BACKGROUND Darifenacin hydrobromide, a BCS Class II drug, is poorly bioavailable due to extensive first-pass metabolism. The present study is an attempt to investigate an alternative route of drug delivery by developing a nanometric microemulsion-based transdermal gel for the management of an overactive bladder. METHOD Oil, surfactant, and cosurfactant were selected based on the solubility of the drug, and surfactant: cosurfactant in surfactant mixture (Smix) was selected at a 1:1 ratio as inferred from the pseudo ternary phase diagram. The D-optimal mixture design was used to optimize the o/w microemulsion wherein the globule size and zeta potential were selected as dependable variables. The prepared microemulsions were also characterized for various physico-chemical properties like transmittance, conductivity, and TEM. The optimized microemulsion was gelled using Carbopol 934 P and assessed for drug release in-vitro and ex-vivo, viscosity, spreadability, pH, etc. Results: Drug excipient compatibility studies showed that the drug was compatible with formulation components. The optimized microemulsion showed a globule size of less than 50 nm and a high zeta potential of -20.56 mV. The ME gel could sustain the drug release for 8 hours as reflected in in-vitro and ex-vivo skin permeation and retention studies. The accelerated stability study showed no significant change in applied storage conditions. CONCLUSION An effective, stable, non-invasive microemulsion gel containing darifenacin hydrobromide was developed. The achieved merits could translate into increased bioavailability and dose reduction. Further confirmatory in-vivo studies on this novel formulation, which is a cost-effective & industrially scalable option, can improve the pharmacoeconomics of overactive bladder management.
{"title":"Application of D-Optimal Mixture Design in the Development of Nanocarrier-Based Darifenacin Hydrobromide Gel.","authors":"Divya Patel, Maanika Menon, Pranav Shah, Meenakshi Patel, Manisha Lalan","doi":"10.2174/2667387817666230221141501","DOIUrl":"https://doi.org/10.2174/2667387817666230221141501","url":null,"abstract":"BACKGROUND Darifenacin hydrobromide, a BCS Class II drug, is poorly bioavailable due to extensive first-pass metabolism. The present study is an attempt to investigate an alternative route of drug delivery by developing a nanometric microemulsion-based transdermal gel for the management of an overactive bladder. METHOD Oil, surfactant, and cosurfactant were selected based on the solubility of the drug, and surfactant: cosurfactant in surfactant mixture (Smix) was selected at a 1:1 ratio as inferred from the pseudo ternary phase diagram. The D-optimal mixture design was used to optimize the o/w microemulsion wherein the globule size and zeta potential were selected as dependable variables. The prepared microemulsions were also characterized for various physico-chemical properties like transmittance, conductivity, and TEM. The optimized microemulsion was gelled using Carbopol 934 P and assessed for drug release in-vitro and ex-vivo, viscosity, spreadability, pH, etc. Results: Drug excipient compatibility studies showed that the drug was compatible with formulation components. The optimized microemulsion showed a globule size of less than 50 nm and a high zeta potential of -20.56 mV. The ME gel could sustain the drug release for 8 hours as reflected in in-vitro and ex-vivo skin permeation and retention studies. The accelerated stability study showed no significant change in applied storage conditions. CONCLUSION An effective, stable, non-invasive microemulsion gel containing darifenacin hydrobromide was developed. The achieved merits could translate into increased bioavailability and dose reduction. Further confirmatory in-vivo studies on this novel formulation, which is a cost-effective & industrially scalable option, can improve the pharmacoeconomics of overactive bladder management.","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":"17 1","pages":"47-60"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9778302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The discovery of proteins and peptides marked the actual beginning for pharmaceutical companies to do research on novel delivery systems for delivering these therapeutic proteins. Biodegradable polymer-based microspheres for controlled-release depot injection are known for decades and have proved to be one of the best possible approaches. Despite being known for decades, the commercial success of microsphere-based delivery systems remains limited. Very few products are seen in the market with no generics available for approved brand products whose patents have either expired or are about to expire. All this points to the complexities involved in developing these delivery systems. Still, many hurdles remain in developing these drug delivery systems namely, poor drug entrapment, unwanted burst release, poor in vitro in vivo correlation, lack of proper in vitro testing methods, problems involved during scale-up, and the most important hurdle being sterilization of the product. To achieve successful product development, all of these technical difficulties need to be simultaneously dealt with and resolved. This article attempts to highlight the problem areas for these delivery systems along with the regulatory requirements involved and map the present status of these delivery systems.
