species in this group, Chlamydomonas reinhardtii and Volvox carteri. Recent improvements in sequencing technology, particularly next-generation sequencing, allowed our studies to obtain complete genomes for non-model, but evolutionary important, volvocine algal species. These genomes have provided critical details about sex-determining regions that will contribute to our understanding of the diversity and evolution of sex.
{"title":"Whole-genome sequencing analysis of volvocine green algae reveals the molecular genetic basis for the diversity and evolution of sex.","authors":"Hisayoshi Nozaki, Kayoko Yamamoto, Kohei Takahashi","doi":"10.2183/pjab.100.029","DOIUrl":"10.2183/pjab.100.029","url":null,"abstract":"<p><p>This review describes the development of evolutionary studies of sex based on the volvocine lineage of green algae, which was facilitated by whole-genome analyses of both model and non-model species. Volvocine algae, which include Chlamydomonas and Volvox species, have long been considered a model group for experimental studies investigating the evolution of sex. Thus, whole-genomic information on the sex-determining regions of volvocine algal sex chromosomes has been sought to elucidate the molecular genetic basis of sex evolution. By 2010, whole genomes were published for two model species in this group, Chlamydomonas reinhardtii and Volvox carteri. Recent improvements in sequencing technology, particularly next-generation sequencing, allowed our studies to obtain complete genomes for non-model, but evolutionary important, volvocine algal species. These genomes have provided critical details about sex-determining regions that will contribute to our understanding of the diversity and evolution of sex.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 8","pages":"465-475"},"PeriodicalIF":4.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535005/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The current understanding of the mechanism of core-collapse supernovae (CCSNe), one of the most energetic events in the universe associated with the death of massive stars and the main formation channel of compact objects such as neutron stars and black holes, is reviewed for broad readers from different disciplines of science who may not be familiar with the object. Therefore, we emphasize the physical aspects than the results of individual model simulations, although large-scale high-fidelity simulations have played the most important roles in the progress we have witnessed in the past few decades. It is now believed that neutrinos are the most important agent in producing the commonest type of CCSNe. The so-called neutrino-heating mechanism will be the focus of this review and its crucial ingredients in micro- and macrophysics and in numerics will be explained one by one. We will also try to elucidate the remaining issues.
{"title":"Physical mechanism of core-collapse supernovae that neutrinos drive.","authors":"Shoichi Yamada, Hiroki Nagakura, Ryuichiro Akaho, Akira Harada, Shun Furusawa, Wakana Iwakami, Hirotada Okawa, Hideo Matsufuru, Kohsuke Sumiyoshi","doi":"10.2183/pjab.100.015","DOIUrl":"10.2183/pjab.100.015","url":null,"abstract":"<p><p>The current understanding of the mechanism of core-collapse supernovae (CCSNe), one of the most energetic events in the universe associated with the death of massive stars and the main formation channel of compact objects such as neutron stars and black holes, is reviewed for broad readers from different disciplines of science who may not be familiar with the object. Therefore, we emphasize the physical aspects than the results of individual model simulations, although large-scale high-fidelity simulations have played the most important roles in the progress we have witnessed in the past few decades. It is now believed that neutrinos are the most important agent in producing the commonest type of CCSNe. The so-called neutrino-heating mechanism will be the focus of this review and its crucial ingredients in micro- and macrophysics and in numerics will be explained one by one. We will also try to elucidate the remaining issues.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 3","pages":"190-233"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11105976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In 1932, Mizushima and Higasi reported the dependence of the dipole moments of 1,2-dichloroethane on both temperature and solvent in the Proceedings of the Imperial Academy, Japan. This report was followed by their first proposal of the existence of conformers that exchanged by internal rotation about a C-C single bond based on experimental data. Their monumental work marked the beginning of the essential concept of conformation in modern stereochemistry. Their proposal was later confirmed by the direct observation of the anti and gauche conformers of 1,2-dichloroethane by Raman spectroscopy, and further supported by other experimental and theoretical methods. The relative stabilities of the anti and gauche conformers of 1,2-dichloroethane and other 1,2-disubstituted ethanes were discussed in terms of steric, electrostatic, and stereoelectronic effects based on analysis of calculated data. Those studies influenced the development of subsequent research in organic chemistry, such as the conformational analysis of cyclohexane derivatives and the isolation of chiral gauche conformers.
