Xiaoyan Ma, Zhaoran Wang, Yifei Li, Yawen Wang, Wukun Liu
Overexpression of the epidermal growth factor receptor (EGFR, erbB1) has been observed in a wide range of solid tumors and has frequently been associated with poor prognosis. As a result, EGFR inhibition has become an attractive anticancer drug design strategy, and a large number of small molecular inhibitors have been developed. Despite the widespread clinical use of EGFR tyrosine kinase inhibitors (TKIs), their drug resistance, inadequate accumulation in tumors, and severe side effects have spurred the search for better antitumor drugs. Metal complexes have attracted much attention because of their different mechanisms compared with EGFR-TKIs. Therefore, the combination of metals and inhibitors is a promising anticancer strategy. For example, Ru and Pt centers are introduced to design complexes with double or multiple targets, while Au complexes are combined with inhibitors to overcome drug resistance. Co complexes are designed as prodrugs with weak side effects and enhanced targeting by the hypoxia activation strategy, and other metals such as Rh and Fe enhance the anticancer effect of the complexes. In addition, the introduction of Ga center is beneficial to the development of nuclear imaging tracers. In this paper, metal EGFR-TKI complexes in the last 15 years are reviewed, their mechanisms are briefly introduced, and their advantages are summarized.
表皮生长因子受体(EGFR,erbB1)的过表达已在多种实体瘤中观察到,并经常与不良预后相关。因此,表皮生长因子受体抑制已成为一种极具吸引力的抗癌药物设计策略,并已开发出大量小分子抑制剂。尽管表皮生长因子受体酪氨酸激酶抑制剂(TKIs)已广泛应用于临床,但它们的耐药性、在肿瘤中的蓄积不足以及严重的副作用促使人们寻找更好的抗肿瘤药物。金属复合物因其与表皮生长因子受体酪氨酸激酶抑制剂不同的机制而备受关注。因此,金属与抑制剂的结合是一种很有前景的抗癌策略。例如,引入 Ru 和 Pt 中心来设计具有双重或多重靶点的复合物,而 Au 复合物则与抑制剂结合来克服耐药性。通过缺氧激活策略,Co 复合物被设计成副作用弱、靶向性强的原药,而 Rh 和 Fe 等其他金属则增强了复合物的抗癌效果。此外,Ga 中心的引入也有利于核成像示踪剂的开发。本文回顾了近15年来的EGFR-TKI金属复合物,简要介绍了它们的作用机制,并总结了它们的优点。
{"title":"Metal complexes bearing EGFR-inhibiting ligands as promising anticancer agents","authors":"Xiaoyan Ma, Zhaoran Wang, Yifei Li, Yawen Wang, Wukun Liu","doi":"10.1002/med.22021","DOIUrl":"10.1002/med.22021","url":null,"abstract":"<p>Overexpression of the epidermal growth factor receptor (EGFR, erbB1) has been observed in a wide range of solid tumors and has frequently been associated with poor prognosis. As a result, EGFR inhibition has become an attractive anticancer drug design strategy, and a large number of small molecular inhibitors have been developed. Despite the widespread clinical use of EGFR tyrosine kinase inhibitors (TKIs), their drug resistance, inadequate accumulation in tumors, and severe side effects have spurred the search for better antitumor drugs. Metal complexes have attracted much attention because of their different mechanisms compared with EGFR-TKIs. Therefore, the combination of metals and inhibitors is a promising anticancer strategy. For example, Ru and Pt centers are introduced to design complexes with double or multiple targets, while Au complexes are combined with inhibitors to overcome drug resistance. Co complexes are designed as prodrugs with weak side effects and enhanced targeting by the hypoxia activation strategy, and other metals such as Rh and Fe enhance the anticancer effect of the complexes. In addition, the introduction of Ga center is beneficial to the development of nuclear imaging tracers. In this paper, metal EGFR-TKI complexes in the last 15 years are reviewed, their mechanisms are briefly introduced, and their advantages are summarized.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 4","pages":"1545-1565"},"PeriodicalIF":13.3,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.
