Pub Date : 2016-09-30DOI: 10.9714/PSAC.2016.18.3.001
W. Jo
{"title":"IBAD-MgO technology for coated conductors","authors":"W. Jo","doi":"10.9714/PSAC.2016.18.3.001","DOIUrl":"https://doi.org/10.9714/PSAC.2016.18.3.001","url":null,"abstract":"","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"1-5"},"PeriodicalIF":0.3,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71376313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-30DOI: 10.9714/PSAC.2016.18.3.006
Z. Bautista, H. Shin, Jae-Hun Lee, Hunju Lee, S. Moon
The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their I c behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of I c in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.
{"title":"Influence of brass laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes","authors":"Z. Bautista, H. Shin, Jae-Hun Lee, Hunju Lee, S. Moon","doi":"10.9714/PSAC.2016.18.3.006","DOIUrl":"https://doi.org/10.9714/PSAC.2016.18.3.006","url":null,"abstract":"The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their I c behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of I c in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"6-9"},"PeriodicalIF":0.3,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71376318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-30DOI: 10.9714/PSAC.2016.18.3.021
Junseong Kim, W. Lee, Jinsub Kim, Seunghyun Song, S. Nam, Haeryong Jeon, Geonwoo Baek, T. Ko
Recently, production technique and property of the High-Temperature Superconductor (HTS) tape have been improved. Thus, the study on applying an HTS magnet to the high magnetic field application is rapidly increased. A Nuclear Magnetic Resonance (NMR) spectrometer requires high magnitude and homogeneous of central magnetic field. However, the HTS magnet has fabrication errors because shape of HTS is tape and HTS magnet is manufactured by winding HTS tape to the bobbin. The fabrication errors are winding error, bobbin diameter error, spacer thickness error and so on. The winding error occurs when HTS tape is departed from the arranged position on the bobbin. The bobbin diameter and spacer thickness error occur since the diameter of bobbin and spacer are inaccurate. These errors lead magnitude and homogeneity of central magnetic field to be different from its ideal design. The purpose of this paper is to investigate the effect of winding error, bobbin diameter error and spacer thickness error on the central field and field homogeneity of HTS magnet using the virtual NMR signals in MATLAB simulation.
{"title":"A simulation study on the variation of virtual NMR signals by winding, bobbin, spacer error of HTS magnet","authors":"Junseong Kim, W. Lee, Jinsub Kim, Seunghyun Song, S. Nam, Haeryong Jeon, Geonwoo Baek, T. Ko","doi":"10.9714/PSAC.2016.18.3.021","DOIUrl":"https://doi.org/10.9714/PSAC.2016.18.3.021","url":null,"abstract":"Recently, production technique and property of the High-Temperature Superconductor (HTS) tape have been improved. Thus, the study on applying an HTS magnet to the high magnetic field application is rapidly increased. A Nuclear Magnetic Resonance (NMR) spectrometer requires high magnitude and homogeneous of central magnetic field. However, the HTS magnet has fabrication errors because shape of HTS is tape and HTS magnet is manufactured by winding HTS tape to the bobbin. The fabrication errors are winding error, bobbin diameter error, spacer thickness error and so on. The winding error occurs when HTS tape is departed from the arranged position on the bobbin. The bobbin diameter and spacer thickness error occur since the diameter of bobbin and spacer are inaccurate. These errors lead magnitude and homogeneity of central magnetic field to be different from its ideal design. The purpose of this paper is to investigate the effect of winding error, bobbin diameter error and spacer thickness error on the central field and field homogeneity of HTS magnet using the virtual NMR signals in MATLAB simulation.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"21-24"},"PeriodicalIF":0.3,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71376347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-30DOI: 10.9714/PSAC.2016.18.3.030
Y. Hong, J. Ko, Hyobong Kim, Seongje Park
An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler’s cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, drop, shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space.
