首页 > 最新文献

Protein & Cell最新文献

英文 中文
METTL9-catalyzed histidine methylation of S100A9 suppresses the anti-Staphylococcus aureus activity of neutrophils. METTL9 催化的 S100A9 组氨酸甲基化抑制了中性粒细胞抗金黄色葡萄球菌的活性。
IF 13.6 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-29 DOI: 10.1093/procel/pwad047
Dan Cao, Mengyue Lv, Chi Hu, Shukai Li, Siwen Wang, Chao Xu, Wen Pan
{"title":"METTL9-catalyzed histidine methylation of S100A9 suppresses the anti-Staphylococcus aureus activity of neutrophils.","authors":"Dan Cao, Mengyue Lv, Chi Hu, Shukai Li, Siwen Wang, Chao Xu, Wen Pan","doi":"10.1093/procel/pwad047","DOIUrl":"10.1093/procel/pwad047","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"223-229"},"PeriodicalIF":13.6,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9898330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ubiquitin codes in cellular stress responses. 细胞应激反应中的泛素密码。
IF 21.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-29 DOI: 10.1093/procel/pwad045
Xiangpeng Sheng, Zhixiong Xia, Hanting Yang, Ronggui Hu

Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.

泛素化/泛素化是最基本的翻译后修饰之一,几乎调节着真核生物的所有关键细胞过程。新的证据表明,哺乳动物细胞在受到从外源因子到细胞反应等各种压力时,许多生物过程的重要成分都会发生泛素化,从而导致令人眼花缭乱的各种功能性后果。在特定环境中泛素化事件产生的各种形式的泛素信号,即泛素密码,构成了无数细胞应激反应的内在组成部分。这些泛素化事件导致底物的蛋白水解周转或功能转换,启动、调节或监督多种细胞应激相关反应,支持应激细胞的适应、稳态恢复和存活。在这篇综述中,我们试图总结泛素化在应对不同环境和细胞内压力时的关键作用,同时讨论压力如何调节泛素系统。本综述还更新了在理解泛素化机制以及不同应激反应方面的最新进展,并讨论了未来可能需要研究的一些重要问题。
{"title":"The ubiquitin codes in cellular stress responses.","authors":"Xiangpeng Sheng, Zhixiong Xia, Hanting Yang, Ronggui Hu","doi":"10.1093/procel/pwad045","DOIUrl":"10.1093/procel/pwad045","url":null,"abstract":"<p><p>Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"157-190"},"PeriodicalIF":21.1,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9837931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term in vivo chimeric cells tracking in non-human primate. 非人灵长类动物体内长期嵌合细胞追踪。
IF 21.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-29 DOI: 10.1093/procel/pwad049
Junmo Wu, Yu Kang, Xiang Luo, Shaoxing Dai, Yuxi Shi, Zhuoyao Li, Zengli Tang, Zhenzhen Chen, Ran Zhu, Pengpeng Yang, Zifan Li, Hong Wang, Xinglong Chen, Ziyi Zhao, Weizhi Ji, Yuyu Niu

Non-human primates (NHPs) are increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey. Here, we report a chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro. The cells display global gene expression and genome-wide hypomethylation patterns distinct from monkey-primed cells. We also found expression of signaling pathways components that may increase the potential for chimera formation. Crucially for biomedical applications, we were also able to integrate bioluminescent reporter genes into monkey PSCs and track them in chimeric embryos in vivo and in vitro. The engineered cells retained embryonic and extra-embryonic developmental potential. Meanwhile, we generated a chimeric monkey carrying bioluminescent cells, which were able to track chimeric cells for more than 2 years in living animals. Our study could have broad utility in primate stem cell engineering and in utilizing chimeric monkey models for clinical studies.