作为一种核转录因子,雄激素受体(AR)不仅在男性正常的性分化和前列腺生长中发挥着重要作用,而且在良性前列腺增生、前列腺炎和前列腺癌中也发挥着重要作用。多项人群流行病学研究表明,前列腺癌风险与绿茶、豆制品、番茄等膳食摄入量的增加成反比。因此,本综述旨在总结 AR 的结构和功能,并进一步说明目前临床上可用的抗雄激素的拮抗机制的结构基础。由于这些抗雄激素的局限性,人们从水果、蔬菜等可食用植物以及民间药物、保健食品和营养补充剂中发现了一系列天然的AR抑制剂。因此,本综述主要关注近期有关天然 AR 抑制剂的实验、流行病学和临床研究,尤其是膳食中天然抗雄激素的摄入与降低前列腺疾病风险之间的关联。与合成抗雄激素相比,天然产品具有多种优势,因此本综述可提供有关膳食来源的AR抑制剂及其在营养干预前列腺疾病方面的潜力的全面、最新概述。
{"title":"Recent advances in dietary androgen receptor inhibitors","authors":"Li Ren, Tiehua Zhang, Jie Zhang","doi":"10.1002/med.22019","DOIUrl":"10.1002/med.22019","url":null,"abstract":"<p>As a nuclear transcription factor, the androgen receptor (AR) plays a crucial role not only in normal male sexual differentiation and growth of the prostate, but also in benign prostatic hyperplasia, prostatitis, and prostate cancer. Multiple population-based epidemiological studies demonstrated that prostate cancer risk was inversely associated with increased dietary intakes of green tea, soy products, tomato, and so forth. Therefore, this review aimed to summarize the structure and function of AR, and further illustrate the structural basis for antagonistic mechanisms of the currently clinically available antiandrogens. Due to the limitations of these antiandrogens, a series of natural AR inhibitors have been identified from edible plants such as fruits and vegetables, as well as folk medicines, health foods, and nutritional supplements. Hence, this review mainly focused on recent experimental, epidemiological, and clinical studies about natural AR inhibitors, particularly the association between dietary intake of natural antiandrogens and reduced risk of prostatic diseases. Since natural products offer multiple advantages over synthetic antiandrogens, this review may provide a comprehensive and updated overview of dietary-derived AR inhibitors, as well as their potential for the nutritional intervention against prostatic disorders.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 4","pages":"1446-1500"},"PeriodicalIF":13.3,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diabetic foot ulcer (DFU) is one of the most costly and serious complications of diabetes. Treatment of DFU is usually challenging and new approaches are required to improve the therapeutic efficiencies. This review aims to update new and upcoming adjunctive therapies with noninvasive characterization for DFU, focusing on bioactive dressings, bioengineered tissues, mesenchymal stem cell (MSC) based therapy, platelet and cytokine-based therapy, topical oxygen therapy, and some repurposed drugs such as hypoglycemic agents, blood pressure medications, phenytoin, vitamins, and magnesium. Although the mentioned therapies may contribute to the improvement of DFU to a certain extent, most of the evidence come from clinical trials with small sample size and inconsistent selections of DFU patients. Further studies with high design quality and adequate sample sizes are necessitated. In addition, no single approach would completely correct the complex pathogenesis of DFU. Reasonable selection and combination of these techniques should be considered.
{"title":"Recent advances in the adjunctive management of diabetic foot ulcer: Focus on noninvasive technologies","authors":"Fen Wang, Xiaoling Zhang, Jing Zhang, Qinqin Xu, Xuefeng Yu, Anhui Xu, Chengla Yi, Xuna Bian, Shiying Shao","doi":"10.1002/med.22020","DOIUrl":"10.1002/med.22020","url":null,"abstract":"<p>Diabetic foot ulcer (DFU) is one of the most costly and serious complications of diabetes. Treatment of DFU is usually challenging and new approaches are required to improve the therapeutic efficiencies. This review aims to update new and upcoming adjunctive therapies with noninvasive characterization for DFU, focusing on bioactive dressings, bioengineered tissues, mesenchymal stem cell (MSC) based therapy, platelet and cytokine-based therapy, topical oxygen therapy, and some repurposed drugs such as hypoglycemic agents, blood pressure medications, phenytoin, vitamins, and magnesium. Although the mentioned therapies may contribute to the improvement of DFU to a certain extent, most of the evidence come from clinical trials with small sample size and inconsistent selections of DFU patients. Further studies with high design quality and adequate sample sizes are necessitated. In addition, no single approach would completely correct the complex pathogenesis of DFU. Reasonable selection and combination of these techniques should be considered.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 4","pages":"1501-1544"},"PeriodicalIF":13.3,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Xiang, Swapna Naik, Liyun Zhao, Jianyou Shi, Hengming Ke
