Indefinite causal order has introduced disruptive procedures to improve the fidelity of quantum communication by introducing the superposition of { orders} on a set of quantum channels. It has been applied to several well characterized quantum channels as depolarizing, dephasing and teleportation. This work analyses the behavior of a parametric quantum channel for single qubits expressed in the form of Pauli channels. Combinatorics lets to obtain affordable formulas for the analysis of the output state of the channel when it goes through a certain imperfect quantum communication channel when it is deployed as a redundant application of it under indefinite causal order. In addition, the process exploits post-measurement on the associated control to select certain components of transmission. Then, the fidelity of such outputs is analysed to characterize the generic channel in terms of its parameters. As a result, we get notable enhancement in the transmission of information for well characterized channels due to the combined process: indefinite causal order plus post-measurement.
{"title":"Performance characterization of Pauli channels assisted by indefinite causal order and post-measurement","authors":"F. Delgado, C. Cardoso-Isidoro","doi":"10.26421/QIC20.15-16-1","DOIUrl":"https://doi.org/10.26421/QIC20.15-16-1","url":null,"abstract":"Indefinite causal order has introduced disruptive procedures to improve the fidelity of quantum communication by introducing the superposition of { orders} on a set of quantum channels. It has been applied to several well characterized quantum channels as depolarizing, dephasing and teleportation. This work analyses the behavior of a parametric quantum channel for single qubits expressed in the form of Pauli channels. Combinatorics lets to obtain affordable formulas for the analysis of the output state of the channel when it goes through a certain imperfect quantum communication channel when it is deployed as a redundant application of it under indefinite causal order. In addition, the process exploits post-measurement on the associated control to select certain components of transmission. Then, the fidelity of such outputs is analysed to characterize the generic channel in terms of its parameters. As a result, we get notable enhancement in the transmission of information for well characterized channels due to the combined process: indefinite causal order plus post-measurement.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"13 1","pages":"1261-1280"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87347022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, the 2-state decomposed-type quantum walk (DQW) on a line is introduced as an extension of the 2-state quantum walk (QW). The time evolution of the DQW is defined with two different matrices, one is assigned to a real component, and the other is assigned to an imaginary component of the quantum state. Unlike the ordinary 2-state QWs, localization and the spreading phenomenon can coincide in DQWs. Additionally, a DQW can always be converted to the corresponding 4-state QW with identical probability measures. In other words, a class of 4-state QWs can be realized by DQWs with 2 states. In this work, we reveal that there is a 2-state DQW corresponding to the 4-state Grover walk. Then, we derive the weak limit theorem of the class of DQWs corresponding to 4-state QWs which can be regarded as the generalized Grover walks.
{"title":"A new type of quantum walks based on decomposing quantum states","authors":"Chusei Kiumi","doi":"10.26421/QIC21.7-8-1","DOIUrl":"https://doi.org/10.26421/QIC21.7-8-1","url":null,"abstract":"In this paper, the 2-state decomposed-type quantum walk (DQW) on a line is introduced as an extension of the 2-state quantum walk (QW). The time evolution of the DQW is defined with two different matrices, one is assigned to a real component, and the other is assigned to an imaginary component of the quantum state. Unlike the ordinary 2-state QWs, localization and the spreading phenomenon can coincide in DQWs. Additionally, a DQW can always be converted to the corresponding 4-state QW with identical probability measures. In other words, a class of 4-state QWs can be realized by DQWs with 2 states. In this work, we reveal that there is a 2-state DQW corresponding to the 4-state Grover walk. Then, we derive the weak limit theorem of the class of DQWs corresponding to 4-state QWs which can be regarded as the generalized Grover walks.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"50 1","pages":"541-556"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75938852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The task of finding an entry in an unsorted list of $N$ elements famously takes $O(N)$ queries to an oracle for a classical computer and $O(sqrt{N})$ queries for a quantum computer using Grover's algorithm. Reformulated as a spatial search problem, this corresponds to searching the complete graph, or all-to-all network, for a marked vertex by querying an oracle. In this tutorial, we derive how discrete- and continuous-time (classical) random walks and quantum walks solve this problem in a thorough and pedagogical manner, providing an accessible introduction to how random and quantum walks can be used to search spatial regions. Some of the results are already known, but many are new. For large $N$, the random walks converge to the same evolution, both taking $N ln(1/epsilon)$ time to reach a success probability of $1-epsilon$. In contrast, the discrete-time quantum walk asymptotically takes $pisqrt{N}/2sqrt{2}$ timesteps to reach a success probability of $1/2$, while the continuous-time quantum walk takes $pisqrt{N}/2$ time to reach a success probability of $1$.