{"title":"Discovery of internal rotation and conformers of 1,2-dichloroethane: the dawn of the concept of conformation.","authors":"Shinji Toyota","doi":"10.2183/pjab.100.003","DOIUrl":"10.2183/pjab.100.003","url":null,"abstract":"<p><p>In 1932, Mizushima and Higasi reported the dependence of the dipole moments of 1,2-dichloroethane on both temperature and solvent in the Proceedings of the Imperial Academy, Japan. This report was followed by their first proposal of the existence of conformers that exchanged by internal rotation about a C-C single bond based on experimental data. Their monumental work marked the beginning of the essential concept of conformation in modern stereochemistry. Their proposal was later confirmed by the direct observation of the anti and gauche conformers of 1,2-dichloroethane by Raman spectroscopy, and further supported by other experimental and theoretical methods. The relative stabilities of the anti and gauche conformers of 1,2-dichloroethane and other 1,2-disubstituted ethanes were discussed in terms of steric, electrostatic, and stereoelectronic effects based on analysis of calculated data. Those studies influenced the development of subsequent research in organic chemistry, such as the conformational analysis of cyclohexane derivatives and the isolation of chiral gauche conformers.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 2","pages":"101-113"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catalase, a heme-containing antioxidant enzyme, was once considered essential for human survival. It is widely distributed in the human body and is particularly abundant in red blood cells. The term "acatalasemia" first appeared in the Proceedings of the Japan Academy in 1951, drawing global attention to families genetically deficient in catalase. This deficiency not only altered the significance of catalase but also played a pioneering role in human genetics during an era of limited genetic methodology. In this article, we examine the discovery of acatalasemia by an otolaryngologist during surgery on an 11-year-old girl. This remarkable journey led to epoch-making research spanning biochemistry, hematology, and human genetics.
{"title":"The discovery of acatalasemia (lack of catalase in the blood) and its significance in human genetics.","authors":"Mizuo Ando, Kunihiro Fukushima, Kazunori Nishizaki","doi":"10.2183/pjab.100.024","DOIUrl":"10.2183/pjab.100.024","url":null,"abstract":"<p><p>Catalase, a heme-containing antioxidant enzyme, was once considered essential for human survival. It is widely distributed in the human body and is particularly abundant in red blood cells. The term \"acatalasemia\" first appeared in the Proceedings of the Japan Academy in 1951, drawing global attention to families genetically deficient in catalase. This deficiency not only altered the significance of catalase but also played a pioneering role in human genetics during an era of limited genetic methodology. In this article, we examine the discovery of acatalasemia by an otolaryngologist during surgery on an 11-year-old girl. This remarkable journey led to epoch-making research spanning biochemistry, hematology, and human genetics.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 7","pages":"353-367"},"PeriodicalIF":4.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Shibata is the ancestor of the research on anthocyanins in Japan and proposed metal complex theory against the pH theory by R. Willstätter. Shibata's successors, S. Hattori and K. Hayashi, made efforts to clarify blue flower coloration by metal complexation and found commelinin, a self-assembled supramolecular metal complex pigment, in blue dayflower, Tsuyukusa. The author introduces two key reports on blue flower coloration published in the Proceedings of the Japan Academy and describes the subsequent development of the study.