{"title":"Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler","authors":"Y. Hong, J. Ko, Hyobong Kim, Seongje Park","doi":"10.9714/PSAC.2016.18.3.030","DOIUrl":"https://doi.org/10.9714/PSAC.2016.18.3.030","url":null,"abstract":"An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler’s cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, drop, shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"30-34"},"PeriodicalIF":0.3,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71376358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-01DOI: 10.9714/PSAC.2016.18.3.025
Jinsub Kim, S. An, T. Ko, Y. Chu
{"title":"Numerical estimation on balance coefficients of central difference averaging method for quench detection of the KSTAR PF coils","authors":"Jinsub Kim, S. An, T. Ko, Y. Chu","doi":"10.9714/PSAC.2016.18.3.025","DOIUrl":"https://doi.org/10.9714/PSAC.2016.18.3.025","url":null,"abstract":"","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"25-29"},"PeriodicalIF":0.3,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71376352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-30DOI: 10.9714/PSAC.2016.18.2.001
Gracia Kim, W. Jo, D. Nam, H. Cheong, S. H. Moon
Abstract To observe the superconducting current and structural properties of high critical temperature ( T c ) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near- T c , respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.
{"title":"Local transport properties of coated conductors by laser-scan imaging methods","authors":"Gracia Kim, W. Jo, D. Nam, H. Cheong, S. H. Moon","doi":"10.9714/PSAC.2016.18.2.001","DOIUrl":"https://doi.org/10.9714/PSAC.2016.18.2.001","url":null,"abstract":"Abstract To observe the superconducting current and structural properties of high critical temperature ( T c ) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near- T c , respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"1-4"},"PeriodicalIF":0.3,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71376224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-30DOI: 10.9714/PSAC.2016.18.2.005
T. Hwang, D. Kim
We present an experimental investigation of the superconducting transition temperatures, T c , of superconductor/ferromagnet bilayers with varying the thickness of ferromagnetic layer. FeN was used for the ferromagnetic (F) layer, and NbN and Nb were used for the superconducting (S) layer. The results were obtained using three different-thickness series of the S layer of the S/F bilayers: NbN/FeN with NbN thickness, d NbN ≈ 9.3 nm and d NbN ≈ 10 nm, and Nb/FeN with Nb thickness d Nb ≈ 15 nm. T c drops sharply with increasing thickness of the ferromagnetic layer, d FeN , before maximal suppression of superconductivity at d FeN ≈6.3 nm for d NbN ≈10 nm and at d FeN ≈2.5 nm for d Nb ≈ 15 nm, respectively. After shallow minimum of T c , a weak T c oscillation was observed in NbN/FeN bilayers, but it was hardly observable in Nb/FeN bilayers.
{"title":"Superconducting critical temperature in FeN-based superconductor/ferromagnet bilayers","authors":"T. Hwang, D. Kim","doi":"10.9714/PSAC.2016.18.2.005","DOIUrl":"https://doi.org/10.9714/PSAC.2016.18.2.005","url":null,"abstract":"We present an experimental investigation of the superconducting transition temperatures, T c , of superconductor/ferromagnet bilayers with varying the thickness of ferromagnetic layer. FeN was used for the ferromagnetic (F) layer, and NbN and Nb were used for the superconducting (S) layer. The results were obtained using three different-thickness series of the S layer of the S/F bilayers: NbN/FeN with NbN thickness, d NbN ≈ 9.3 nm and d NbN ≈ 10 nm, and Nb/FeN with Nb thickness d Nb ≈ 15 nm. T c drops sharply with increasing thickness of the ferromagnetic layer, d FeN , before maximal suppression of superconductivity at d FeN ≈6.3 nm for d NbN ≈10 nm and at d FeN ≈2.5 nm for d Nb ≈ 15 nm, respectively. After shallow minimum of T c , a weak T c oscillation was observed in NbN/FeN bilayers, but it was hardly observable in Nb/FeN bilayers.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"5-7"},"PeriodicalIF":0.3,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71376228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High charge state electron cyclotron resonance (ECR) ion source is important on the performance of heavy ion accelerators. In this paper, a low temperature superconductor (LTS) was used to make a hexapole coil for an 18-GHz ECR ion source. Several hexapole structures, including racetrack, graded racetrack, and saddle were implemented and analyzed for the hexapole-in-solenoid ECR ion source system. Under the appropriate radial confinement field, the smaller outer radius of hexapole can be better for the solenoid design. Saddle hexapole was selected by comparing the wire length, maximum outer radius of the hexapole, the Lorentz force at the end part of the hexapole and the maximum magnetic field in the coil. Based on saddle hexapole, a new design for hexapoles, the snake hexapole, was developed in this paper. By comparative analysis of the Lorentz force at the end part of the saddle and snake hexapoles, the snake hexapole is much better in the ECR ion source system. The suggested design for the ECR ion source with the snake hexapole is presented in this paper.