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3′,5′-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
{"title":"Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases","authors":"Yu Xiang, Swapna Naik, Liyun Zhao, Jianyou Shi, Hengming Ke","doi":"10.1002/med.22017","DOIUrl":"10.1002/med.22017","url":null,"abstract":"<p>Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3′,5′-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 4","pages":"1404-1445"},"PeriodicalIF":13.3,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xavier Palomer, Jesús M. Salvador, Christian Griñán-Ferré, Emma Barroso, Mercè Pallàs, Manuel Vázquez-Carrera
The growth arrest and DNA damage inducible (GADD)45 family includes three small and ubiquitously distributed proteins (GADD45A, GADD45B, and GADD45G) that regulate numerous cellular processes associated with stress signaling and injury response. Here, we provide a comprehensive review of the current literature investigating GADD45A, the first discovered member of the family. We first depict how its levels are regulated by a myriad of genotoxic and non-genotoxic stressors, and through the combined action of intricate transcriptional, posttranscriptional, and even, posttranslational mechanisms. GADD45A is a recognized tumor suppressor and, for this reason, we next summarize its role in cancer, as well as the different mechanisms by which it regulates cell cycle, DNA repair, and apoptosis. Beyond these most well-known actions, GADD45A may also influence catabolic and anabolic pathways in the liver, adipose tissue and skeletal muscle, among others. Not surprisingly, GADD45A may trigger AMP-activated protein kinase activity, a master regulator of metabolism, and is known to act as a transcriptional coregulator of numerous nuclear receptors. GADD45A has also been reported to display a cytoprotective role by regulating inflammation, fibrosis and oxidative stress in several organs and tissues, and is regarded an important contributor for the development of heart failure. Overall data point to that GADD45A may play an important role in metabolic, neurodegenerative and cardiovascular diseases, and also autoimmune-related disorders. Thus, the potential mechanisms by which dysregulation of GADD45A activity may contribute to the progression of these diseases are also reviewed below.
{"title":"GADD45A: With or without you","authors":"Xavier Palomer, Jesús M. Salvador, Christian Griñán-Ferré, Emma Barroso, Mercè Pallàs, Manuel Vázquez-Carrera","doi":"10.1002/med.22015","DOIUrl":"10.1002/med.22015","url":null,"abstract":"<p>The growth arrest and DNA damage inducible (GADD)45 family includes three small and ubiquitously distributed proteins (GADD45A, GADD45B, and GADD45G) that regulate numerous cellular processes associated with stress signaling and injury response. Here, we provide a comprehensive review of the current literature investigating GADD45A, the first discovered member of the family. We first depict how its levels are regulated by a myriad of genotoxic and non-genotoxic stressors, and through the combined action of intricate transcriptional, posttranscriptional, and even, posttranslational mechanisms. GADD45A is a recognized tumor suppressor and, for this reason, we next summarize its role in cancer, as well as the different mechanisms by which it regulates cell cycle, DNA repair, and apoptosis. Beyond these most well-known actions, GADD45A may also influence catabolic and anabolic pathways in the liver, adipose tissue and skeletal muscle, among others. Not surprisingly, GADD45A may trigger AMP-activated protein kinase activity, a master regulator of metabolism, and is known to act as a transcriptional coregulator of numerous nuclear receptors. GADD45A has also been reported to display a cytoprotective role by regulating inflammation, fibrosis and oxidative stress in several organs and tissues, and is regarded an important contributor for the development of heart failure. Overall data point to that GADD45A may play an important role in metabolic, neurodegenerative and cardiovascular diseases, and also autoimmune-related disorders. Thus, the potential mechanisms by which dysregulation of GADD45A activity may contribute to the progression of these diseases are also reviewed below.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 4","pages":"1375-1403"},"PeriodicalIF":13.3,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/med.22015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139541307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Yang, Limor Rubin, Xiyong Yu, Philip Lazarovici, Wenhua Zheng
Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.