K.柴田是日本花青素研究的鼻祖,他针对 R. Willstätter 的 pH 理论提出了金属络合物理论。柴田的继任者服部 S. 和林 K. 致力于通过金属络合作用阐明蓝花着色,并在蓝色萱草中发现了一种自组装超分子金属络合色素--彗星素。作者介绍了发表在《日本科学院院刊》上的两篇关于蓝花着色的重要报告,并介绍了研究的后续发展。
{"title":"Tracing the genealogy of research on the mechanism of blue flower coloration by anthocyanin based on Keita Shibata's work.","authors":"Kumi Yoshida","doi":"10.2183/pjab.100.028","DOIUrl":"10.2183/pjab.100.028","url":null,"abstract":"<p><p>K. Shibata is the ancestor of the research on anthocyanins in Japan and proposed metal complex theory against the pH theory by R. Willstätter. Shibata's successors, S. Hattori and K. Hayashi, made efforts to clarify blue flower coloration by metal complexation and found commelinin, a self-assembled supramolecular metal complex pigment, in blue dayflower, Tsuyukusa. The author introduces two key reports on blue flower coloration published in the Proceedings of the Japan Academy and describes the subsequent development of the study.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 8","pages":"446-464"},"PeriodicalIF":4.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the clinical success of immune checkpoint inhibitors (ICIs), cancer immunotherapy has become an important pillar of cancer treatment in various types of cancer. However, more than half of patients fail to respond to ICIs, even in combination, uncovering a limited window of clinical responses. Therefore, it is essential to develop more effective cancer immunotherapies and to define biomarkers for stratifying responders and nonresponders by exploring the immunological landscape in the tumor microenvironment (TME). It has become clear that differences in immune responses in the TME determine the clinical efficacy of cancer immunotherapies. Additionally, gene alterations in cancer cells contribute to the development of the immunological landscape, particularly immune suppression in the TME. Therefore, integrated analyses of immunological and genomic assays are key for understanding diverse immune suppressive mechanisms in the TME. Developing novel strategies to control immune suppression in the TME from the perspective of immunology and the cancer genome is crucial for effective cancer immunotherapy (immune-genome precision medicine).
{"title":"Establishment of immune suppression by cancer cells in the tumor microenvironment.","authors":"Hiroyoshi Nishikawa","doi":"10.2183/pjab.100.005","DOIUrl":"10.2183/pjab.100.005","url":null,"abstract":"<p><p>With the clinical success of immune checkpoint inhibitors (ICIs), cancer immunotherapy has become an important pillar of cancer treatment in various types of cancer. However, more than half of patients fail to respond to ICIs, even in combination, uncovering a limited window of clinical responses. Therefore, it is essential to develop more effective cancer immunotherapies and to define biomarkers for stratifying responders and nonresponders by exploring the immunological landscape in the tumor microenvironment (TME). It has become clear that differences in immune responses in the TME determine the clinical efficacy of cancer immunotherapies. Additionally, gene alterations in cancer cells contribute to the development of the immunological landscape, particularly immune suppression in the TME. Therefore, integrated analyses of immunological and genomic assays are key for understanding diverse immune suppressive mechanisms in the TME. Developing novel strategies to control immune suppression in the TME from the perspective of immunology and the cancer genome is crucial for effective cancer immunotherapy (immune-genome precision medicine).</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 2","pages":"114-122"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
From the biota beneath the sea ice in Lake Saroma, which is adjacent to Sea of Okhotsk, a diatom culture of Saroma 16 was isolated. Strutted processes and a labiate process in Saroma 16 were characteristic of those in Thalassiosira nordenskioeldii. Similarity search analysis showed that the 826-bp rbcL-3P region sequence of this strain was 100% identical to multiple sequences registered as T. nordenskioeldii in a public database. The 4305-bp PCR-amplified mitochondrial cytochrome c oxidase subunit I (COI) gene (COI)-5P region of Saroma 16 included a 1060-bp open reading frame (ORF), which was interrupted by 934-bp and 2311-bp introns that included frame-shifted ORFs encoding reverse-transcriptase (RTase)-like proteins. Previous reports showed that a strain of the same species, CNS00052, originating from the East China Sea included no introns in the COI, whereas North Atlantic Ocean strains of the same species, such as CCMP992, CCMP993, and CCMP997, included a 2.3-kb intron in the same position as Saroma 16.
