Glomerulonephritis (GN) is an important cause of renal inflammation resulting from kidney-targeted adaptive and innate immune responses and consequent glomerular damage. Given the lack of autoantibodies, immune complexes, or the infiltrating immune cells in some forms of GN, for example, focal segmental glomerulosclerosis and minimal change disease, along with paraneoplastic syndrome and a special form of renal involvement in some viral infections, the likeliest causative scenario would be secreted factors, mainly cytokine(s). Since cytokines can modulate the inflammatory mechanisms, severity, and clinical outcomes of GN, it is rational to consider the umbrella term of cytokine GN as a new outlook to reclassify a group of previously known GN. We focus here, particularly, on cytokines that have the central “canonical effect” in the development of GN.
肾小球肾炎(GN)是肾脏靶向适应性免疫反应和先天性免疫反应引起肾脏炎症并导致肾小球损伤的重要原因。鉴于某些形式的 GN(如局灶节段性肾小球硬化症和微小病变)缺乏自身抗体、免疫复合物或浸润性免疫细胞,加上副肿瘤综合征和某些病毒感染的特殊形式的肾脏受累,最可能的致病情况是分泌因子,主要是细胞因子。由于细胞因子可以调节 GN 的炎症机制、严重程度和临床结果,因此有理由将细胞因子 GN 作为一个总称,作为一种新的观点来重新分类一组以前已知的 GN。我们在此特别关注在 GN 发展过程中具有核心 "典型效应 "的细胞因子。
{"title":"Canonical effects of cytokines on glomerulonephritis: A new outlook in nephrology","authors":"Sepideh Zununi Vahed, Seyed Mahdi Hosseiniyan Khatibi, Mohammadreza Ardalan","doi":"10.1002/med.22074","DOIUrl":"10.1002/med.22074","url":null,"abstract":"<p>Glomerulonephritis (GN) is an important cause of renal inflammation resulting from kidney-targeted adaptive and innate immune responses and consequent glomerular damage. Given the lack of autoantibodies, immune complexes, or the infiltrating immune cells in some forms of GN, for example, focal segmental glomerulosclerosis and minimal change disease, along with paraneoplastic syndrome and a special form of renal involvement in some viral infections, the likeliest causative scenario would be secreted factors, mainly cytokine(s). Since cytokines can modulate the inflammatory mechanisms, severity, and clinical outcomes of GN, it is rational to consider the umbrella term of cytokine GN as a new outlook to reclassify a group of previously known GN. We focus here, particularly, on cytokines that have the central “canonical effect” in the development of GN.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"45 1","pages":"144-163"},"PeriodicalIF":10.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photodynamic therapy (PDT) is approved for the treatment of certain cancers and precancer lesions. While early Photosensitizers (PS) have found their way to the clinic, research in the last two decades has led to the development of third-generation PS, including photodynamic nanomedicine for improved tumor delivery and minimal systemic or phototoxicity. In terms of nanoparticle design for PDT, we are witnessing a shift from passive to active delivery for improved outcomes with reduced PS dosage. Tumor microenvironment (TME) comprises of a complex and dynamic landscape with myriad potential targets for photodynamic nanocarriers that are surface-modified with ligands. Herein, we review ways to improvise PDT by actively targeting nanoparticles (NPs) to intracellular organelles such as mitochondria or lysosomes and so forth, overcoming the limitations caused by PDT-induced hypoxia, disrupting the blood vascular networks in tumor tissues—vascular targeted PDT (VTP) and targeting immune cells for photoimmunotherapy. We propose that a synergistic outlook will help to address challenges such as deep-seated tumors, metastasis, or relapse and would lead to robust PDT response in patients.