{"title":"Preclinical evidence using synthetic compounds and natural products indicates that AMPK represents a potential pharmacological target for the therapy of pulmonary diseases","authors":"Chao Yang, Limor Rubin, Xiyong Yu, Philip Lazarovici, Wenhua Zheng","doi":"10.1002/med.22014","DOIUrl":"10.1002/med.22014","url":null,"abstract":"<p>Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 3","pages":"1326-1369"},"PeriodicalIF":13.3,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kiarash Saleki, Parsa Alijanizadeh, Nima Javanmehr, Nima Rezaei
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
{"title":"The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management","authors":"Kiarash Saleki, Parsa Alijanizadeh, Nima Javanmehr, Nima Rezaei","doi":"10.1002/med.22012","DOIUrl":"10.1002/med.22012","url":null,"abstract":"<p>Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 3","pages":"1267-1325"},"PeriodicalIF":13.3,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/med.22012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure–activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.
{"title":"Insights into Ganoderma fungi meroterpenoids opening a new era of racemic natural products in mushrooms","authors":"Jiao-Jiao Zhang, Fu-Ying Qin, Yong-Xian Cheng","doi":"10.1002/med.22006","DOIUrl":"10.1002/med.22006","url":null,"abstract":"<p><i>Ganoderma</i> meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from <i>Ganoderma</i> species are racemates. Further, GMs from different <i>Ganoderma</i> species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure–activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 3","pages":"1221-1266"},"PeriodicalIF":13.3,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139415945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inflammation is the body's defense response to exogenous or endogenous stimuli, involving complex regulatory mechanisms. Discovering anti-inflammatory drugs with both effectiveness and long-term use safety is still the direction of researchers' efforts. The inflammatory pathway was initially identified to be involved in tumor metastasis and HIV infection. However, research in recent years has proved that the CXC chemokine receptor type 4 (CXCR4)/CXC motif chemokine ligand 12 (CXCL12) axis plays a critical role in the upstream of the inflammatory pathway due to its chemotaxis to inflammatory cells. Blocking the chemotaxis of inflammatory cells by CXCL12 at the inflammatory site may block and alleviate the inflammatory response. Therefore, developing CXCR4 antagonists has become a novel strategy for anti-inflammatory therapy. This review aimed to systematically summarize and analyze the mechanisms of action of the CXCR4/CXCL12 axis in more than 20 inflammatory diseases, highlighting its crucial role in inflammation. Additionally, the anti-inflammatory activities of CXCR4 antagonists were discussed. The findings might help generate new perspectives for developing anti-inflammatory drugs targeting the CXCR4/CXCL12 axis.
{"title":"CXCR4/CXCL12 axis: “old” pathway as “novel” target for anti-inflammatory drug discovery","authors":"Liuxin Lu, Junjie Li, Xiaoying Jiang, Renren Bai","doi":"10.1002/med.22011","DOIUrl":"10.1002/med.22011","url":null,"abstract":"<p>Inflammation is the body's defense response to exogenous or endogenous stimuli, involving complex regulatory mechanisms. Discovering anti-inflammatory drugs with both effectiveness and long-term use safety is still the direction of researchers' efforts. The inflammatory pathway was initially identified to be involved in tumor metastasis and HIV infection. However, research in recent years has proved that the CXC chemokine receptor type 4 (CXCR4)/CXC motif chemokine ligand 12 (CXCL12) axis plays a critical role in the upstream of the inflammatory pathway due to its chemotaxis to inflammatory cells. Blocking the chemotaxis of inflammatory cells by CXCL12 at the inflammatory site may block and alleviate the inflammatory response. Therefore, developing CXCR4 antagonists has become a novel strategy for anti-inflammatory therapy. This review aimed to systematically summarize and analyze the mechanisms of action of the CXCR4/CXCL12 axis in more than 20 inflammatory diseases, highlighting its crucial role in inflammation. Additionally, the anti-inflammatory activities of CXCR4 antagonists were discussed. The findings might help generate new perspectives for developing anti-inflammatory drugs targeting the CXCR4/CXCL12 axis.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 3","pages":"1189-1220"},"PeriodicalIF":13.3,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139097000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inborn errors of metabolism are related to mitochondrial disorders caused by dysfunction of the oxidative phosphorylation (OXPHOS) system. Congenital hypermetabolism in the infant is a rare disease belonging to Luft syndrome, nonthyroidal hypermetabolism, arising from a singular example of a defect in OXPHOS. The mitochondria lose coupling of mitochondrial substrates oxidation from the ADP phosphorylation. Since Luft syndrome is due to uncoupled cell respiration responsible for deficient in ATP production that originates in the respiratory complexes, a de novo heterozygous variant in the catalytic subunit of mitochondrial F1FO-ATPase arises as the main cause of an autosomal dominant syndrome of hypermetabolism associated with dysfunction in ATP production, which does not involve the respiratory complexes. The F1FO-ATPase works as an embedded molecular machine with a rotary action using two different motor engines. The FO, which is an integral domain in the membrane, dissipates the chemical potential difference for H+, a proton motive force (Δp), across the inner membrane to generate a torsion. The F1 domain—the hydrophilic portion responsible for ATP turnover—is powered by the molecular rotary action to synthesize ATP. The structural and functional coupling of F1 and FO domains support the energy transduction for ATP synthesis. The dissipation of Δp by means of an H+ slip correlated to rotor free-wheeling of the F1FO-ATPase has been discovered to cause enzyme dysfunction in primary mitochondrial disorders. In this insight, we try to offer commentary and analysis of the molecular mechanism in these impaired mitochondria.