{"title":"Cytochrome c oxidase subunit I gene in Thalassiosira nordenskioeldii strains inhabiting in cold and warm sea waters.","authors":"Yoshie Uchida, Hidenobu Uchida, Takeshi Sato, Yuko Nishimoto, Koichi Tsutsumi, Takao Oi, Mitsutaka Taniguchi, Kazuhito Inoue, Yoshihiro Suzuki","doi":"10.2183/pjab.100.010","DOIUrl":"10.2183/pjab.100.010","url":null,"abstract":"<p><p>From the biota beneath the sea ice in Lake Saroma, which is adjacent to Sea of Okhotsk, a diatom culture of Saroma 16 was isolated. Strutted processes and a labiate process in Saroma 16 were characteristic of those in Thalassiosira nordenskioeldii. Similarity search analysis showed that the 826-bp rbcL-3P region sequence of this strain was 100% identical to multiple sequences registered as T. nordenskioeldii in a public database. The 4305-bp PCR-amplified mitochondrial cytochrome c oxidase subunit I (COI) gene (COI)-5P region of Saroma 16 included a 1060-bp open reading frame (ORF), which was interrupted by 934-bp and 2311-bp introns that included frame-shifted ORFs encoding reverse-transcriptase (RTase)-like proteins. Previous reports showed that a strain of the same species, CNS00052, originating from the East China Sea included no introns in the COI, whereas North Atlantic Ocean strains of the same species, such as CCMP992, CCMP993, and CCMP997, included a 2.3-kb intron in the same position as Saroma 16.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 2","pages":"140-148"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multifunctional molecules involved in tumor progression and metastasis have been identified as valuable targets for immunotherapy. Among these, chondroitin sulfate proteoglycan 4 (CSPG4), a significant tumor cell membrane-bound proteoglycan, has emerged as a promising target, especially in light of advances in chimeric antigen receptor (CAR) T-cell therapy. The profound bioactivity of CSPG4 and its role in pivotal processes such as tumor proliferation, migration, and neoangiogenesis underline its therapeutic potential. We reviewed the molecular intricacies of CSPG4, its functional attributes within tumor cells, and the latest clinical-translational advances targeting it. Strategies such as blocking monoclonal antibodies, conjugate therapies, bispecific antibodies, small-molecule inhibitors, CAR T-cell therapies, trispecific killer engagers, and ribonucleic acid vaccines against CSPG4 were assessed. CSPG4 overexpression in diverse tumors and its correlation with adverse prognostic outcomes emphasize its significance in cancer biology. These findings suggest that targeting CSPG4 offers a promising avenue for future cancer therapy, with potential synergistic effects when combined with existing treatments.
{"title":"Chondroitin sulfate proteoglycan 4: An attractive target for antibody-based immunotherapy.","authors":"Tomohiro Kurokawa, Kohzoh Imai","doi":"10.2183/pjab.100.019","DOIUrl":"10.2183/pjab.100.019","url":null,"abstract":"<p><p>Multifunctional molecules involved in tumor progression and metastasis have been identified as valuable targets for immunotherapy. Among these, chondroitin sulfate proteoglycan 4 (CSPG4), a significant tumor cell membrane-bound proteoglycan, has emerged as a promising target, especially in light of advances in chimeric antigen receptor (CAR) T-cell therapy. The profound bioactivity of CSPG4 and its role in pivotal processes such as tumor proliferation, migration, and neoangiogenesis underline its therapeutic potential. We reviewed the molecular intricacies of CSPG4, its functional attributes within tumor cells, and the latest clinical-translational advances targeting it. Strategies such as blocking monoclonal antibodies, conjugate therapies, bispecific antibodies, small-molecule inhibitors, CAR T-cell therapies, trispecific killer engagers, and ribonucleic acid vaccines against CSPG4 were assessed. CSPG4 overexpression in diverse tumors and its correlation with adverse prognostic outcomes emphasize its significance in cancer biology. These findings suggest that targeting CSPG4 offers a promising avenue for future cancer therapy, with potential synergistic effects when combined with existing treatments.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 5","pages":"293-308"},"PeriodicalIF":4.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review seeks to highlight and celebrate Professor Tomizo Yoshida's famous work on "Establishment and characterization of a rat ascites sarcoma, later named "Yoshida ascites sarcoma". Considering the tremendous contribution of this ascites tumor system to the subsequent promotion of research on cancer biology and cancer chemotherapy, his paper should be regarded as a monumental one in the cancer field. The research was carried out during 1943 and the results were submitted to this Journal in October 1944, when Japan was approaching a debilitating defeat in World War II in August 1945. In 1947, when "Research on Ascites sarcoma" was first comprehensively introduced to researchers in a special lecture at the Annual Meeting of the Japanese Society of Pathology, the whole audience was deeply impressed and was encouraged to resume scientific activity in Japan.
