Pub Date : 2017-01-01Epub Date: 2017-04-03DOI: 10.1016/bs.podrm.2017.02.001
Gamal A E Mostafa, Abdullah A Al-Badr
Cinacalcet hydrochloride is a calcimimetic agent that increases the sensitivity to the extracellular calcium of the calcium-sensing receptors of the parathyroid gland which regulates parathyroid hormone secretion. This comprehensive profile on cinacalcet hydrochloride starts with a description: nomenclature, formulae, chemical structure, elemental composition, and appearance. The uses and applications of the drug are included. The methods of preparation of cinacalcet hydrochloride are described and their respective schemes are outlined. The physical characterization of the drug is: ionization constant, solubility, X-ray powder diffraction (XRPD) pattern, crystal polymorphs, melting point, and differential scanning calorimetry. The spectral characteristics of the drug include: ultraviolet spectrum, vibrational spectrum, 1H and 13C nuclear magnetic resonance spectra, and the mass spectrum. The methods of analysis of the drug include: spectrophotometry, electrophoresis, fluorimetry, and high-performance liquid chromatography alone or with mass spectrometry. The stability of the drug in various media and storage conditions are reported. Biological studies on the drug include: the metabolism pharmacokinetics and pharmacodynamics. More than 100 references are listed at the end of the chapter.
{"title":"Cinacalcet Hydrochloride.","authors":"Gamal A E Mostafa, Abdullah A Al-Badr","doi":"10.1016/bs.podrm.2017.02.001","DOIUrl":"https://doi.org/10.1016/bs.podrm.2017.02.001","url":null,"abstract":"<p><p>Cinacalcet hydrochloride is a calcimimetic agent that increases the sensitivity to the extracellular calcium of the calcium-sensing receptors of the parathyroid gland which regulates parathyroid hormone secretion. This comprehensive profile on cinacalcet hydrochloride starts with a description: nomenclature, formulae, chemical structure, elemental composition, and appearance. The uses and applications of the drug are included. The methods of preparation of cinacalcet hydrochloride are described and their respective schemes are outlined. The physical characterization of the drug is: ionization constant, solubility, X-ray powder diffraction (XRPD) pattern, crystal polymorphs, melting point, and differential scanning calorimetry. The spectral characteristics of the drug include: ultraviolet spectrum, vibrational spectrum, <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance spectra, and the mass spectrum. The methods of analysis of the drug include: spectrophotometry, electrophoresis, fluorimetry, and high-performance liquid chromatography alone or with mass spectrometry. The stability of the drug in various media and storage conditions are reported. Biological studies on the drug include: the metabolism pharmacokinetics and pharmacodynamics. More than 100 references are listed at the end of the chapter.</p>","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"42 ","pages":"1-90"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.podrm.2017.02.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34932370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-03-30DOI: 10.1016/bs.podrm.2017.02.007
Gennady Ananchenko, Jasmina Novakovic
Tolterodine tartrate belongs to the family of muscarinic receptor antagonists and is indicated for the treatment of overactive urinary bladder syndrome. This chapter provides an overview of physical, analytical, and ADME profiles; highlights methods of chemical synthesis; and discusses stability of tolterodine as a free base and/or its l-tartrate salt in solution and in the solid state. The information presented in this chapter is based on the peer-reviewed literature, compendial reports (USP, EP), and authors' data. Patent literature is included only in a few instances.