非人类灵长类动物(NHP)越来越多地用于临床前试验,以测试生物技术疗法的安全性和有效性。尽管如此,考虑到与该模型相关的伦理问题和成本,在临床研究中使用NHP细胞模型将是非常有利的。然而,开发和维持灵长类多能干细胞(PSCs)的幼稚状态仍然很困难,体内检测PSCs也是如此,从而限制了生物技术在食蟹猴中的应用。在此,我们报道了一种化学定义的、无外源性的体外培养和衍生猴子PSCs的培养系统。这些细胞显示出与猴子引发的细胞不同的全局基因表达和全基因组低甲基化模式。我们还发现了可能增加嵌合体形成潜力的信号通路成分的表达。对于生物医学应用至关重要的是,我们还能够将生物发光报告基因整合到猴子PSCs中,并在体内外嵌合胚胎中跟踪它们。工程细胞保留了胚胎和胚胎外发育的潜力。同时,我们产生了一种携带生物发光细胞的嵌合猴子,它能够在活体动物中追踪嵌合细胞两年多。我们的研究可能在灵长类干细胞工程和利用嵌合猴子模型进行临床研究方面具有广泛的实用性。
{"title":"Long-term in vivo chimeric cells tracking in non-human primate.","authors":"Junmo Wu, Yu Kang, Xiang Luo, Shaoxing Dai, Yuxi Shi, Zhuoyao Li, Zengli Tang, Zhenzhen Chen, Ran Zhu, Pengpeng Yang, Zifan Li, Hong Wang, Xinglong Chen, Ziyi Zhao, Weizhi Ji, Yuyu Niu","doi":"10.1093/procel/pwad049","DOIUrl":"10.1093/procel/pwad049","url":null,"abstract":"<p><p>Non-human primates (NHPs) are increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey. Here, we report a chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro. The cells display global gene expression and genome-wide hypomethylation patterns distinct from monkey-primed cells. We also found expression of signaling pathways components that may increase the potential for chimera formation. Crucially for biomedical applications, we were also able to integrate bioluminescent reporter genes into monkey PSCs and track them in chimeric embryos in vivo and in vitro. The engineered cells retained embryonic and extra-embryonic developmental potential. Meanwhile, we generated a chimeric monkey carrying bioluminescent cells, which were able to track chimeric cells for more than 2 years in living animals. Our study could have broad utility in primate stem cell engineering and in utilizing chimeric monkey models for clinical studies.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"207-222"},"PeriodicalIF":21.1,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41163976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryo-EM structure of cannabinoid receptor CB1-β-arrestin complex. 大麻素受体 CB1-β-restin 复合物的冷冻电镜结构。
IF 21.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-29 DOI: 10.1093/procel/pwad055
Yuxia Wang, Lijie Wu, Tian Wang, Junlin Liu, Fei Li, Longquan Jiang, Zhongbo Fan, Yanan Yu, Na Chen, Qianqian Sun, Qiwen Tan, Tian Hua, Zhi-Jie Liu
{"title":"Cryo-EM structure of cannabinoid receptor CB1-β-arrestin complex.","authors":"Yuxia Wang, Lijie Wu, Tian Wang, Junlin Liu, Fei Li, Longquan Jiang, Zhongbo Fan, Yanan Yu, Na Chen, Qianqian Sun, Qiwen Tan, Tian Hua, Zhi-Jie Liu","doi":"10.1093/procel/pwad055","DOIUrl":"10.1093/procel/pwad055","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"230-234"},"PeriodicalIF":21.1,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. 麦角硫因及其同系物:抗衰老机制和药源生物合成。
IF 21.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-29 DOI: 10.1093/procel/pwad048
Li Chen, Liping Zhang, Xujun Ye, Zixin Deng, Changming Zhao

Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.