{"title":"Targeting tumor microenvironment with photodynamic nanomedicine","authors":"Suraj Kumar Modi, Pragyan Mohapatra, Priya Bhatt, Aishleen Singh, Avanish Singh Parmar, Aniruddha Roy, Vibhuti Joshi, Manu Smriti Singh","doi":"10.1002/med.22072","DOIUrl":"10.1002/med.22072","url":null,"abstract":"<p>Photodynamic therapy (PDT) is approved for the treatment of certain cancers and precancer lesions. While early Photosensitizers (PS) have found their way to the clinic, research in the last two decades has led to the development of third-generation PS, including photodynamic nanomedicine for improved tumor delivery and minimal systemic or phototoxicity. In terms of nanoparticle design for PDT, we are witnessing a shift from passive to active delivery for improved outcomes with reduced PS dosage. Tumor microenvironment (TME) comprises of a complex and dynamic landscape with myriad potential targets for photodynamic nanocarriers that are surface-modified with ligands. Herein, we review ways to improvise PDT by actively targeting nanoparticles (NPs) to intracellular organelles such as mitochondria or lysosomes and so forth, overcoming the limitations caused by PDT-induced hypoxia, disrupting the blood vascular networks in tumor tissues—vascular targeted PDT (VTP) and targeting immune cells for photoimmunotherapy. We propose that a synergistic outlook will help to address challenges such as deep-seated tumors, metastasis, or relapse and would lead to robust PDT response in patients.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"45 1","pages":"66-96"},"PeriodicalIF":10.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
5-(3′-Indolyl)oxazole moiety is a privileged heterocyclic scaffold, embedded in many biologically interesting natural products and potential therapeutic agents. Compounds containing this scaffold, whether from natural sources or synthesized, have demonstrated a wide array of biological activities. This has piqued the interest of synthetic chemists, leading to a large number of reported synthetic approaches to 5-(3′-indolyl)oxazole scaffold in recent years. In this review, we comprehensively overviewed the different biological activities and chemical synthetic methods for the 5-(3′-indolyl)oxazole scaffold reported in the literatures from 1963 to 2024. The focus of this study is to highlight the significance of 5-(3′-indolyl)oxazole derivatives as the lead compounds for the lead discovery of anticancer, pesticidal, antimicrobial, antiviral, antioxidant and anti-inflammatory agents, to summarize the synthetic methods for the 5-(3′-indolyl)oxazole scaffold. In addition, the reported mechanism of action of 5-(3′-indolyl)oxazoles and advanced molecules studied in animal models are also reviewed. Furthermore, this review offers perspectives on how 5-(3′-indolyl)oxazole scaffold as a privileged structure might be exploited in the future.
{"title":"Natural and synthetic 5-(3′-indolyl)oxazoles: Biological activity, chemical synthesis and advanced molecules","authors":"Jing-Rui Liu, En-Yu Jiang, Otgonpurev Sukhbaatar, Wei-Hua Zhang, Ming-Zhi Zhang, Guang-Fu Yang, Yu-Cheng Gu","doi":"10.1002/med.22078","DOIUrl":"10.1002/med.22078","url":null,"abstract":"<p>5-(3′-Indolyl)oxazole moiety is a privileged heterocyclic scaffold, embedded in many biologically interesting natural products and potential therapeutic agents. Compounds containing this scaffold, whether from natural sources or synthesized, have demonstrated a wide array of biological activities. This has piqued the interest of synthetic chemists, leading to a large number of reported synthetic approaches to 5-(3′-indolyl)oxazole scaffold in recent years. In this review, we comprehensively overviewed the different biological activities and chemical synthetic methods for the 5-(3′-indolyl)oxazole scaffold reported in the literatures from 1963 to 2024. The focus of this study is to highlight the significance of 5-(3′-indolyl)oxazole derivatives as the lead compounds for the lead discovery of anticancer, pesticidal, antimicrobial, antiviral, antioxidant and anti-inflammatory agents, to summarize the synthetic methods for the 5-(3′-indolyl)oxazole scaffold. In addition, the reported mechanism of action of 5-(3′-indolyl)oxazoles and advanced molecules studied in animal models are also reviewed. Furthermore, this review offers perspectives on how 5-(3′-indolyl)oxazole scaffold as a privileged structure might be exploited in the future.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"45 1","pages":"97-143"},"PeriodicalIF":10.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James P. Psaltis, Jessica A. Marathe, Mau T. Nguyen, Richard Le, Christina A. Bursill, Chinmay S. Marathe, Adam J. Nelson, Peter J. Psaltis
Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or overweight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2% and weight loss exceeding 15% from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.