{"title":"Tolterodine Tartrate.","authors":"Gennady Ananchenko, Jasmina Novakovic","doi":"10.1016/bs.podrm.2017.02.007","DOIUrl":"https://doi.org/10.1016/bs.podrm.2017.02.007","url":null,"abstract":"<p><p>Tolterodine tartrate belongs to the family of muscarinic receptor antagonists and is indicated for the treatment of overactive urinary bladder syndrome. This chapter provides an overview of physical, analytical, and ADME profiles; highlights methods of chemical synthesis; and discusses stability of tolterodine as a free base and/or its l-tartrate salt in solution and in the solid state. The information presented in this chapter is based on the peer-reviewed literature, compendial reports (USP, EP), and authors' data. Patent literature is included only in a few instances.</p>","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"42 ","pages":"339-403"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.podrm.2017.02.007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34932376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1016/S1871-5125(17)30030-4
{"title":"Preface to Volume 42.","authors":"","doi":"10.1016/S1871-5125(17)30030-4","DOIUrl":"https://doi.org/10.1016/S1871-5125(17)30030-4","url":null,"abstract":"","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"42 ","pages":"xi"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1871-5125(17)30030-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34932377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-03-31DOI: 10.1016/bs.podrm.2017.02.005
Abdulrahman A Al-Majed, Ahmed H H Bakheit, Hatem A Abdel Aziz, Abdulelah A M Al-Jallal
Olmesartan is an angiotensin receptor blockers with actions similar to those of losartan; it is used for the treatment of high blood pressure by relaxing blood vessels for this reason blood can flow more easily. It could be used alone or in combination with other antihypertensive drugs. This chapter gives a comprehensive profile of olmesartan, containing detailed nomenclature, formulae, elemental analysis, and appearance of the drug. In addition this chapter also describes several methods of synthesis and usage of the olmesartan. The profile covers the physicochemical properties including pKa value, solubility, X-ray powder diffraction, melting point, and procedures of analysis (compendial, spectroscopic, electrochemical, and chromatographic techniques of analysis). Comprehensive pharmacology is also presented (pharmacological actions, therapeutic uses and dosing, interactions, and adverse effects and precautions). Eighty references were given as a proof of the above-mentioned studies.
{"title":"Olmesartan.","authors":"Abdulrahman A Al-Majed, Ahmed H H Bakheit, Hatem A Abdel Aziz, Abdulelah A M Al-Jallal","doi":"10.1016/bs.podrm.2017.02.005","DOIUrl":"https://doi.org/10.1016/bs.podrm.2017.02.005","url":null,"abstract":"<p><p>Olmesartan is an angiotensin receptor blockers with actions similar to those of losartan; it is used for the treatment of high blood pressure by relaxing blood vessels for this reason blood can flow more easily. It could be used alone or in combination with other antihypertensive drugs. This chapter gives a comprehensive profile of olmesartan, containing detailed nomenclature, formulae, elemental analysis, and appearance of the drug. In addition this chapter also describes several methods of synthesis and usage of the olmesartan. The profile covers the physicochemical properties including pK<sub>a</sub> value, solubility, X-ray powder diffraction, melting point, and procedures of analysis (compendial, spectroscopic, electrochemical, and chromatographic techniques of analysis). Comprehensive pharmacology is also presented (pharmacological actions, therapeutic uses and dosing, interactions, and adverse effects and precautions). Eighty references were given as a proof of the above-mentioned studies.</p>","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"42 ","pages":"241-286"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.podrm.2017.02.005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34932378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-03-31DOI: 10.1016/bs.podrm.2017.02.002
Abdulrahman A Al-Majed, Nasr Y Khalil, Ibraheem Khbrani, Hatem A Abdel-Aziz
Clenbuterol (Broncodil and trade) is a direct-acting sympathomimetic agent with mainly beta-adrenergic activity and a selective action on β2 receptors (a β2 agonist). It has properties similar to those of salbutamol. It is used as a bronchodilator in the management of reversible airways obstruction, as in asthma and in certain patients with chronic obstructive pulmonary disease. The uses, applications, and the synthetic pathways of this drug are outlined. Physical characteristics including: ionization constant, solubility, X-ray powder diffraction pattern, thermal methods of analysis, UV spectrum, IR spectrum, mass spectrum are all produced. This profile also includes the monograph of British Pharmacopoeia, together with several reported analytical methods including spectrophotometric, electrochemical, chromatographic, immunochemical methods, and capillary electrophoretic methods. The stability, the pharmacokinetic behavior, and the pharmacology of the drug are also provided.