麦角硫因、Ovothiol 和硒酮是含硫/硒的组氨酸衍生天然产物,广泛分布于不同生物体内。它们具有明显的抗氧化特性,是促进健康的潜在先导化合物。越来越多的证据表明,麦角硫因与健康老龄化和长寿呈正相关。人们开始了解麦角硫因在细胞和分子水平上调节衰老过程的机制。在这篇综述中,我们深入而广泛地介绍了麦角硫因的抗衰老研究,并讨论了其可能的细胞内靶向途径。此外,我们还重点介绍了最近在阐明麦角硫因、Ovothiol 和硒酮的生物合成细节方面所做的努力,尤其是对其药效形成酶学的研究。
{"title":"Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis.","authors":"Li Chen, Liping Zhang, Xujun Ye, Zixin Deng, Changming Zhao","doi":"10.1093/procel/pwad048","DOIUrl":"10.1093/procel/pwad048","url":null,"abstract":"<p><p>Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"191-206"},"PeriodicalIF":21.1,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10320971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: EGFR signaling augments TLR4 cell surface expression and function in macrophages via regulation of Rab5a activation. 更正为表皮生长因子受体信号通过调节 Rab5a 的活化增强巨噬细胞中 TLR4 细胞表面的表达和功能。
IF 21.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-23 DOI: 10.1093/procel/pwae002
{"title":"Correction to: EGFR signaling augments TLR4 cell surface expression and function in macrophages via regulation of Rab5a activation.","authors":"","doi":"10.1093/procel/pwae002","DOIUrl":"https://doi.org/10.1093/procel/pwae002","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139940702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthrax lethal toxin and tumor necrosis factor-α synergize on intestinal epithelia to induce mouse death. 炭疽毒素和肿瘤坏死因子-α协同作用于肠上皮细胞诱导小鼠死亡。
IF 21.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-01 DOI: 10.1093/procel/pwad050
Xinhe Gao, Teng Teng, Yifei Liu, Tingting Ai, Rui Zhao, Yilong Fu, Peipei Zhang, Jiahuai Han, Yingying Zhang

Bacillus anthracis lethal toxin (LT) is a determinant of lethal anthrax. Its function in myeloid cells is required for bacterial dissemination, and LT itself can directly trigger dysfunction of the cardiovascular system. The interplay between LT and the host responses is important in the pathogenesis, but our knowledge on this interplay remains limited. Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine induced by bacterial infections. Since LT accumulates and cytokines, predominantly TNF, amass during B. anthracis infection, co-treatment of TNF + LT in mice was used to mimic in vivo conditions for LT to function in inflamed hosts. Bone marrow transplantation and genetically engineered mice showed unexpectedly that the death of intestinal epithelial cells (IECs) rather than that of hematopoietic cells led to LT + TNF-induced lethality. Inhibition of p38α mitogen-activated protein kinase (MAPK) signaling by LT in IECs promoted TNF-induced apoptosis and necroptosis of IECs, leading to intestinal damage and mouse death. Consistently, p38α inhibition by LT enhanced TNF-mediated cell death in human colon epithelial HT-29 cells. As intestinal damage is one of the leading causes of lethality in anthrax patients, the IEC damage caused by LT + TNF would most likely be a mechanism underneath this clinical manifestation and could be a target for interventions.