{"title":"Studies on \"Ascites sarcoma\".","authors":"Tomoyuki Kitagawa","doi":"10.2183/pjab.100.021","DOIUrl":"10.2183/pjab.100.021","url":null,"abstract":"<p><p>This review seeks to highlight and celebrate Professor Tomizo Yoshida's famous work on \"Establishment and characterization of a rat ascites sarcoma, later named \"Yoshida ascites sarcoma\". Considering the tremendous contribution of this ascites tumor system to the subsequent promotion of research on cancer biology and cancer chemotherapy, his paper should be regarded as a monumental one in the cancer field. The research was carried out during 1943 and the results were submitted to this Journal in October 1944, when Japan was approaching a debilitating defeat in World War II in August 1945. In 1947, when \"Research on Ascites sarcoma\" was first comprehensively introduced to researchers in a special lecture at the Annual Meeting of the Japanese Society of Pathology, the whole audience was deeply impressed and was encouraged to resume scientific activity in Japan.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 6","pages":"309-319"},"PeriodicalIF":4.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141311527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In 1935, Shiro Akabori began research on the preparation of taka-amylase A with a purity suitable for chemical research, with the intention of elucidating the chemical nature of the enzyme. He succeeded in developing a method to efficiently obtain crystallized taka-amylase A from Aspergillus oryzae. Using crystallized taka-amylase A as the starting material, a series of studies were conducted to determine its amino acid composition and sequence, sugar chain structure, and three-dimensional structure. Based on these results, the molecular structure and catalytic mechanism of taka-amylase A were elucidated. The scientific achievements from research on taka-amylase A significantly enhanced Japan's capabilities in protein research, represented by the fact that taka-amylase A was the first amylase in the world for which both chemical and crystallographic structures were elucidated.
1935 年,赤堀史郎开始研究如何制备纯度适合化学研究的高淀粉酶 A,目的是阐明这种酶的化学本质。他成功地开发出一种从黑曲霉中高效获取结晶高淀粉酶 A 的方法。以结晶的高淀粉酶 A 为起始材料,进行了一系列研究,以确定其氨基酸组成和序列、糖链结构和三维结构。在此基础上,阐明了高卡淀粉酶 A 的分子结构和催化机理。高淀粉酶 A 是世界上第一个同时阐明了化学结构和晶体结构的淀粉酶,由此可见,高淀粉酶 A 研究取得的科研成果大大提高了日本在蛋白质研究方面的能力。
{"title":"Crystals of taka-amylase A, a cornerstone of protein chemistry in Japan.","authors":"Saburo Aimoto, Naoto Minamino, Takeshi Ishimizu, Masami Kusunoki","doi":"10.2183/pjab.100.027","DOIUrl":"10.2183/pjab.100.027","url":null,"abstract":"<p><p>In 1935, Shiro Akabori began research on the preparation of taka-amylase A with a purity suitable for chemical research, with the intention of elucidating the chemical nature of the enzyme. He succeeded in developing a method to efficiently obtain crystallized taka-amylase A from Aspergillus oryzae. Using crystallized taka-amylase A as the starting material, a series of studies were conducted to determine its amino acid composition and sequence, sugar chain structure, and three-dimensional structure. Based on these results, the molecular structure and catalytic mechanism of taka-amylase A were elucidated. The scientific achievements from research on taka-amylase A significantly enhanced Japan's capabilities in protein research, represented by the fact that taka-amylase A was the first amylase in the world for which both chemical and crystallographic structures were elucidated.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"100 8","pages":"429-445"},"PeriodicalIF":4.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}