{"title":"Clenbuterol Hydrochloride.","authors":"Abdulrahman A Al-Majed, Nasr Y Khalil, Ibraheem Khbrani, Hatem A Abdel-Aziz","doi":"10.1016/bs.podrm.2017.02.002","DOIUrl":"https://doi.org/10.1016/bs.podrm.2017.02.002","url":null,"abstract":"<p><p>Clenbuterol (Broncodil and trade) is a direct-acting sympathomimetic agent with mainly beta-adrenergic activity and a selective action on β2 receptors (a β2 agonist). It has properties similar to those of salbutamol. It is used as a bronchodilator in the management of reversible airways obstruction, as in asthma and in certain patients with chronic obstructive pulmonary disease. The uses, applications, and the synthetic pathways of this drug are outlined. Physical characteristics including: ionization constant, solubility, X-ray powder diffraction pattern, thermal methods of analysis, UV spectrum, IR spectrum, mass spectrum are all produced. This profile also includes the monograph of British Pharmacopoeia, together with several reported analytical methods including spectrophotometric, electrochemical, chromatographic, immunochemical methods, and capillary electrophoretic methods. The stability, the pharmacokinetic behavior, and the pharmacology of the drug are also provided.</p>","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"42 ","pages":"91-123"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.podrm.2017.02.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34934278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-04-12DOI: 10.1016/bs.podrm.2017.02.003
Fatmah A M Al-Omary
Gliclazide is a second-generation oral hypoglycemic drug used for the treatment of noninsulin-dependent diabetes mellitus. It belongs to the sulfonylurea class that stimulates insulin secretion from pancreatic β-cells by inhibiting ATP-dependent potassium channels. Gliclazide also possesses unique antioxidant properties and other beneficial hemobiological effects. This profile represents a comprehensive description of the physical properties, chemical synthesis, spectroscopic characterization (FTIR, 1H NMR, 13C NMR, UV, and single-crystal X-ray), methods of analysis, pharmacological actions, and pharmacokinetic and pharmacodynamic properties of the title drug.
{"title":"Gliclazide.","authors":"Fatmah A M Al-Omary","doi":"10.1016/bs.podrm.2017.02.003","DOIUrl":"https://doi.org/10.1016/bs.podrm.2017.02.003","url":null,"abstract":"<p><p>Gliclazide is a second-generation oral hypoglycemic drug used for the treatment of noninsulin-dependent diabetes mellitus. It belongs to the sulfonylurea class that stimulates insulin secretion from pancreatic β-cells by inhibiting ATP-dependent potassium channels. Gliclazide also possesses unique antioxidant properties and other beneficial hemobiological effects. This profile represents a comprehensive description of the physical properties, chemical synthesis, spectroscopic characterization (FTIR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, UV, and single-crystal X-ray), methods of analysis, pharmacological actions, and pharmacokinetic and pharmacodynamic properties of the title drug.</p>","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"42 ","pages":"125-192"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.podrm.2017.02.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34932374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-03-31DOI: 10.1016/bs.podrm.2017.02.004
Reem I Al-Wabli
Lomefloxacin is a second-generation difluorinated broad-spectrum quinolone antibiotic. It is used for the treatment of bronchitis, urinary tract infection, conjunctivitis, otitis externa, and otitis media. A comprehensive profile was performed on lomefloxacin including nomenclature, formulae, elemental composition appearance, and physical characteristics. Spectral methods including ultraviolet spectrum, vibrational spectrum, 1H and 13C nuclear magnetic resonance one- and two-dimensional spectra, and mass spectrum were used for both identification and analysis of the drug. The profile also contains the reported methods of analysis such as voltammetric, polarographic, spectrophotometric, fluorimetric, chromatographic, capillary electrophoresis, and immunoassay methods. In addition, the uses, pharmacokinetics, and chemical synthesis of lomefloxacin are described.