炭疽杆菌致命毒素(LT)是致命炭疽的决定因素。它在髓细胞中的功能是细菌传播所必需的,LT本身可以直接引发心血管系统的功能障碍。LT和宿主反应之间的相互作用在发病机制中很重要,但我们对这种相互作用的了解仍然有限。肿瘤坏死因子-α(TNF)是一种由细菌感染诱导的多效性促炎细胞因子。由于LT在炭疽杆菌感染期间积聚,细胞因子(主要是TNF)积聚,因此在小鼠中使用TNF+LT的联合治疗来模拟LT在炎症宿主中发挥作用的体内条件。骨髓移植和基因工程小鼠出乎意料地表明,肠上皮细胞(IEC)的死亡而不是造血细胞的死亡导致LT+TNF诱导的致死性。LT对IEC中p38α丝裂原活化蛋白激酶(MAPK)信号传导的抑制促进了TNF诱导的IEC细胞凋亡和坏死,导致肠道损伤和小鼠死亡。一致地,LT对p38α的抑制增强了人结肠上皮HT-29细胞中TNF介导的细胞死亡。由于肠道损伤是炭疽病患者致死的主要原因之一,LT+TNF引起的IEC损伤很可能是这种临床表现背后的机制,并可能成为干预的目标。
{"title":"Anthrax lethal toxin and tumor necrosis factor-α synergize on intestinal epithelia to induce mouse death.","authors":"Xinhe Gao, Teng Teng, Yifei Liu, Tingting Ai, Rui Zhao, Yilong Fu, Peipei Zhang, Jiahuai Han, Yingying Zhang","doi":"10.1093/procel/pwad050","DOIUrl":"10.1093/procel/pwad050","url":null,"abstract":"<p><p>Bacillus anthracis lethal toxin (LT) is a determinant of lethal anthrax. Its function in myeloid cells is required for bacterial dissemination, and LT itself can directly trigger dysfunction of the cardiovascular system. The interplay between LT and the host responses is important in the pathogenesis, but our knowledge on this interplay remains limited. Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine induced by bacterial infections. Since LT accumulates and cytokines, predominantly TNF, amass during B. anthracis infection, co-treatment of TNF + LT in mice was used to mimic in vivo conditions for LT to function in inflamed hosts. Bone marrow transplantation and genetically engineered mice showed unexpectedly that the death of intestinal epithelial cells (IECs) rather than that of hematopoietic cells led to LT + TNF-induced lethality. Inhibition of p38α mitogen-activated protein kinase (MAPK) signaling by LT in IECs promoted TNF-induced apoptosis and necroptosis of IECs, leading to intestinal damage and mouse death. Consistently, p38α inhibition by LT enhanced TNF-mediated cell death in human colon epithelial HT-29 cells. As intestinal damage is one of the leading causes of lethality in anthrax patients, the IEC damage caused by LT + TNF would most likely be a mechanism underneath this clinical manifestation and could be a target for interventions.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"135-148"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49681598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2 ORF8 does not function in the nucleus as a histone mimic. SARS-CoV-2 ORF8 在细胞核中不具有组蛋白模拟功能。
IF 21.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-01 DOI: 10.1093/procel/pwad042
Ping Liu, Junjie Hu, Lei Wang
{"title":"SARS-CoV-2 ORF8 does not function in the nucleus as a histone mimic.","authors":"Ping Liu, Junjie Hu, Lei Wang","doi":"10.1093/procel/pwad042","DOIUrl":"10.1093/procel/pwad042","url":null,"abstract":"","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"79-82"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9779082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD. 两种抗体通过诱导 RBD 的构象变化,对 SARS-CoV-2 变体显示出广泛的协同中和作用。
IF 21.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-01 DOI: 10.1093/procel/pwad040
Hui Sun, Tingting Deng, Yali Zhang, Yanling Lin, Yanan Jiang, Yichao Jiang, Yang Huang, Shuo Song, Lingyan Cui, Tingting Li, Hualong Xiong, Miaolin Lan, Liqin Liu, Yu Li, Qianjiao Fang, Kunyu Yu, Wenling Jiang, Lizhi Zhou, Yuqiong Que, Tianying Zhang, Quan Yuan, Tong Cheng, Zheng Zhang, Hai Yu, Jun Zhang, Wenxin Luo, Shaowei Li, Qingbing Zheng, Ying Gu, Ningshao Xia

Continual evolution of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus has allowed for its gradual evasion of neutralizing antibodies (nAbs) produced in response to natural infection or vaccination. The rapid nature of these changes has incited a need for the development of superior broad nAbs (bnAbs) and/or the rational design of an antibody cocktail that can protect against the mutated virus strain. Here, we report two angiotensin-converting enzyme 2 competing nAbs-8H12 and 3E2-with synergistic neutralization but evaded by some Omicron subvariants. Cryo-electron microscopy reveals the two nAbs synergistic neutralizing virus through a rigorous pairing permitted by rearrangement of the 472-489 loop in the receptor-binding domain to avoid steric clashing. Bispecific antibodies based on these two nAbs tremendously extend the neutralizing breadth and restore neutralization against recent variants including currently dominant XBB.1.5. Together, these findings expand our understanding of the potential strategies for the neutralization of SARS-CoV-2 variants toward the design of broad-acting antibody therapeutics and vaccines.