{"title":"Biodegradable Polymer-Based Microspheres for Depot Injection-Industry Perception.","authors":"Anand Kyatanwar, Mangal Nagarsenker, Bala Prabhakar","doi":"10.2174/2667387817666230119103126","DOIUrl":"https://doi.org/10.2174/2667387817666230119103126","url":null,"abstract":"<p><p>The discovery of proteins and peptides marked the actual beginning for pharmaceutical companies to do research on novel delivery systems for delivering these therapeutic proteins. Biodegradable polymer-based microspheres for controlled-release depot injection are known for decades and have proved to be one of the best possible approaches. Despite being known for decades, the commercial success of microsphere-based delivery systems remains limited. Very few products are seen in the market with no generics available for approved brand products whose patents have either expired or are about to expire. All this points to the complexities involved in developing these delivery systems. Still, many hurdles remain in developing these drug delivery systems namely, poor drug entrapment, unwanted burst release, poor in vitro in vivo correlation, lack of proper in vitro testing methods, problems involved during scale-up, and the most important hurdle being sterilization of the product. To achieve successful product development, all of these technical difficulties need to be simultaneously dealt with and resolved. This article attempts to highlight the problem areas for these delivery systems along with the regulatory requirements involved and map the present status of these delivery systems.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":"17 1","pages":"13-30"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9789791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2174/2667387817666230907093403
Shivang Dhoundiyal, Md Aftab Alam
Generally, therapeutic drugs have issues like poor solubility, rapid removal from the bloodstream, lack of targeting, and an inability to translocate across cell membranes. Some of these barriers can be overcome by using nano drug delivery systems (DDS), which results in more efficient drug delivery to the site of action. Due to their potential application as drug delivery systems, nanoparticles are the main topic of discussion in this article. Experimental and computational investigations have substantially aided in the understanding of how nanocarriers work and how they interact with medications, biomembranes and other biological components. This review explores how computational modelling can aid in the rational design of DDS that has been optimized and improved upon. The most commonly used simulation methods for studying DDS and some of the most important biophysical elements of DDS are also discussed. Then, we conclude by investigating the computational properties of various types of nanocarriers, such as dendrimers and dendrons, polymer-, peptide-, nucleic acid-, lipid-, carbon-based DDS, and gold nanoparticles.
{"title":"Advances in Pharmacokinetic Modelling and Computational Approaches for Nanoparticles in Drug Delivery Systems.","authors":"Shivang Dhoundiyal, Md Aftab Alam","doi":"10.2174/2667387817666230907093403","DOIUrl":"10.2174/2667387817666230907093403","url":null,"abstract":"<p><p>Generally, therapeutic drugs have issues like poor solubility, rapid removal from the bloodstream, lack of targeting, and an inability to translocate across cell membranes. Some of these barriers can be overcome by using nano drug delivery systems (DDS), which results in more efficient drug delivery to the site of action. Due to their potential application as drug delivery systems, nanoparticles are the main topic of discussion in this article. Experimental and computational investigations have substantially aided in the understanding of how nanocarriers work and how they interact with medications, biomembranes and other biological components. This review explores how computational modelling can aid in the rational design of DDS that has been optimized and improved upon. The most commonly used simulation methods for studying DDS and some of the most important biophysical elements of DDS are also discussed. Then, we conclude by investigating the computational properties of various types of nanocarriers, such as dendrimers and dendrons, polymer-, peptide-, nucleic acid-, lipid-, carbon-based DDS, and gold nanoparticles.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":"210-227"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10553840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.2174/266738781604221222090130
W. Wui
{"title":"Meet the Co-Editor","authors":"W. Wui","doi":"10.2174/266738781604221222090130","DOIUrl":"https://doi.org/10.2174/266738781604221222090130","url":null,"abstract":"","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73091747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-29DOI: 10.2174/2667387816666220429095834
A. Fatimi
BACKGROUND This paper provides a comprehensive overview of the patent situation for hydrogel-based bioinks used for 3D bioprinting globally. It encapsulates information which could be used as a reference by researchers in the fields of 3D bioprinting, biomaterials, tissue engineering, and biomedical engineering, as well as those interested in biomaterials, especially in the formulation of hydrogels. It can also inform policy discussions, strategic research planning, or technology transfer in this area. The findings presented hereinafter are considered novel research aspects regarding the used hydrogels, their preparation methods, and their formulations, as well as the 3D bioprinting process using hydrogels. Furthermore, the novel part, synthesized patents, is regarded as a breakthrough in hydrogel-based bioinks. METHODS The following research aspects of this study are based on data collection from selected patent databases. The search results are then analyzed according to publication years, classification, inventors, applicants, and owners, as well as jurisdictions. RESULTS Based on the earliest priority date, it is possible to precisely assume that 2004 is considered the starting year of patenting of hydrogel-based bioinks. Furthermore, 2020 was the year with the most patent documents. According to the findings, the United States, China, and the Republic of Korea are the most prolific countries in terms of patenting on hydrogel-based bioinks. The most prolific patenting companies are from the United States, Sweden, and Australia, while universities from the Republic of Korea and the United States are the academic institutions leading the way. Most inventions of hydrogel-based bioinks intended for hydrogels or hydrocolloids used as materials for prostheses or for coating prostheses are characterized by their function or physical properties. CONCLUSION The state has been reviewed by introducing what has been patented concerning hydrogel-based bioinks. Knowledge clusters and expert driving factors indicate that the research based on biomaterials, tissue engineering, and biofabrication is concentrated in the most common patent documents. Finally, this paper, which gives a competitive analysis of the past, present, and future trends in hydrogel-based bioinks, leads to various recommendations that could help one to plan and innovate research strategies.