{"title":"Unstructured search by random and quantum walk","authors":"T. G. Wong","doi":"10.26421/QIC22.1-2-4","DOIUrl":"https://doi.org/10.26421/QIC22.1-2-4","url":null,"abstract":"The task of finding an entry in an unsorted list of $N$ elements famously takes $O(N)$ queries to an oracle for a classical computer and $O(sqrt{N})$ queries for a quantum computer using Grover's algorithm. Reformulated as a spatial search problem, this corresponds to searching the complete graph, or all-to-all network, for a marked vertex by querying an oracle. In this tutorial, we derive how discrete- and continuous-time (classical) random walks and quantum walks solve this problem in a thorough and pedagogical manner, providing an accessible introduction to how random and quantum walks can be used to search spatial regions. Some of the results are already known, but many are new. For large $N$, the random walks converge to the same evolution, both taking $N ln(1/epsilon)$ time to reach a success probability of $1-epsilon$. In contrast, the discrete-time quantum walk asymptotically takes $pisqrt{N}/2sqrt{2}$ timesteps to reach a success probability of $1/2$, while the continuous-time quantum walk takes $pisqrt{N}/2$ time to reach a success probability of $1$.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"2013 1","pages":"53-85"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86389586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As an important quantum resource, quantum coherence play key role in quantum information processing. It is often concerned with manipulation of families of quantum states rather than individual states in isolation. Given two pairs of coherent states $(rho_1,rho_2)$ and $(sigma_1,sigma_2)$, we are aimed to study how can we determine if there exists a strictly incoherent operation $Phi$ such that $Phi(rho_i) =sigma_i,i = 1,2$. This is also a classic question in quantum hypothesis testing. In this note, structural characterization of coherent preorder under strongly incoherent operations is provided. Basing on the characterization, we propose an approach to realize coherence distillation from rank-two mixed coherent states to $q$-level maximally coherent states. In addition, one scheme of coherence manipulation between rank-two mixed states is also presented.
{"title":"Coherent preorder of quantum states","authors":"Zhaofang Bai, Shuan-ping Du","doi":"10.26421/QIC20.13-14-3","DOIUrl":"https://doi.org/10.26421/QIC20.13-14-3","url":null,"abstract":"As an important quantum resource, quantum coherence play key role in quantum information processing. It is often concerned with manipulation of families of quantum states rather than individual states in isolation. Given two pairs of coherent states $(rho_1,rho_2)$ and $(sigma_1,sigma_2)$, we are aimed to study how can we determine if there exists a strictly incoherent operation $Phi$ such that $Phi(rho_i) =sigma_i,i = 1,2$. This is also a classic question in quantum hypothesis testing. In this note, structural characterization of coherent preorder under strongly incoherent operations is provided. Basing on the characterization, we propose an approach to realize coherence distillation from rank-two mixed coherent states to $q$-level maximally coherent states. In addition, one scheme of coherence manipulation between rank-two mixed states is also presented.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"7 1","pages":"1123-1136"},"PeriodicalIF":0.0,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87390626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The quantum walk is a counterpart of the random walk. The 2-state quantum walk in one dimension can be determined by a measure on the unit circle in the complex plane. As for the singular continuous measure, results on the corresponding quantum walk are limited. In this situation, we focus on a quantum walk, called the Riesz walk, given by the Riesz measure which is one of the famous singular continuous measures. The present paper is devoted to the return probability of the Riesz walk. Furthermore, we present some conjectures on the self-similarity of the walk.