在治疗 2 型糖尿病(T2DM)的新型药物中,胰高血糖素样肽 1 受体激动剂(GLP-1 RAs)是一种基于增量素的药物,既能降低血糖水平,又能促进减肥。它们通过激活胰腺 GLP-1 受体(GLP-1R)来促进葡萄糖依赖性胰岛素的释放并抑制胰高血糖素的分泌。它们还作用于大脑和胃肠道中的受体,抑制食欲,减缓胃排空,延缓葡萄糖吸收。3 期临床试验显示,GLP-1 RAs 可改善患有或极有可能患有动脉粥样硬化性心血管疾病的 T2DM 或超重/肥胖症患者的心血管预后。这主要是由于缺血性事件的减少,尽管新出现的证据也支持在其他心血管疾病中的益处,如射血分数保留的心力衰竭。GLP-1 RA 的成功也见证了其他增量素疗法的发展。替扎帕肽是一种葡萄糖依赖性促胰岛素多肽(GIP)/GLP-1 RA 双重疗法,对血糖控制和减轻体重的效果比单独使用 GLP-1R 激动剂更为显著。这包括糖化血红蛋白水平降低 2% 以上,体重从基线下降 15% 以上。在此,我们回顾了 GLP-1 RA 和替哌肽的药理特性,并讨论了它们对 T2DM 和超重/肥胖症的临床疗效,包括它们减少不良心血管后果的能力。我们还将深入探讨这些心血管保护作用的机理基础,并考虑下一步如何将现有和未来的增量素疗法用于更广泛的心血管代谢疾病管理。
{"title":"Incretin-based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future","authors":"James P. Psaltis, Jessica A. Marathe, Mau T. Nguyen, Richard Le, Christina A. Bursill, Chinmay S. Marathe, Adam J. Nelson, Peter J. Psaltis","doi":"10.1002/med.22070","DOIUrl":"10.1002/med.22070","url":null,"abstract":"<p>Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or overweight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2% and weight loss exceeding 15% from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"45 1","pages":"29-65"},"PeriodicalIF":10.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiwei Wang, Huiling Su, Min Wang, Richard Ward, Su An, Tian-Rui Xu
Pyroptosis, a newly characterized type of inflammatory programmed cell death (PCD), is usually triggered by multiple inflammasomes which can recognize different danger or damage-associated molecular patterns (DAMPs), leading to the activation of caspase-1 and the cleavage of gasdermin D (GSDMD). Gasdermin family pore-forming proteins are the executers of pyroptosis and are normally maintained in an inactive state through auto-inhibition. Upon caspases mediated cleavage of gasdermins, the pro-pyroptotic N-terminal fragment is released from the auto-inhibition of C-terminal fragment and oligomerizes, forming pores in the plasma membrane. This results in the secretion of interleukin (IL)-1β, IL-18, and high-mobility group box 1 (HMGB1), generating osmotic swelling and lysis. Current therapeutic approaches including chemotherapy, radiotherapy, molecularly targeted therapy and immunotherapy for lung cancer treatment efficiently force the cancer cells to undergo pyroptosis, which then generates local and systemic antitumor immunity. Thus, pyroptosis is recognized as a new therapeutic regimen for the treatment of lung cancer. In this review, we briefly describe the signaling pathways involved in pyroptosis, and endeavor to discuss the antitumor effects of pyroptosis and its potential application in lung cancer therapy, focusing on the contribution of pyroptosis to microenvironmental reprogramming and evocation of antitumor immune response.
炎症性程序性细胞死亡(PCD)是一种新近发现的炎症性程序性细胞死亡类型,通常由多个炎性体触发,这些炎性体可识别不同的危险或损伤相关分子模式(DAMPs),从而导致caspase-1的活化和gasdermin D(GSDMD)的裂解。Gasdermin 家族的孔形成蛋白是热昏迷的执行者,通常通过自身抑制作用保持非活性状态。当 Caspase 介导的 gasdermins 被裂解时,促嗜热的 N 端片段从 C 端片段的自动抑制中释放出来,并寡聚在一起,在质膜上形成孔。这导致白细胞介素(IL)-1β、IL-18 和高迁移率基团框 1(HMGB1)的分泌,产生渗透性肿胀和溶解。目前治疗肺癌的方法包括化疗、放疗、分子靶向治疗和免疫治疗,这些方法都能有效地迫使癌细胞发生热休克,进而产生局部和全身抗肿瘤免疫。因此,热解被认为是治疗肺癌的一种新疗法。在这篇综述中,我们简要介绍了参与化脓过程的信号通路,并致力于讨论化脓过程的抗肿瘤作用及其在肺癌治疗中的潜在应用,重点关注化脓过程对微环境重编程和唤起抗肿瘤免疫反应的贡献。
{"title":"Pyroptosis and the fight against lung cancer","authors":"Jiwei Wang, Huiling Su, Min Wang, Richard Ward, Su An, Tian-Rui Xu","doi":"10.1002/med.22071","DOIUrl":"10.1002/med.22071","url":null,"abstract":"<p>Pyroptosis, a newly characterized type of inflammatory programmed cell death (PCD), is usually triggered by multiple inflammasomes which can recognize different danger or damage-associated molecular patterns (DAMPs), leading to the activation of caspase-1 and the cleavage of gasdermin D (GSDMD). Gasdermin family pore-forming proteins are the executers of pyroptosis and are normally maintained in an inactive state through auto-inhibition. Upon caspases mediated cleavage of gasdermins, the pro-pyroptotic N-terminal fragment is released from the auto-inhibition of C-terminal fragment and oligomerizes, forming pores in the plasma membrane. This results in the secretion of interleukin (IL)-1β, IL-18, and high-mobility group box 1 (HMGB1), generating osmotic swelling and lysis. Current therapeutic approaches including chemotherapy, radiotherapy, molecularly targeted therapy and immunotherapy for lung cancer treatment efficiently force the cancer cells to undergo pyroptosis, which then generates local and systemic antitumor immunity. Thus, pyroptosis is recognized as a new therapeutic regimen for the treatment of lung cancer. In this review, we briefly describe the signaling pathways involved in pyroptosis, and endeavor to discuss the antitumor effects of pyroptosis and its potential application in lung cancer therapy, focusing on the contribution of pyroptosis to microenvironmental reprogramming and evocation of antitumor immune response.