{"title":"Exploring the patent landscape and innovation of hydrogel-based bioinks used for 3D bioprinting.","authors":"A. Fatimi","doi":"10.2174/2667387816666220429095834","DOIUrl":"https://doi.org/10.2174/2667387816666220429095834","url":null,"abstract":"BACKGROUND\u0000This paper provides a comprehensive overview of the patent situation for hydrogel-based bioinks used for 3D bioprinting globally. It encapsulates information which could be used as a reference by researchers in the fields of 3D bioprinting, biomaterials, tissue engineering, and biomedical engineering, as well as those interested in biomaterials, especially in the formulation of hydrogels. It can also inform policy discussions, strategic research planning, or technology transfer in this area. The findings presented hereinafter are considered novel research aspects regarding the used hydrogels, their preparation methods, and their formulations, as well as the 3D bioprinting process using hydrogels. Furthermore, the novel part, synthesized patents, is regarded as a breakthrough in hydrogel-based bioinks.\u0000\u0000\u0000METHODS\u0000The following research aspects of this study are based on data collection from selected patent databases. The search results are then analyzed according to publication years, classification, inventors, applicants, and owners, as well as jurisdictions.\u0000\u0000\u0000RESULTS\u0000Based on the earliest priority date, it is possible to precisely assume that 2004 is considered the starting year of patenting of hydrogel-based bioinks. Furthermore, 2020 was the year with the most patent documents. According to the findings, the United States, China, and the Republic of Korea are the most prolific countries in terms of patenting on hydrogel-based bioinks. The most prolific patenting companies are from the United States, Sweden, and Australia, while universities from the Republic of Korea and the United States are the academic institutions leading the way. Most inventions of hydrogel-based bioinks intended for hydrogels or hydrocolloids used as materials for prostheses or for coating prostheses are characterized by their function or physical properties.\u0000\u0000\u0000CONCLUSION\u0000The state has been reviewed by introducing what has been patented concerning hydrogel-based bioinks. Knowledge clusters and expert driving factors indicate that the research based on biomaterials, tissue engineering, and biofabrication is concentrated in the most common patent documents. Finally, this paper, which gives a competitive analysis of the past, present, and future trends in hydrogel-based bioinks, leads to various recommendations that could help one to plan and innovate research strategies.","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":"117 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77032041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-26DOI: 10.2174/2667387816666220426134156
Tochukwu C. Okeke, C. Umeyor, I. Nzekwe, I. C. Umeyor, N. Nebolisa, E. Uronnachi, C. Nwakile, Chizoba Austinline Ekweogu, O. Aziakpono, A. Attama
BACKGROUND Previous folkloric and experimental reports have demonstrated the antimalarial efficacy of Azadirachta indica (AZA) extracts. However, one of the major challenges facing its application for the clinical treatment of malaria is the design of an acceptable dosage form. OBJECTIVE Consequently, we developed AZA extract-loaded nanostructured lipid carriers (NLC) for the formulation of suppositories, denoted as nanosuppositories, for intrarectal treatment of malaria. METHODS Various batches of NLC-bearing AZA extract were formulated based on lipid matrices prepared using graded concentrations of Softisan®154 and Tetracarpidium conophorum or walnut oil. NLC was investigated by size, and differential scanning calorimetry (DSC). Suppository bearing AZA extract-loaded NLC was developed using cocoa butter or theobroma oil, and their physicochemical properties were profiled. In vitro drug release and in vivo antimalarial (using Plasmodium berghei-infected mice) evaluation were investigated. RESULTS NLCs had sizes in nanometer scale ranging from 329.5 - 806.0 nm, and were amorphized as shown by DSC thermograms. Nanosuppositories were torpedo- or bullet- shaped, weighed 138 - 368 mg, softened/liquefied between 4.10 - 6.92 min, and had controlled release behaviour. In vivo antimalarial study revealed excellent antimalarial efficacy of the nanosuppositories comparable with a commercial brand (Plasmotrim®) and better than the placebo (unloaded nanosuppository), and without toxic alterations of hepatic and renal biochemical factors. CONCLUSION Thus, AZA extract could be rationally loaded in nanostructured lipid carriers (NLC) for further development as nanosuppositories and deployed as an effective alternative with optimum convenience for intrarectal treatment of malaria.