严重急性呼吸系统综合症冠状病毒(SARS-CoV-2)病毒的不断进化使其能够逐渐躲避因自然感染或接种疫苗而产生的中和抗体(nAbs)。这些变化的快速性促使人们需要开发优良的广谱 nAbs(bnAbs)和/或合理设计能抵御变异病毒株的鸡尾酒抗体。在这里,我们报告了两种血管紧张素转换酶 2 竞争性 nAbs-8H12 和 3E2--它们具有协同中和作用,但被一些 Omicron 亚变体所规避。冷冻电镜显示,这两种 nAbs 通过受体结合结构域中 472-489 环的重新排列实现了严格配对,避免了立体冲突,从而协同中和了病毒。基于这两种 nAbs 的双特异性抗体极大地扩展了中和广度,并恢复了对包括目前占主导地位的 XBB.1.5 在内的最新变体的中和作用。总之,这些发现拓展了我们对中和 SARS-CoV-2 变体的潜在策略的理解,有助于我们设计广效抗体疗法和疫苗。
{"title":"Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD.","authors":"Hui Sun, Tingting Deng, Yali Zhang, Yanling Lin, Yanan Jiang, Yichao Jiang, Yang Huang, Shuo Song, Lingyan Cui, Tingting Li, Hualong Xiong, Miaolin Lan, Liqin Liu, Yu Li, Qianjiao Fang, Kunyu Yu, Wenling Jiang, Lizhi Zhou, Yuqiong Que, Tianying Zhang, Quan Yuan, Tong Cheng, Zheng Zhang, Hai Yu, Jun Zhang, Wenxin Luo, Shaowei Li, Qingbing Zheng, Ying Gu, Ningshao Xia","doi":"10.1093/procel/pwad040","DOIUrl":"10.1093/procel/pwad040","url":null,"abstract":"<p><p>Continual evolution of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus has allowed for its gradual evasion of neutralizing antibodies (nAbs) produced in response to natural infection or vaccination. The rapid nature of these changes has incited a need for the development of superior broad nAbs (bnAbs) and/or the rational design of an antibody cocktail that can protect against the mutated virus strain. Here, we report two angiotensin-converting enzyme 2 competing nAbs-8H12 and 3E2-with synergistic neutralization but evaded by some Omicron subvariants. Cryo-electron microscopy reveals the two nAbs synergistic neutralizing virus through a rigorous pairing permitted by rearrangement of the 472-489 loop in the receptor-binding domain to avoid steric clashing. Bispecific antibodies based on these two nAbs tremendously extend the neutralizing breadth and restore neutralization against recent variants including currently dominant XBB.1.5. Together, these findings expand our understanding of the potential strategies for the neutralization of SARS-CoV-2 variants toward the design of broad-acting antibody therapeutics and vaccines.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"121-134"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9840864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiation injury and gut microbiota-based treatment. 辐射损伤和基于肠道微生物群的治疗。
IF 21.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-01 DOI: 10.1093/procel/pwad044
Weihong Wang, Bota Cui, Yongzhan Nie, Lijuan Sun, Faming Zhang

The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.

暴露于医用辐射源或意外辐射都会造成不同程度的辐射损伤(RI)。辐射损伤是一种涉及人体多个部位和器官的常见疾病,但目前有效的治疗方法却很有限。越来越多的证据表明,肠道微生物群与各种辐射损伤的发生和预防密切相关。本文总结了 10 种常见的 RI 及其可能的机制。文章还强调了基于微生物群的 RI 治疗方法的变化和潜力,包括益生菌、代谢物和微生物群移植。此外,文章还提出了一个 5P 框架,以提供管理 RI 的综合策略。
{"title":"Radiation injury and gut microbiota-based treatment.","authors":"Weihong Wang, Bota Cui, Yongzhan Nie, Lijuan Sun, Faming Zhang","doi":"10.1093/procel/pwad044","DOIUrl":"10.1093/procel/pwad044","url":null,"abstract":"<p><p>The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"83-97"},"PeriodicalIF":21.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Protein & Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1