{"title":"A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators","authors":"Shaoqing Wei, Zhan Zhang, Sangjin Lee, Sukjin Choi","doi":"10.9714/PSAC.2016.18.2.025","DOIUrl":"https://doi.org/10.9714/PSAC.2016.18.2.025","url":null,"abstract":"High charge state electron cyclotron resonance (ECR) ion source is important on the performance of heavy ion accelerators. In this paper, a low temperature superconductor (LTS) was used to make a hexapole coil for an 18-GHz ECR ion source. Several hexapole structures, including racetrack, graded racetrack, and saddle were implemented and analyzed for the hexapole-in-solenoid ECR ion source system. Under the appropriate radial confinement field, the smaller outer radius of hexapole can be better for the solenoid design. Saddle hexapole was selected by comparing the wire length, maximum outer radius of the hexapole, the Lorentz force at the end part of the hexapole and the maximum magnetic field in the coil. Based on saddle hexapole, a new design for hexapoles, the snake hexapole, was developed in this paper. By comparative analysis of the Lorentz force at the end part of the saddle and snake hexapoles, the snake hexapole is much better in the ECR ion source system. The suggested design for the ECR ion source with the snake hexapole is presented in this paper.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"25-29"},"PeriodicalIF":0.3,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71376273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-30DOI: 10.9714/PSAC.2016.18.2.021
Zhan Zhang, Shaoqing Wei, Sangjin Lee, H. Jo, Do Gyun Kim, Jongwon Kim
In recent years, the iron-dominated high-temperature superconductor (HTS) quadrupole magnets are being developed for heavy ion accelerators. Field analyses for iron-dominated quadrupole magnets were based on the normal-conducting (NC) quadrupole magnet early in the development for accelerators. Some conclusions are still in use today. However, the magnetic field of iron-dominated HTS quadrupole magnets cannot fully follow these conclusions. This study established an HTS quadrupole magnet model and an NC quadrupole magnet model, respectively. The harmonic characteristics of two magnets were analyzed and compared. According to the comparison, the conventional iron-dominated quadrupole magnets can be designed for maximum field gradient; the HTS quadrupole magnet, however, should be considered with varying field gradient. Finally, the HTS quadrupole magnet was designed for the changing field gradient. The field quality of the design was improved comparing with the result of the previous study. The new design for the HTS quadrupole magnet has been suggested.
{"title":"Harmonic analysis and field quality improvement of an HTS quadrupole magnet for a heavy ion accelerator","authors":"Zhan Zhang, Shaoqing Wei, Sangjin Lee, H. Jo, Do Gyun Kim, Jongwon Kim","doi":"10.9714/PSAC.2016.18.2.021","DOIUrl":"https://doi.org/10.9714/PSAC.2016.18.2.021","url":null,"abstract":"In recent years, the iron-dominated high-temperature superconductor (HTS) quadrupole magnets are being developed for heavy ion accelerators. Field analyses for iron-dominated quadrupole magnets were based on the normal-conducting (NC) quadrupole magnet early in the development for accelerators. Some conclusions are still in use today. However, the magnetic field of iron-dominated HTS quadrupole magnets cannot fully follow these conclusions. This study established an HTS quadrupole magnet model and an NC quadrupole magnet model, respectively. The harmonic characteristics of two magnets were analyzed and compared. According to the comparison, the conventional iron-dominated quadrupole magnets can be designed for maximum field gradient; the HTS quadrupole magnet, however, should be considered with varying field gradient. Finally, the HTS quadrupole magnet was designed for the changing field gradient. The field quality of the design was improved comparing with the result of the previous study. The new design for the HTS quadrupole magnet has been suggested.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"75 1","pages":"21-24"},"PeriodicalIF":0.3,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71376268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-30DOI: 10.9714/PSAC.2016.18.2.030
Li Huang, Sangjin Lee
For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace’s equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.
{"title":"Study on magnetic field mapping within cylindrical center volume of general magnet","authors":"Li Huang, Sangjin Lee","doi":"10.9714/PSAC.2016.18.2.030","DOIUrl":"https://doi.org/10.9714/PSAC.2016.18.2.030","url":null,"abstract":"For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace’s equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"30-36"},"PeriodicalIF":0.3,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71376278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}