{"title":"Formulation development of Azadirachta indica extract as nanosuppositories improves its intrarectal delivery for the treatment of malaria.","authors":"Tochukwu C. Okeke, C. Umeyor, I. Nzekwe, I. C. Umeyor, N. Nebolisa, E. Uronnachi, C. Nwakile, Chizoba Austinline Ekweogu, O. Aziakpono, A. Attama","doi":"10.2174/2667387816666220426134156","DOIUrl":"https://doi.org/10.2174/2667387816666220426134156","url":null,"abstract":"BACKGROUND\u0000Previous folkloric and experimental reports have demonstrated the antimalarial efficacy of Azadirachta indica (AZA) extracts. However, one of the major challenges facing its application for the clinical treatment of malaria is the design of an acceptable dosage form.\u0000\u0000\u0000OBJECTIVE\u0000Consequently, we developed AZA extract-loaded nanostructured lipid carriers (NLC) for the formulation of suppositories, denoted as nanosuppositories, for intrarectal treatment of malaria.\u0000\u0000\u0000METHODS\u0000Various batches of NLC-bearing AZA extract were formulated based on lipid matrices prepared using graded concentrations of Softisan®154 and Tetracarpidium conophorum or walnut oil. NLC was investigated by size, and differential scanning calorimetry (DSC). Suppository bearing AZA extract-loaded NLC was developed using cocoa butter or theobroma oil, and their physicochemical properties were profiled. In vitro drug release and in vivo antimalarial (using Plasmodium berghei-infected mice) evaluation were investigated.\u0000\u0000\u0000RESULTS\u0000NLCs had sizes in nanometer scale ranging from 329.5 - 806.0 nm, and were amorphized as shown by DSC thermograms. Nanosuppositories were torpedo- or bullet- shaped, weighed 138 - 368 mg, softened/liquefied between 4.10 - 6.92 min, and had controlled release behaviour. In vivo antimalarial study revealed excellent antimalarial efficacy of the nanosuppositories comparable with a commercial brand (Plasmotrim®) and better than the placebo (unloaded nanosuppository), and without toxic alterations of hepatic and renal biochemical factors.\u0000\u0000\u0000CONCLUSION\u0000Thus, AZA extract could be rationally loaded in nanostructured lipid carriers (NLC) for further development as nanosuppositories and deployed as an effective alternative with optimum convenience for intrarectal treatment of malaria.","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85570022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-04DOI: 10.2174/2667387816666220404123625
J. B. da Silva, R. S. Dos Santos, C. F. Vecchi, M. Bruschi
Nowadays, the development of mucoadhesive systems for drug delivery have gained keen interest, with enormous potential in applications through different routes. Mucoadhesion characterizes an attractive interaction between the pharmaceutical dosage form and the mucosal surface. Many polymers have shown the ability to interact with mucus, increasing the residence time of local and/or systemic administered preparations, such as tablets, patches, semi-solids, micro-and nanoparticles. Cellulose is the most abundant polymer on the earth. It is widely used in the pharmaceutical industry as an inert pharmaceutical ingredient, mainly in its covalently modified forms: methylcellulose, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose and carboxymethylcellulose salts. Aiming to overcome the drawbacks of oral, ocular, nasal, vaginal, and rectal routes, and thereby maintaining patient compliance, innovative polymer blends have gained the interest of the pharmaceutical industry. Combining mucoadhesive and thermoresponsive polymers allows for simultaneous in situ gelation and mucoadhesion, thus enhancing the retention of the system at the site of administration and drug availability. Thermoresponsive polymers have the ability to change physicochemical properties triggered by temperature, which is particularly interesting considering physiological temperature. The present review provides an analysis of the main characteristics and applications of cellulose derivatives as mucoadhesive polymers and their use in blends together with thermoresponsive polymers, aiming platforms for drug delivery. Patents were reviewed, categorized, and discussed focusing the applications and pharmaceutical dosage forms using this innovative strategy. This review manuscript also provides a detailed introduction to the topic and a perspective on further developments.