先天性代谢异常与氧化磷酸化(OXPHOS)系统功能障碍引起的线粒体疾病有关。婴儿先天性代谢亢进症是一种罕见的疾病,属于卢夫特综合征(Luft syndrome),非甲状腺代谢亢进症,是氧化磷酸化系统缺陷的一个独特例子。线粒体底物氧化与 ADP 磷酸化失去耦合。由于卢夫特综合征是由于细胞呼吸不耦合导致呼吸复合体产生的 ATP 不足而引起的,因此线粒体 F1 FO -ATP 酶催化亚基的新生杂合子变异成为常染色体显性遗传代谢亢进综合征的主要病因,该综合征与 ATP 产生障碍有关,但不涉及呼吸复合体。F1 FO -ATP酶作为一个嵌入式分子机器,利用两个不同的发动机进行旋转。FO 是膜上的一个整体结构域,它将 H+ 的化学势差、质子动力(Δp)耗散到内膜上,从而产生扭转。F1 结构域--负责 ATP 转换的亲水部分--通过分子旋转作用来合成 ATP。F1 和 FO 结构域的结构和功能耦合支持 ATP 合成的能量转换。通过与 F1 FO -ATP 酶转子自由旋转相关的 H+ 滑移,发现Δp 的耗散会导致原发性线粒体疾病中的酶功能障碍。在这篇文章中,我们试图对这些受损线粒体的分子机制进行评论和分析。
{"title":"H+-slip correlated to rotor free-wheeling as cause of F1FO-ATPase dysfunction in primary mitochondrial disorders","authors":"Salvatore Nesci, Giovanni Romeo","doi":"10.1002/med.22013","DOIUrl":"10.1002/med.22013","url":null,"abstract":"<p>Inborn errors of metabolism are related to mitochondrial disorders caused by dysfunction of the oxidative phosphorylation (OXPHOS) system. Congenital hypermetabolism in the infant is a rare disease belonging to Luft syndrome, nonthyroidal hypermetabolism, arising from a singular example of a defect in OXPHOS. The mitochondria lose coupling of mitochondrial substrates oxidation from the ADP phosphorylation. Since Luft syndrome is due to uncoupled cell respiration responsible for deficient in ATP production that originates in the respiratory complexes, a de novo heterozygous variant in the catalytic subunit of mitochondrial F<sub>1</sub>F<sub>O</sub>-ATPase arises as the main cause of an autosomal dominant syndrome of hypermetabolism associated with dysfunction in ATP production, which does not involve the respiratory complexes. The F<sub>1</sub>F<sub>O</sub>-ATPase works as an embedded molecular machine with a rotary action using two different motor engines. The F<sub>O</sub>, which is an integral domain in the membrane, dissipates the chemical potential difference for H<sup>+</sup>, a proton motive force (Δ<i>p</i>), across the inner membrane to generate a torsion. The F<sub>1</sub> domain—the hydrophilic portion responsible for ATP turnover—is powered by the molecular rotary action to synthesize ATP. The structural and functional coupling of F<sub>1</sub> and F<sub>O</sub> domains support the energy transduction for ATP synthesis. The dissipation of Δ<i>p</i> by means of an H<sup>+</sup> slip correlated to rotor free-wheeling of the F<sub>1</sub>F<sub>O</sub>-ATPase has been discovered to cause enzyme dysfunction in primary mitochondrial disorders. In this insight, we try to offer commentary and analysis of the molecular mechanism in these impaired mitochondria.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 3","pages":"1183-1188"},"PeriodicalIF":13.3,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/med.22013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}