{"title":"Return probability and self-similarity of the Riesz walk","authors":"Ryota Hanaoka, N. Konno","doi":"10.26421/QIC21.5-6-5","DOIUrl":"https://doi.org/10.26421/QIC21.5-6-5","url":null,"abstract":"The quantum walk is a counterpart of the random walk. The 2-state quantum walk in one dimension can be determined by a measure on the unit circle in the complex plane. As for the singular continuous measure, results on the corresponding quantum walk are limited. In this situation, we focus on a quantum walk, called the Riesz walk, given by the Riesz measure which is one of the famous singular continuous measures. The present paper is devoted to the return probability of the Riesz walk. Furthermore, we present some conjectures on the self-similarity of the walk.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"1 1","pages":"409-422"},"PeriodicalIF":0.0,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79869348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, we study open quantum random walks, as described by S. Attal et al. These objects are given in terms of completely positive maps acting on trace-class operators, leading to one of the simplest open quantum versions of the recurrence problem for classical, discrete-time random walks. This work focuses on obtaining criteria for site recurrence of nearest-neighbor, homogeneous walks on the integer line, with the description presented here making use of recent results of the theory of open walks, most particularly regarding reducibility properties of the operators involved. This allows us to obtain a complete criterion for site recurrence in the case for which the internal degree of freedom of each site (coin space) is of dimension 2. We also present the analogous result for irreducible walks with an internal degree of arbitrary finite dimension and the absorption problem for walks on the semi-infinite line.
{"title":"Homogeneous Open Quantum Walks on the Line: Criteria for Site Recurrence and Absorption","authors":"T. S. Jacq, C. F. Lardizabal","doi":"10.26421/QIC21.1-2-3","DOIUrl":"https://doi.org/10.26421/QIC21.1-2-3","url":null,"abstract":"In this work, we study open quantum random walks, as described by S. Attal et al. These objects are given in terms of completely positive maps acting on trace-class operators, leading to one of the simplest open quantum versions of the recurrence problem for classical, discrete-time random walks. This work focuses on obtaining criteria for site recurrence of nearest-neighbor, homogeneous walks on the integer line, with the description presented here making use of recent results of the theory of open walks, most particularly regarding reducibility properties of the operators involved. This allows us to obtain a complete criterion for site recurrence in the case for which the internal degree of freedom of each site (coin space) is of dimension 2. We also present the analogous result for irreducible walks with an internal degree of arbitrary finite dimension and the absorption problem for walks on the semi-infinite line.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"120 1","pages":"37-58"},"PeriodicalIF":0.0,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87749655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We consider the feasibility of studying the anisotropic Heisenberg quantum spin chain with the Variational Quantum Eigensolver (VQE) algorithm, by treating Bethe states as variational states, and Bethe roots as variational parameters. For short chains, we construct exact one-magnon trial states that are functions of the variational parameter, and implement the VQE calculations in Qiskit. However, exact multi-magnon trial states appear to be out out of reach.
{"title":"Bethe ansatz on a quantum computer?","authors":"Rafael I. Nepomechie","doi":"10.26421/QIC21.3-4-4","DOIUrl":"https://doi.org/10.26421/QIC21.3-4-4","url":null,"abstract":"We consider the feasibility of studying the anisotropic Heisenberg quantum spin chain with the Variational Quantum Eigensolver (VQE) algorithm, by treating Bethe states as variational states, and Bethe roots as variational parameters. For short chains, we construct exact one-magnon trial states that are functions of the variational parameter, and implement the VQE calculations in Qiskit. However, exact multi-magnon trial states appear to be out out of reach.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"224 1","pages":"255-265"},"PeriodicalIF":0.0,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89349590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present a novel application of the HHL (Harrow-Hassidim-Lloyd) algorithm --- a quantum algorithm solving systems of linear equations --- in solving an open problem about quantum walks, namely computing hitting (or absorption) probabilities of a general (not only Hadamard) one-dimensional quantum walks with two absorbing boundaries. This is achieved by a simple observation that the problem of computing hitting probabilities of quantum walks can be reduced to inverting a matrix. Then a quantum algorithm with the HHL algorithm as a subroutine is developed for solving the problem, which is faster than the known classical algorithms by numerical experiments.