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"45 1","pages":"5-28"},"PeriodicalIF":10.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oxidative DNA damage-related diseases, such as incurable inflammation, malignant tumors, and age-related disorders, present significant challenges in modern medicine due to their complex molecular mechanisms and limitations in identifying effective treatment targets. Recently, 8-oxoguanine DNA glycosylase 1 (OGG1) has emerged as a promising multifunctional therapeutic target for the treatment of these challenging diseases. In this review, we systematically summarize the multiple functions and mechanisms of OGG1, including pro-inflammatory, tumorigenic, and aging regulatory mechanisms. We also highlight the potential of OGG1 inhibitors and activators as potent therapeutic agents for the aforementioned life-limiting diseases. We conclude that OGG1 serves as a multifunctional hub; the inhibition of OGG1 may provide a novel approach for preventing and treating inflammation and cancer, and the activation of OGG1 could be a strategy for preventing age-related disorders. Furthermore, we provide an extensive overview of successful applications of OGG1 regulation in treating inflammatory, cancerous, and aging-related diseases. Finally, we discuss the current challenges and future directions of OGG1 as an emerging multifunctional therapeutic marker for the aforementioned challenging diseases. The aim of this review is to provide a robust reference for scientific researchers and clinical drug developers in the development of novel clinical targeted drugs for life-limiting diseases, especially for incurable inflammation, malignant tumors, and age-related disorders.
{"title":"OGG1: An emerging multifunctional therapeutic target for the treatment of diseases caused by oxidative DNA damage","authors":"Yunxiao Zhong, Xinya Zhang, Ruibing Feng, Yu Fan, Zhang Zhang, Qing-Wen Zhang, Jian-Bo Wan, Yitao Wang, Hua Yu, Guodong Li","doi":"10.1002/med.22068","DOIUrl":"10.1002/med.22068","url":null,"abstract":"<p>Oxidative DNA damage-related diseases, such as incurable inflammation, malignant tumors, and age-related disorders, present significant challenges in modern medicine due to their complex molecular mechanisms and limitations in identifying effective treatment targets. Recently, 8-oxoguanine DNA glycosylase 1 (OGG1) has emerged as a promising multifunctional therapeutic target for the treatment of these challenging diseases. In this review, we systematically summarize the multiple functions and mechanisms of OGG1, including pro-inflammatory, tumorigenic, and aging regulatory mechanisms. We also highlight the potential of OGG1 inhibitors and activators as potent therapeutic agents for the aforementioned life-limiting diseases. We conclude that OGG1 serves as a multifunctional hub; the inhibition of OGG1 may provide a novel approach for preventing and treating inflammation and cancer, and the activation of OGG1 could be a strategy for preventing age-related disorders. Furthermore, we provide an extensive overview of successful applications of OGG1 regulation in treating inflammatory, cancerous, and aging-related diseases. Finally, we discuss the current challenges and future directions of OGG1 as an emerging multifunctional therapeutic marker for the aforementioned challenging diseases. The aim of this review is to provide a robust reference for scientific researchers and clinical drug developers in the development of novel clinical targeted drugs for life-limiting diseases, especially for incurable inflammation, malignant tumors, and age-related disorders.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 6","pages":"2825-2848"},"PeriodicalIF":10.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/med.22068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qian Zhao, Bo Han, Cheng Peng, Nan Zhang, Wei Huang, Gu He, Jun-Long Li
The cover image is based on the article A promising future of metal-N-heterocyclic carbene complexes in medicinal chemistry: The emerging bioorganometallic antitumor agents by Qian Zhao et al., https://doi.org/10.1002/med.22039.