{"title":"Lomefloxacin.","authors":"Reem I Al-Wabli","doi":"10.1016/bs.podrm.2017.02.004","DOIUrl":"https://doi.org/10.1016/bs.podrm.2017.02.004","url":null,"abstract":"<p><p>Lomefloxacin is a second-generation difluorinated broad-spectrum quinolone antibiotic. It is used for the treatment of bronchitis, urinary tract infection, conjunctivitis, otitis externa, and otitis media. A comprehensive profile was performed on lomefloxacin including nomenclature, formulae, elemental composition appearance, and physical characteristics. Spectral methods including ultraviolet spectrum, vibrational spectrum, <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance one- and two-dimensional spectra, and mass spectrum were used for both identification and analysis of the drug. The profile also contains the reported methods of analysis such as voltammetric, polarographic, spectrophotometric, fluorimetric, chromatographic, capillary electrophoresis, and immunoassay methods. In addition, the uses, pharmacokinetics, and chemical synthesis of lomefloxacin are described.</p>","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"42 ","pages":"193-240"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.podrm.2017.02.004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34932375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-04-06DOI: 10.1016/bs.podrm.2017.02.006
Abdulrahman A Al-Majed, Ahmed H H Bakheit, Hatem A Abdel Aziz, Fahad M Alajmi, Haitham AlRabiah
Propranolol is a noncardioselective β-blocker. It is reported to have membrane-stabilizing properties, but it does not own intrinsic sympathomimetic activity. Propranolol hydrochloride is used to control hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy. It is also used to control symptoms of sympathetic overactivity in the management of hyperthyroidism, anxiety disorders, and tremor. Other indications cover the prophylaxis of migraine and of upper gastrointestinal bleeding in patients with portal hypertension. This study provides a detailed, comprehensive profile of propranolol, including formulas, elemental analysis, and the appearance of the drug. In addition, the synthesis of the drug is described. The chapter covers the physicochemical properties, including X-ray powder diffraction, pK, solubility, melting point, and procedures of analysis (spectroscopic, electrochemical, and chromatographic). In-depth pharmacology is also presented (pharmacological actions, therapeutic dosing, uses, Interactions, and adverse effects and precautions). More than 60 references are given as a proof of the abovementioned studies.
{"title":"Propranolol.","authors":"Abdulrahman A Al-Majed, Ahmed H H Bakheit, Hatem A Abdel Aziz, Fahad M Alajmi, Haitham AlRabiah","doi":"10.1016/bs.podrm.2017.02.006","DOIUrl":"https://doi.org/10.1016/bs.podrm.2017.02.006","url":null,"abstract":"<p><p>Propranolol is a noncardioselective β-blocker. It is reported to have membrane-stabilizing properties, but it does not own intrinsic sympathomimetic activity. Propranolol hydrochloride is used to control hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy. It is also used to control symptoms of sympathetic overactivity in the management of hyperthyroidism, anxiety disorders, and tremor. Other indications cover the prophylaxis of migraine and of upper gastrointestinal bleeding in patients with portal hypertension. This study provides a detailed, comprehensive profile of propranolol, including formulas, elemental analysis, and the appearance of the drug. In addition, the synthesis of the drug is described. The chapter covers the physicochemical properties, including X-ray powder diffraction, pK, solubility, melting point, and procedures of analysis (spectroscopic, electrochemical, and chromatographic). In-depth pharmacology is also presented (pharmacological actions, therapeutic dosing, uses, Interactions, and adverse effects and precautions). More than 60 references are given as a proof of the abovementioned studies.</p>","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"42 ","pages":"287-338"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.podrm.2017.02.006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34932372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-31DOI: 10.1016/bs.podrm.2015.11.003
M.M.H. Al Omari, Iyad Rashid, N. Qinna, A. Jaber, A. A. Badwan
{"title":"Calcium Carbonate.","authors":"M.M.H. Al Omari, Iyad Rashid, N. Qinna, A. Jaber, A. A. Badwan","doi":"10.1016/bs.podrm.2015.11.003","DOIUrl":"https://doi.org/10.1016/bs.podrm.2015.11.003","url":null,"abstract":"","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"20 1","pages":"31-132"},"PeriodicalIF":0.0,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86823321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1016/bs.podrm.2015.12.001
Saeed R. Khan, R. T. Berendt, C. D. Ellison, Anthony B. Ciavarella, E. B. Asafu-Adjaye, Mansoor A. Khan, P. Faustino
{"title":"Bupropion Hydrochloride.","authors":"Saeed R. Khan, R. T. Berendt, C. D. Ellison, Anthony B. Ciavarella, E. B. Asafu-Adjaye, Mansoor A. Khan, P. Faustino","doi":"10.1016/bs.podrm.2015.12.001","DOIUrl":"https://doi.org/10.1016/bs.podrm.2015.12.001","url":null,"abstract":"","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"14 1","pages":"1-30"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74755517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}