{"title":"Quantum Walks","authors":"J. Guan, Qisheng Wang, M. Ying","doi":"10.26421/QIC21.5-6-4","DOIUrl":"https://doi.org/10.26421/QIC21.5-6-4","url":null,"abstract":"We present a novel application of the HHL (Harrow-Hassidim-Lloyd) algorithm --- a quantum algorithm solving systems of linear equations --- in solving an open problem about quantum walks, namely computing hitting (or absorption) probabilities of a general (not only Hadamard) one-dimensional quantum walks with two absorbing boundaries. This is achieved by a simple observation that the problem of computing hitting probabilities of quantum walks can be reduced to inverting a matrix. Then a quantum algorithm with the HHL algorithm as a subroutine is developed for solving the problem, which is faster than the known classical algorithms by numerical experiments.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"11 1","pages":"395-408"},"PeriodicalIF":0.0,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80690867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum secret sharing (QSS) is an important branch of secure multiparty quantum computation. Several schemes for (n, n) threshold QSS based on quantum Fourier transformation (QFT) have been proposed. Inspired by the flexibility of (t, n) threshold schemes, Song {it et al.} (Scientific Reports, 2017) have proposed a (t, n) threshold QSS utilizing QFT. Later, Kao and Hwang (arXiv:1803.00216) have identified a {loophole} in the scheme but have not suggested any remedy. In this present study, we have proposed a (t, n)threshold QSS scheme to share a d dimensional classical secret. This scheme can be implemented using local operations (such as QFT, generalized Pauli operators and local measurement) and classical communication. Security of the proposed scheme is described against outsider and participants' eavesdropping.
{"title":"(t, n) Threshold d-level QSS based on QFT","authors":"Sarbani Roy, S. Mukhopadhyay","doi":"10.26421/QIC20.11-12-3","DOIUrl":"https://doi.org/10.26421/QIC20.11-12-3","url":null,"abstract":"Quantum secret sharing (QSS) is an important branch of secure multiparty quantum computation. Several schemes for (n, n) threshold QSS based on quantum Fourier transformation (QFT) have been proposed. Inspired by the flexibility of (t, n) threshold schemes, Song {it et al.} (Scientific Reports, 2017) have proposed a (t, n) threshold QSS utilizing QFT. Later, Kao and Hwang (arXiv:1803.00216) have identified a {loophole} in the scheme but have not suggested any remedy. In this present study, we have proposed a (t, n)threshold QSS scheme to share a d dimensional classical secret. This scheme can be implemented using local operations (such as QFT, generalized Pauli operators and local measurement) and classical communication. Security of the proposed scheme is described against outsider and participants' eavesdropping.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"79 1","pages":"957-968"},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80316609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pramod Padmanabhan, Fumihiko Sugino, Diego Trancanelli
Braiding operators can be used to create entangled states out of product states, thus establishing a correspondence between topological and quantum entanglement. This is well-known for maximally entangled Bell and GHZ states and their equivalent states under Stochastic Local Operations and Classical Communication, but so far a similar result for W states was missing. Here we use generators of extraspecial 2-groups to obtain the W state in a four-qubit space and partition algebras to generate the W state in a three-qubit space. We also present a unitary generalized Yang-Baxter operator that embeds the W_n state in a (2n-1)-qubit space.
{"title":"Generating W states with braiding operators","authors":"Pramod Padmanabhan, Fumihiko Sugino, Diego Trancanelli","doi":"10.26421/QIC20.13-14","DOIUrl":"https://doi.org/10.26421/QIC20.13-14","url":null,"abstract":"Braiding operators can be used to create entangled states out of product states, thus establishing a correspondence between topological and quantum entanglement. This is well-known for maximally entangled Bell and GHZ states and their equivalent states under Stochastic Local Operations and Classical Communication, but so far a similar result for W states was missing. Here we use generators of extraspecial 2-groups to obtain the W state in a four-qubit space and partition algebras to generate the W state in a three-qubit space. We also present a unitary generalized Yang-Baxter operator that embeds the W_n state in a (2n-1)-qubit space.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"20 1","pages":"1153-1161"},"PeriodicalIF":0.0,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85158757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}