{"title":"Drug delivery platforms containing thermoresponsive polymers and mucoadhesive cellulose derivatives: state of the art and review of patents.","authors":"J. B. da Silva, R. S. Dos Santos, C. F. Vecchi, M. Bruschi","doi":"10.2174/2667387816666220404123625","DOIUrl":"https://doi.org/10.2174/2667387816666220404123625","url":null,"abstract":"Nowadays, the development of mucoadhesive systems for drug delivery have gained keen interest, with enormous potential in applications through different routes. Mucoadhesion characterizes an attractive interaction between the pharmaceutical dosage form and the mucosal surface. Many polymers have shown the ability to interact with mucus, increasing the residence time of local and/or systemic administered preparations, such as tablets, patches, semi-solids, micro-and nanoparticles. Cellulose is the most abundant polymer on the earth. It is widely used in the pharmaceutical industry as an inert pharmaceutical ingredient, mainly in its covalently modified forms: methylcellulose, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose and carboxymethylcellulose salts. Aiming to overcome the drawbacks of oral, ocular, nasal, vaginal, and rectal routes, and thereby maintaining patient compliance, innovative polymer blends have gained the interest of the pharmaceutical industry. Combining mucoadhesive and thermoresponsive polymers allows for simultaneous in situ gelation and mucoadhesion, thus enhancing the retention of the system at the site of administration and drug availability. Thermoresponsive polymers have the ability to change physicochemical properties triggered by temperature, which is particularly interesting considering physiological temperature. The present review provides an analysis of the main characteristics and applications of cellulose derivatives as mucoadhesive polymers and their use in blends together with thermoresponsive polymers, aiming platforms for drug delivery. Patents were reviewed, categorized, and discussed focusing the applications and pharmaceutical dosage forms using this innovative strategy. This review manuscript also provides a detailed introduction to the topic and a perspective on further developments.","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87748589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.2174/266738781601220408105333
A. Tiwary
{"title":"Meet the Editorial Board Member","authors":"A. Tiwary","doi":"10.2174/266738781601220408105333","DOIUrl":"https://doi.org/10.2174/266738781601220408105333","url":null,"abstract":"","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":"220 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89121786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shikonin and its derivatives are excellent representatives of biologically active naphthoquinones. A wide range of investigations carried out in the last few decades validated their pharmacological efficacy. Besides having magnificent therapeutic potential, shikonin and its derivatives suffer from various pharmacokinetic, toxicity and stability issues like poor bioavailability, nephrotoxicity, photodegradation, etc. In the recent past, various research groups have developed an extensive range of formulations to tackle these issues to ease their path to clinical practice. The latest formulation approaches have been focused on exploiting the unique features of novel functional excipients which in turn escalate the therapeutic effect of shikonin. Moreover, the codelivery approach in various drug delivery systems has taken into consideration in a recent while to reduce toxicity associated with shikonin and its derivatives. This review sheds light on the essential reports and patents published related to the array of formulations containing shikonin and its derivatives.
{"title":"Formulation Strategies and Therapeutic Applications of Shikonin and Related Derivatives.","authors":"Kirandeep Kaur, Atamjit Singh, Hamayal Sharma, Sanha Punj, Neena Bedi","doi":"10.2174/2667387816666220302112201","DOIUrl":"https://doi.org/10.2174/2667387816666220302112201","url":null,"abstract":"Shikonin and its derivatives are excellent representatives of biologically active naphthoquinones. A wide range of investigations carried out in the last few decades validated their pharmacological efficacy. Besides having magnificent therapeutic potential, shikonin and its derivatives suffer from various pharmacokinetic, toxicity and stability issues like poor bioavailability, nephrotoxicity, photodegradation, etc. In the recent past, various research groups have developed an extensive range of formulations to tackle these issues to ease their path to clinical practice. The latest formulation approaches have been focused on exploiting the unique features of novel functional excipients which in turn escalate the therapeutic effect of shikonin. Moreover, the codelivery approach in various drug delivery systems has taken into consideration in a recent while to reduce toxicity associated with shikonin and its derivatives. This review sheds light on the essential reports and patents published related to the array of formulations containing shikonin and its derivatives.","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73991654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}